数学概念教学的论文范文(16篇)
古文是指古代汉族文化圈内流传下来的文学作品和篇章。总结一定要客观真实,不夸大、不缩小实际情况。这些总结范文或许可以给我们一些启示和思路,但在撰写总结时还需根据实际情况进行个性化的调整。
数学概念教学的论文篇一
数学概念主要由内涵和外延组成,外延即指概念额全体,而内涵则指概念的本质特征。要想把握好数学概念,其核心就在于要准确理解其内涵与外延。例如,对于平行四边形这一概念而言,对边平行且相等类似的属性综合则属于其内涵,而正方形、菱形等则属于它的外延对象。数学概念教学作为数学教学重要的组成部分,是进行数学学习的核心,其根本任务就在于准确揭示出概念的内涵与外延。实施数学概念教学需要依据一定的指导思想,它融合了哲学、数学以及心理学三者的理论。同时实施数学概念教学还应当遵循一定的教学原则,例如:动力性原则、过程性原则、层次性原则等。
数学概念教学的论文篇二
摘要:函数的概念及相关内容是高中和职业类教材中非常重要的'部分,许多学生认为这些内容比较抽象、难懂、图像多,方法灵活多样。
以致部分学生对函数知识产生恐惧感。
就教学过程中学生的反应和自己的反思,浅淡几点自己的看法。
关键词:函数;对应;映射;数形结合。
1要把握函数的实质。
数学概念教学的论文篇三
在国陪计划课程学习之余,我研读了有关化学概念原理教学有关书目,对化学概念原理教学有我自己的两点认识,现在提出来我们共同探讨。
一、加强对教材的研究。
化学概念原理是初中化学新课程的重要组成部分,它分布在各个课程模块中,其中在上册有关章节覆盖的比较多,但是还是贯穿于整个化学教学始终。课程的概念原理教学具有主题覆盖面较广、教学要求较浅等特点。在教学中,教师要认真研究初中化学教材,处理好集中教学与分散概念原理教学的关系,把握教材的深度和广度,这样才能很好地实施教学。例如:在第四单元概念原理较为集中且抽象,在其它单元则不怎么明显,这要求老师把我概念的全线贯穿和重点强化引导。在概念知识较为集中的第四单元,教师要分散教学,把概念原理分散到教学的各个环节,比如习题设计,课堂内容称述及学生自主练习等过程中,不能要求学生一下子掌握,要逐渐渗透。在学生自主练习中给学生反复的阐述自己的思路,把概念原理教学融进去,例如学了化合价知识,要通过多做练习,多反复来达到记忆的目的,在作业联系的设计上,对于相同类型的题目,要多设多做。在平时教学中遇到这方面的问题要不厌其烦的'给同学们从头开始细细的讲解,至始至终,在往后的整个教学中予以贯述,切不可操之过急,让同学们慢慢内化。因学生差异略做调整。
二、加强对教学策略和方法的研究。
化学基本概念、基本原理的教学,教师可引导学生按照以下的程序组织教学,创设问题情景—提出考虑新问题的新视角—形成假设—验证假设—结论—整合知识结构。使学生的认知心理历经:原有平衡—不平衡—新的平衡—新的不平衡……的螺旋式上升的过程。例如“化学式的意义”一节教学中,教师首先引导学生复习化学式的概念,然后指明化学式所表示的几点含义,通过课本上的例子进行简单讲解,然后让同学们自我总结,老师然后再补充说明,提出化学式的四点含义,表示这种物质,表示这种物质的元素组成,表示这种物质的一个分子,表示物质中分子的微观构成。接下来给学生一道相似题目进行联系,然后订正,接下来改变题目难度,让同学们再练习,提出不同化学式含义的微小区别,接下来再回顾概念,再练习,当然这样的教学一堂课对初中生完全掌握这个概念不是件容易的事,因为一段时间的遗忘也是绊脚石,所以要下来后,加大练习,直至巩固。最终是学生对概念有一个清晰地认知。
因此我的概念原理教学多采用分散与集中相结合的方式,把难点分散到平时教学的各个环节,主要是要加大对概念原理的练习与评讲,在此过程中达到概念原理的掌握。
当然在此过程中要引导学生探究欲望,教师在教学的问题创设多方面功不可少。在化学基本概念、基本原理的教学中,问题情境的创设是基础,知识落实是关键。关于创设问题情景的方法很多,我们可以根据不同的内容去认真研究,精心设计。
数学概念教学的论文篇四
针对小学生的年龄特点和对概念掌握的物点来看,在概念教学中要采用一定的教学策略,以下就略谈我在这方面的点滴体会。
一、从学生的生活经验引入概念。
生活中有许多地方用到了数学,通过实物、教具、学具让学生观察、演示或操作来阐明概念,可以收到良好的效果。如让学生只用一把直尺画一个圆,这对学生来说是一个考验。用圆规学生都能画圆,用一根线固定于一点也能画一个圆,那么为什么要求学生用一把直尺来画圆呢?这就是渗透圆的定义,虽然在小学阶段很多数学概念是描述性的,但也要尽可能的让学生的后继学习更有利于知识建构。通过这样的操作,会在学生头脑中留下这样的表象:圆就是所有到定点距离等于定长的点的轨迹。哪怕学生无法用语言来表述,但是头脑中有了这样的表象对后继知识的学习是相当有利的。
二、以旧概念的复习引入新概念。
一个概念并不是孤立的,它总是处在一定的概念系统中,处在与其它概念的相互联系中,学生的学习都是通过概念同化习得新概念的。学习复杂概念之前,先学习更一般更简单的概念(即上位概念),以这个上位概念作为新概念的的先行组织者,联系学生已学过的有关概念来阐明新概念的是教学的重要方法之一。如利用整除的概念阐明约数与倍数的概念。在公约数与公倍数的概念中,再添上“最大”、“最小”的限制,而得出最大公约数和最小公倍数的概念。
实践表明,用先前的一个概念推导出新的概念,这样的既能使学生较好地理解新的概念,又能使知识结构形成的更完善,学生掌握得更牢固,更重要的是帮助学生树立起联系的思维方法,形成逻辑思维能力。
三、抓住本质,讲清概念。
要使学生理解和掌握概念,关键在于揭示概念的本质特征,也就是反映事物的根本属性及其主要表现,是该事物区别于其他事物或该概念区别于其他概念的根本之处。有些老师常埋怨学生知识学得死,不会灵活运用,究其原因就是学生没有很好地把握概念的本质。如有些学生对平行四边形的认识必须是端端正正,成水平型的,当变换位置后就和他们理解平行四边形的`概念相抵触了,分析造成这种情况的原因和教师提供事例的方式有关,呈现给学生的都是这样固定不变的平行四边形,就使学生不易区别平行四边形的本质属性与非本质属性,而把非本质的属性也纳入到概念的内涵中去。
因此教师要在讲清概念时要十分准确地讲清概念的含义。有些性质、法则和公式中包含着的某些基础概念,办中一个词,但它所表示的含义也是极其明确的,在教学中要特别注意把这些含义准确而清晰地表达出来。抓住关键讲解概念,就能使学生明确新概念的本质属性及它的意义。如在教学分数意义时就要强调“平均分”。
教师还要恰当地讲清概念的运用范围。如2是质数但不能说它是一个质因数,只能说它是某个合数的质因数。又如在用字母表示数时,爸爸的年龄用a表示,小明的年龄用a—28表示,这里a并不能表示任意一个数,而是有一定的范围的。
四、分析比较,区别异同。
有些概念表面看起来有类似之处,实际上似是而非,能过对比本质属性,使学生弄清它们之间的联系和区别,可以加深对概念的理解。如质数与质因数、互质数、数位与位数、整除与除尽等概念十分相似和相近,教学时要通过各种情况的反复比较,指明它们之间的联系与区别,帮助学生掌握概念实质。又如在教学小数的性质——“在小数的末尾添上零或者去掉零,小数的大小不变,”这里“小数的末尾”就不能说成是“小数点后面”,也不能说成是“小数部分”。“末尾”这个概念是“最后”的意思。
在运用对比法教学时,采有变式也是一种很好的方法,能过变式教学可以使学生排除概念中非本质特征,学生能抓住本质特征,才能增强运用概念的灵活性。如在出示几何图形时位置要变化,不要让其“经典式出场”。
当然在使用比较的方法进行教学时,必须在这个概念已经建立得比较清楚、牢固的基础上,再引入其他相关概念进行比较。否则,不仅不会加深学生对概念的理解,反而容易产生混淆现象。
五、启发思维,归纳概括。
有的学生逻辑思维能力差,习惯于死记硬背,做习题时,只能依样画葫芦,遇到问题的条件或形式稍有变化,就束手无策,因此在概念教学中要注意发展学生的智力,培养学生自己去获得知识的能力。如在教学梯形的认识时,可以将平行四边形与梯形放在一起,通过让学生分类的方法来体会到梯形就是只有一组对边平行的四边形。学生经历了这样的探索过程,形成了清晰的概念并提高了解决问题的能力。
六、前后联系,因“时”施教。
教学具有很强的抽象性与系统性。有些概念之间的联系起来十分紧密,后者以前者为基础,从已有的概念引出新概念。有些概念随着知识的逐步积累,认识的逐步深入,而趋向于完善。所以,小学数学系教材按照儿童的认识规律和教学的内在联系,把教学内容划分为几个阶段,每个阶段有每个阶段的不同要求,有每个阶段各自的重点,这就决定了概念教学的阶段性。
如对圆的认识,一年级学生就接触过了,只要在几具图形中能找到圆就行了;到六年级再认识就更深一步了,了解圆的各部分名称和它们之间的关系,并进行求圆的周长与面积的计算教学;到中学阶段还要学圆的有关知识,这时候对的圆的定义是:圆是所有到定点距离等于定长的点的轨迹。又如商不变性质、分数的基本性质、比的基本性质这三个基本性质,形式不一样,但本质属性是相通的。如果不注意前阶段的教学内容和要求,讲后阶段的内容时,就不能把新旧知识有机地衔接起来,融会贯通;如果不了解后阶段的教学内容要求,讲前面的概念就不可能讲到恰在此时当好处,也容易把概念讲死。
七、温故知新,形成系统。
概念形成后,学生要真正地掌握,这不是一朝一夕之功,需要多次反复,通过各种不同形式的练习,不断地巩固与深化,逐步形成系统。由于概念化互相联系着的,当学生掌握了一定数量的概念后,教师应该向学生进一步提示概念之间的联系,以帮助学生有条理地、系统地掌握这些概念。如学过分数后,可指出小数说是十进分数,把小学数概念纳入到分数概念中。一般在讲完一章一节的内容后注意及时引导学生对知识内容进行小结和概念归类,小结归类时需高度概括,简明扼要,条理清楚便于对比和记忆,使之牢固掌握,逐步形成概念系统。
以上所说的是教师在进行概念教学时的一般策略,一家之言,必有偏颇,还望大家批评指正。
数学概念教学的论文篇五
不论是皮亚杰还是奥苏伯尔在概念学习理论方面都认为概念教学的起步是在已有的认知结论的基础上进行的。因此,教学新概念前,如果能对学生认知结构中原有的概念适当作一些结构上的变化,引入新概念,则有利于促进新概念的形成。
2.类比法。
抓住新旧知识的本质联系,有目的、有计划地让学生将有关新旧知识进行类比,就能很快地得出新旧知识在某些属性上的相同(相似)的结构而引进概念。
3.喻理法。
为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念,谓之喻理导入法。
如,学“用字母表示数”时,先出示的两句话:“阿q和小d在看《w的悲剧》。”、“我在a市s街上遇见一位朋友。”问:这两个句子中的字母各表示什么?再出示扑克牌“红桃a”,要求学生回答这里的a则表示什么?最后出示等式“0.5×x=3.5”,擦去等号及3.5,变成“0.5×x”后,问两道式子里的x各表示什么?根据学生的回答,教师结合板书进行小结:字母可以表示人名、地名和数,一个字母可以表示一个数,也可以表示任何数。
这样,枯燥的概念变得生动、有趣,同学们在由衷的喜悦中进入了“字母表示数”概念的学习。
4.置疑法。
通过揭示数学自身的矛盾来引入新概念,以突出引进新概念的必要性和合理性,调动了解新概念的强烈动机和愿望。
数学概念教学的论文篇六
在小学如何确定或选择应教的数学概念,是一个复杂的问题。根据我们的经验,在选定数学概念时既要考虑到需要,又要考虑到学生的接受能力。
(一)选择数学概念时应适应各方面的需要。
1.社会的需要:主要是指选择日常生活、生产和工作中有广泛应用的数学概念。绝大部分的数、量和形的概念是具有广泛应用的。但是社会的需要不是一成不变的,而是常常变化的。因此小学的数学概念也应随着社会的发展适当有所变化。例如,1991年我国采用法定计量单位后,原来采用的市制计量单位就不再教学了。
2.进一步学习的需要:有些数学概念在实际中并不是广泛应用的,但是对于进一步学习是重要的。例如质数、合数、分解质因数、最大公约数和最小公倍数等,不仅是学习分数的必要基础,而且是学习代数的重要基础,必须使学生掌握,并把它们作为小学数学的基础知识。
3.发展的需要:这里主要是指有利于发展儿童的身心的需要。例如,引入简易方程及其解法,不仅有助于学生灵活的解题能力,减少解题的困难程度,而且有助于发展学生抽象思维的能力。在我国的小学数学中,教学方程产生了很好的效果。小学生不仅能用方程解两三步的问题,而且能根据问题的具体情况选择适当的解答方法。这里举一个例子。
要求五年级的一个实验班的38名学生(年龄10.5―11.5岁)解下面两道题:
学生能用两种方法解:算术解法和方程解法。用每种方法解题的正确率都是91.7%。下面是两个学生的解法。
一个中等生的解法:
一个下等生的解法:
多少米?
这道题是比较难的,学生没有遇到过。结果很有趣。58.3%的学生用方程解,41.7%的学生用算术方法解。而用方程解的正确率比用算术方法解的高22%。
下面是两个学生的解法。
一个优等生用算术方法解:
一个中等生用方程解:
解:设买来蓝布x米。
(二)选择数学概念时还应考虑学生的接受能力。小学生的思维特点是从具体形象思维向抽象逻辑思维过渡。一般地说,数学概念具有不同程度的抽象水平。在确定教学某一概念的必要性的前提下还应考虑其抽象水平是否适合学生的思维水平。为此,根据不同的情况可以采取以下几种不同的措施:
1.学生容易理解的一些概念,可以采取定义的方式出现。例如,在四五年级教学四则运算的概念时,可以教给四则运算的定义,使学生深刻理解四则运算的意义以及运算间的关系。而且使学生能区分在分数范围内运算的意义是否比在整数范围内有了扩展,以便他们能在实际计算中正确地加以应用。此外,通过概念的定义的教学还可以使学生的逻辑思维得到发展,并为中学的进一步学习打下较好的基础。
2.当有些概念以定义的方式出现时,学生不好理解,可以采取描述它们的基本特征的方式出现。例如,在高年级讲圆的认识时,采取揭示圆的基本特征的方式比较好:(1)它是由曲线围成的平面图形;(2)它有一个中心,从中心到圆上的所有各点的距离都相等。这样学生既获得了概念的直观的表象,又获得了其基本特征,从而为中学进一步提高概念的抽象水平做较好的准备。
3.当有些概念不易描述其基本特征时,可以采取举例说明其含义或基本特征的方法。例如,在教学“量”这概念时,可以说明长度、重量、时间、面积等都是量。对“平面”这个概念可以通过某些物体的平展的表面给以直观的说明。
数学概念的编排,在一定程度上可以看作是各年级对数学概念的选择和出现顺序。数学概念的合理编排不仅有助于学生很好地掌握,而且便于学生掌握运算、解答应用题以及其他内容。根据教学论和我们的实践经验,数学概念的编排应当符合下述原则:既适当考虑数学概念的逻辑系统性又适当考虑学生认知的年龄特点。为了贯彻这一原则,必须考虑以下几点。
(一)采取圆周排列:这一点不仅反映人类的认知过程,而且。
符合儿童的认知特点。如众所周知的,自然数的认识范围要逐渐地扩大,“分数”概念的意义也要逐步的予以完善。
(二)注意概念之间的关系:例如,小数的初步认识宜于放在分数的初步认识之后,以便于学生理解小数可以看作分母是10、100、1000……的分数的特殊形式。把比的认识放在分数除法之后教学,会有助于学生理解比和分数的联系。
(三)概念的抽象水平要符合学生的接受能力:例如,在低年级教学减法的含义,是通过操作和观察使学生理解从一个数里去掉一部分求剩下的部分是多少。而在高年级教学时,宜于通过实际例子给出减法的定义。在低年级教学平行四边形时,只要说明其边和角的特征而不教平行线的认识。但在高年级就宜于先介绍平行线,再给出平行四边形的定义。
(四)注意数学概念与其他学科的配合:数学作为一个工具与其他学科有较多的联系。有些数学概念,如计量单位、比例尺等在学习语文和常识中常用到,在学生能够接受的情况下可以提早教学。
小学生的数学概念的形成是一个复杂的过程。特别是一些较难的数学概念,教学时需要一个深入细致的工作的长过程。根据数学的特点和儿童的认知特点,教学时要注意以下几点。
(一)遵循儿童的认知规律,引导学生抽象、概括出所学概念的本质特征。例如,在低年级教学“乘法”这个概念时,可以引导学生摆几组圆形,每组的圆形同样多,并让学生先用加法再用乘法计算圆形的总数。通过比较引导学生总结出乘法是求几个相同加数和的简便算法。教学长方形时,先引导学生测量它的边和角,然后抽象、概括出长方形的特征。这样教学有助于学生形成所学的概念并发展他们的逻辑思维。
(二)注意正确地理解所学的概念。教学经验表明,学生对某一概念的理解常常显示出不同的水平,尽管他们都参加同样的活动如操作、比较、抽象和概括等。有些学生甚至可能完全没有理解概念的本质特征。这就需要检查所有的学生是否理解所学的概念。检查的方法是多样的,其中之一是把概念具体化。例如,给出一个乘法算式,如3×4,让学生摆出圆形来说明它表示每组有几个圆形,有几组。另一种方法是给出所学概念的几个变式,让学生来识别。例如,下图中有几个长方形摆放的方向不同,让学生把长方形挑选出来。
此外,还可以让学生举实例说明某一概念的意义,如举例说明分数、正比例的意义。
(三)掌握概念间的联系和区别。比较所学的概念并弄清它们的区别,可以使学生深刻地理解这些概念,并消除彼此间的混淆。例如,应使学生能够区分质数与互质数,长方形的周长和面积,正比例和反比例等。在教过有联系的概念之后,可以让学生把它们系统地加以整理,以说明它们之间的关系。例如,四边形、正方形、长方形、平行四边形和梯形可以通过下图加以系统整理,以说明它们的关系。
通过概念的系统整理使学生在头脑中对这些概念形成良好的认知结构。
(四)重视概念的应用。学习概念的应用有助于学生进一步加。
深理解所学的概念,把数学知识同实际联系起来,并且发展学生的逻辑思维。例如,学过长方体以后,可以让学生找出周围环境中哪些物体的形状是长方体。学过质数概念以后可以让学生找出能整除60的质数。
我们的实验表明,由于采取了上述的措施,学生对概念的理解的正确率有较明显的提高。下面是19xx年进行的一次测验中有关学生掌握数学概念的测试结果。
注:1.两个实验班都是五年级,年龄是11―12岁。一个对照班是五年制五年级,另一个是六年制六年级。
2.1991年用同一测验测试全国约200个实验班,也得到较好的结果。
上面的测试结果表明,实验班学生学习数学概念的成绩,在认数、几何图形,特别是在学习倒数、比例和扇形方面都优于对照班的学生。最后一项测试结果还表明,实验班学生在发展空间观念和作图能力方面优于对照班学生。
四结论。
在小学加强数学概念的教学对于提高学生的数学概念的认知水平具有重要的意义。
在小学如何确定教学的`数学概念是一个重要的复杂的问题。在选定概念时,既要很好地考虑需要,又要很好地考虑学生的接受能力。
合理地安排数学概念对于学生掌握他们有很大帮助。在编排概念时,既要充分考虑所教概念的逻辑系统性,又要照顾到不同年龄的学生的认知特点。
教学的策略对于形成学生的数学概念起着重要的作用。在教学概念时教师应当遵循儿童的认知规律和激发学生思考的原则,并且注意使学生正确理解概念的义,掌握概念间的联系和区别,并在实际中应用所学的概念。
(本文是1992年向第七届国际数学教育会议提交的论文,曾在大会第一研讨组上宣读。)。
数学概念教学的论文篇七
数学概念是学生接触与学习每一个新知识点必先学习的东西,它对于学生的整个数学科目的学习来说是基石一般的存在,因此学生从小学数学概念起必须打好学习的基础,让学生在清晰的了解各种概念的基础上,帮助他们学习最基本的数学知识,只有这样才能让数学学习的路越走越平整、越走越宽敞。
1、从数学概念的涵义与构成方面来看。首先是涵义方面,从教学的角度来看,数学概念指的是在客观现实中数量关系与空间形式二者的本质属性在人们脑中所形成的反应,其表现为数学用语中的一些专用名词、符号或术语等,比方说是“周长”、“体积”。其次是概念的构成方面,一般来说数学概念是可以分成两个组成部分,一个是内涵,另一个是外延。概念的内涵其实指的就是这个概念所反映出来的所有对象的一个共同本质属性总和。比方说是三角形的概念,它的内涵所指的就是其本质属性中“三条线段”与“围成”的总和。而概念的外延指的就相对会比较广泛,它指的是此概念所囊括的一切对象总和。以四边形的概念为例,它就包括了正方形、长方形、梯形等所有很多对象。
2、小数学概念的特点。小学时期数学概念的特点其他可以从三个方面来进行简单的归纳:第一个就是其呈现形式上的特点。由于小学数学是一个引导学生入门的时期,因此它的概念在呈现方式上也会显得更为多样化,像是最初采用图画的方式,再到后来的描述方式,最后还有定义式等等。第二个特点就是直观性较强。一般来说数学概念最为突出的特点就是其抽象性与概括性,但我们在进行小学阶段数学教学时,就会发现小学数学概念通常都会定义得比较直观,比较形象具体,基本都是以小学生的接受能力与理解能力为起点来进行设计的。第三个特点是教学阶段性较强。小学时期的教学会受到很多客观原因的局限,从而导致教师在进行数学教学时,所讲解的数学知识也会存在极强的阶段性。比方说在低年级时,孩子们的理解能力与认识能力还尚未发展到一定的水平,因此对于很多抽象性的知识很难理解,因此教师在讲解时就只能通过分阶段逐步渗透的`办法来解决问题。
开展概念教学可以从多种形式与内容入手,既要梳理各种概念之间的联系与区别,又要形成统一的系统概念体系,可以从以下几个方面进行:
1、采用不同呈现形式开展小学数学概念教学。概念教学的形式众多,可以从图画式教学入手,教师在采用这种方式进行教学时,一定要注意引导学生自主的去发掘图画中所蕴含的真正涵义,从而达到揭示概念本质的效果,从而让学生对概念有个更清晰的认识。以梯形概念教学为例,教师在开展教学工作时,应该要就所展示出来的图画适时的引导学生去探索并揭示出梯形的本质特征,并且最终实现将表象图画转换成抽象数学语言的目的。其次是描述式,其实采用这种呈现形式的概念一般都是“字”与“形”相结合的,比方说是小数的概念、直线的概念,在概念描述中直接就把其本身的图形或默示所标示出来了,教师在进行教学时只需要把“形”所表达的意思与孩子们传达清楚再结合“字”就能使他们快速掌握这个知识点。还有就是定义式,这种方法一般适于一些高年级的学生,相对而言它的概括性以及抽象性都会强很多,因此教师在教学时可以适时的采用一些直观的教学工具或举例讲解等办法,将抽象的知识转化成具体形象的事物,让学生们快速理解与掌握。
2、从概念间的区别与联系入手,让学生形成数学概念系统。首先是同一概念在教学时的联系与区别。因为小学数学在很多时候,虽然是同一个概念,但是在不同的时期所要求的教学程度是大不相同的,因此对于概念的讲解程度也会有所区别。以分数的教学为例,在三年级时我们的教学要求只是停留在让孩子们认识分数的程度,而在五年级时,我们就必须向他们解释分数的真实意义与性质。再比方说是方程这一概念,在刚开始学习的时候,我们只要求学生有一个基础的了解与渗透,而到高年级后就会要求他们对方程给与一个明确的定义。其次是不同概念之间也存在着联系。虽然有些概念它们是大不相同的,但是在某些程度上也是存在着一定的联系,因为数学的概念并不是孤立的,它们是相辅相成的。教师在进行日常教学时应该有意识的引导学生去探索与明确这些数学概念之间所存在的联系,为他们更好的构建概念系统打下结实的基础。
三、结束语。
总之,教师在开展小学数学概念教学时必须以学生实际情况为根据,采用最为合适的方法进行概念教学,因为只有从小打好基础,才能实现数学概念教学的目标。
参考文献。
数学概念教学的论文篇八
新一轮课程改革以为了每一位学生的发展为最高宗旨和核心理念,化学教育的基本理念变了,化学教育的目标也在变。21世纪是人才竞争的世纪。人才素质的提高主要依靠教育。传统式、满堂灌的教育,已不能适应未来人才的需要。
在教学时,要努力学习课程标准,严格把握教学内容的深广度和教学要求,克服传统惯性和一步到位的思想,不要随意提高难度。下面是我的心得体会:
1、遵循学生的认知规律,激发学生对化学的兴趣。初中学生其认知水平是较低的,他们重现象轻文字,重感性轻理性,重具体轻抽象,对化学中可见可闻的具体事物充满了好奇,充满了兴趣,而对化学的基本概念和基本理论这样抽象的、枯燥的知识感到厌烦,甚至于望而却步。所以化学的教学的一个重点是要在如何激发和保持学生的兴趣上下功夫。因为有了这种兴趣,在以后的化学学习中才会一直保持着积极的进取心和极高的热情,在化学学习中所遇到的各种难懂抽象的理论才能保持耐心,才能有去搞懂和解决的动力。因此,化学教学要将激发和保持学生的兴趣作为一个教学重点,一个基本的教学出发点。
2、语言表达准确,书写规范。这一点同上面一点一样也是对教师的要求。以往的经验充分的说明,学生在练习或者在作业中犯的不少错误都可以从任课教师的教上找到根源,如在讲解有关概念时语言不准确甚至出现错误的叙述;做气体点燃实验时不验证气体的`纯度:[为您编辑]在写化学方程式时忘了打沉淀符号:在进行摩尔质量的有关计算时不注意解题规范,不注意单位的换算等等。要纠正学生的这些错误,要求教师在教学过程中应该在语言表达和书写规范等方面对自己严格要求,为学生形成良好的学科素养作好榜样、表率。
3、控制教学深度,加强知识的横向对比。化学中的基本概念和基本理论本身就是比较难懂的,所以教学时一定要控制好深度,切不可深挖洞,想一下把什么都教到位,如我在听同校的老师上化合价一节时,讲了很多的内容,找了很多的课外的难题,生怕没有讲透。可这样大量的知识学生难以承受,难以理解,结果适得其反。因此教师一定不要盲目加深,我们要让学生透彻的理解基本概念基本理论的知识,我认为横向对比是一个比较好的办法,如学生分别学了物质的量的几个有关概念后,总搞不清他们的区别,于是我就让他们分组讨论,再各组交流,最后再一起总结,运用同中求异异中求同的比较和讨论,让学生在比较中理解、记忆,可以起到事半功倍的效果。
数学概念教学的论文篇九
第一,注重概念教学理念创新。新课改背景下,更加强调学生的主体地位,为此概念教学首先应该注重教学理念的创新。一方面,要善于构建适宜的学习情境来激发学生学习的兴趣,不断提高学生学习的注意力。例如,对于“平面直角坐标系”的学习,教师可以首先讲述笛卡尔的故事,进而在引入直角坐标系的概念。这样不仅满足了学生的主体地位,而且有利于师生间良好的交流互动。另一方面,注重概念教学中“形式”与“实质”关系的处理。要在概念引入之前适当列举相关的实例来帮助学生理解。
第二,注重概念教学内容创新。注重教学内容的创新,首先要把握好教材的整体内容和概念层次特征。由于初中教材数学概念本身具有螺旋式上升的特点,学生一时无法理解,为此需要对教材相关概念进行整体把握,并将各部分的`概念进行层层推进。其次,要善于将概念的理解与实际应用相结合。数学概念学习的最终目的就是能够在实际生活中加以运用,不断提高学生动手实践能力。为此,教师在进行概念教学时,也要善于引用生活实例,将概念的理解与实际生活进行完美结合。
第三,注重概念教学方法创新。新课改强调要全面加强学生的素质教育,不断促进学生思维能力的提高。初中数学概念教学要注重教学方法的创新,首先教学方法的运用要能够揭示概念的本质,善于将抽象的概念具体化和形象化。其次,教师要积极引导学生对数学信息进行概括。学生作为学习的主体,教师要充分发挥其主观能动性,不能以为采用被动的教学模式,应该积极鼓励学生对数学信息进行概括,这不仅提高了学生的概括能力,而且有助于学生对概念更加清晰的认识和掌握。
3.结语。
总而言之,对初中数学概念教学进行不断创新具有重要的意义,它不仅能够有效提高初中课堂教学的有效性,而且能够满足时代发展对数学教学的要求。为了能够使初中数学概念教学创新取得良好的成效,要从教学理念创新,教学内容创新以及教学方法创新三个层面不断努力。通过三者的不断改进,能够有效激发学生的学习兴趣,突出了学社的主体地位,对于教师教学质量的提高以及学生能力的提升均起到推动作用。
数学概念教学的论文篇十
研究发现,学生头脑中的错误概念有极强的顽固性,这是因为学生花了相当多的时间与精力建构了自己的“朴素理论”,所以用传统传授方法学习生物科学概念是低效的。
学生头脑中的前概念或错误概念具有广泛性、自发性、特异性、表象性、迁移性和隐蔽性等特征。
诊断的最有效技术是实施诊断性评价。就是通过一定方式发现学生学习中存在的问题,分析这些问题产生的原因,从而为改进和调整教学策略提供依据。
诊断性评价既需要以日常观察为主要手段的定性分析,又需要以诊断性测验为主要手段的定量分析。
(一)日常观察。1.提问;2.访谈;3.问卷调查;4.制作概念图。(二)诊断性测验。也可称之为概念诊断性测试。选择精心设计的有针对性的内容,设法将学生容易产生错误理解的知识点呈现给学生,让学生的前概念在测试中“曝光”。
(一)概念转变学习。
概念转变学习的机制:1.同化,指学生用自己已有的观念理解新现象的过程;2.顺应,指学生转变或重组原有观念以便更好地理解和接受新现象的过程。为了促使学生进行概念转变,必须提供四个条件:1.学习者对当前的概念产生不满。2.学习者必须尽可能地理解科学概念。3.学习者必须认为科学概念是合理的。4.学习者必须认为科学概念是有用的。它们可用于解释和预测各种现象。
教师必须充分了解学生相关学科的原有知识经验背景,了解学生有哪些错误概念,并充分运用学生的原有概念创设教学中的认知冲突(情境),以此作为引发学生进行概念转变学习的契机。
1.揭示学生的前科概念,这是实现概念转变学习的前提。
2.引发学生的认识冲突,这是实现概念转变学习的契机和动力。引发学生认识冲突的两种策略:(1)通过特殊文本产生认知冲突。一种是批驳性文本,另一种是非批驳性文本。(2)通过合作学习中学生的讨论与对话引发认知冲突。
3.鼓励认知顺应,这是实现概念转变学习的关键。所谓顺应,是指对原有认知结构的调整和改变,以便更好地理解和接纳新现象。在生物学教学中,一般可以通过探究性实验来引发和解决认知冲突,实现认知顺应,重建新的生物概念。
摘自《课程・教材・教法》第5期。
数学概念教学的论文篇十一
《全日制义务教育数学课程标准(实验稿)》指出:数学概念教学对整个数学教学起着重要的作用,对学生数学素养的提高发挥基础性功能的作用,教师在数学概念教学中,应通过揭示概念的形成、发展、巩固、应用和拓展等过程,培养学生深度思维的习惯,完善学生的认知结构,发展学生的创新能力,从而提高数学学科的教学质量。从中可以看出概念教学是数学教学中至关重要的一个环节,是基础知识和基本技能教学的核心。然而,部分教师往往忽视概念教学的重要性,一味强调解题方法和解题技巧,这样做势必将学生培养成模仿和解题的机器。因此,教师应当重视并抓好概念教学,提高数学教学质量。
一、注重概念的形成。
布鲁纳指出:“当基本概念以正规形式出现在儿童面前时,如果没有事先从直觉上加以理解,对这些概念将无能为力。”教师不能直接给出定义,而要加强概念的引入和形成过程,在讲述新概念时,从引导学生观察和分析实际的问题情境出发,一步步引导学生通过探究形成概念。例如,单项式概念的建立,展现知识的形成过程如下:(1)让学生列代数式。(2)让学生指出所列代数式其中含义。(3)观察所列代数式中含有哪些运算方式及其特征。(4)引导学生抽象概括单项式的概念,强调“单独一个数或一个字母也是单项式”。上例是从一些具有某种共同性质的实例通过观察,从中提取共性,再给概念下定义。这样,学生经历了概念的形成过程,既加深了对新概念的理解,又掌握了从具体到抽象的思维方法。
二、注重对概念的理解。
学生在学习数学时,首先要理清数学概念,这样在解题的时候才能够顺手应心。如若不然,那么处理问题就会思路不清,从而产生种种错误。针对此问题,教师在教学过程中,要根据课本所列知识点,从多方面入手,深入挖掘概念内涵,并全方位展开。因此,引导学生正确地分析概念,加深对概念本质的理解,是教师授课的首要任务。举两个例子:1.关于互余概念,在教学时,应启发学生归纳其本质属性:(1)必须具备两个角之和为90°,一个角为90°或三个角之和为90°都不能称为互为余角,互余角只就两个角而言。(2)互余的角只是数量上的关系,与两角所处位置无关。2.同类二次根式概念的教学,其基本点是:(1)首先是最简二次根式,未化简的应先化简。(2)被开方式相同,与根号外面的有理式是否相同无关。
三、加强对概念的应用。
为了使学生牢固掌握所学的概念,还必须对概念进行巩固和应用。教学中应注意如下两个方面:1.及时复习学过的概念。在对概念的理解和应用中完成对概念的巩固,同时也要进行必要的.复习。复习方式多样,可以是对个别概念的复述,也可以利用解决问题的过程复习概念,在章节末复习、期末复习和毕业总复习时,重视对所学概念的系统化整理,形成概念体系。2.在实际应用中巩固概念。学生是否牢固掌握了某个概念,不仅在于能否说出这个概念的名称和背诵概念的定义,更重要的是在于能否正确灵活地应用,通过应用加深理解,增强记忆,强化应用意识。
四、把握概念间的区别和联系。
有些数学概念,学生容易混淆。要正确区分这些概念,就必须比较这些概念,从中找出它们的本质要素,确定它们之间的区别和联系。只有通过比较,才能弄清造成混淆的具体原因,真正识别概念。例如,点到直线的距离概念应与两点间的距离概念比较,找出其共同点与不同点。共同点指这两个距离都指相应的两点间线段长,不同点指相应的两点的取法不同,点到直线的距离的两点是指直线外一点与表示垂足的点。再如,对于“整式乘法”和“分解因式”,很多学生分不清,解题时容易搞混,这是没有掌握概念造成的,整式乘法是单项式和单项式、单项式和多项式或多项式和多项式进行乘法运算,运算的结果是一个整式;分解因式是将一个多项式分解成因式乘积的形式,运算的结果是乘积的形式。在对这两个概念进行教学时,教师应举例从式子的左右两边进行比较,挖掘这两个不同概念之间的联系与区别,让学生理解和掌握概念,提高学习效率。
五、注重对概念的归纳。
数学概念往往不是孤立的,许多概念之间有紧密的联系。理清概念之间的联系既能促进新概念的自然引入,又能揭示已学过的概念的数学本质。因此,教师应注意概念间的联系,帮助学生理清脉络,建立概念体系,促使学生举一反三、触类旁通。例如:实数概念的教学,让学生对实数进行系统归类。事先不要约束学生的思维,而要启发学生从不同的角度独立思考,发展求异思维,制作较合理的概念系统归类表。这样,学生不但了解了数之间的联系与区别及各类数之间的从属关系,而且提高了综合能力。
六、注重与概念相关的背景、历史与文化。
数学是人类文化的重要组成部分,数学概念的背景、历史与文化是数学概念教学的组成部分,是向学生渗透德育教育的好载体。许多数学概念都有其历史背景,都蕴含悠久的历史与文化。教学中我们要让学生受到优秀文化的熏陶,提高学生的数学文化修养和素质。
总之,初中数学概念教学既是重点又是难点,我们要注重培养学生的主动性与创造性,帮助学生理解概念的本质,弄清概念之间的区别与联系,从而提高学生运用数学知识解决问题的能力。
数学概念教学的论文篇十二
数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。我就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。苏霍姆林斯基说:“教给学生能借助已有的知识去获取知识,这是最高的.教学技巧之所在。”
常言说,实践出真知,手是脑的老师。学生通过演示学具,可以理解一些难以讲解的概念。通过演示(手),思维(脑),形成概念,符合实践、认识,再实践、再认识的规律。这比老师演示、学生看,老师讲解、学生听效果好,印象深、记忆牢。
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。
学习的目的是为了解决实际问题。而通过解决实际问题,势必加深对基本概念的理解。如学生学了小数的意义之后,我就让学生利用课外时间,到商店了解几种商品的价钱,写在作业本上,第二天让他们在课上向大家汇报。通过了解的过程,非常自然地对小数的意义,读、写法得以运用与理解。又如学了各种平面图形后,我让学生回家后,观察家里那些地方有这些平面图形。通过这种形式的作业,学生感到新鲜,有趣。这不仅巩固了所学概念,还提高了学生运用数学概念解决实际问题的能力。
在学生形成正确的数学概念之后,进一步设计各种不同形式的概念练习题,让学生综合运用、灵活思考、达到巩固概念的目的,这也是培养检查学生判断能力的一种良好的练习形式。
学习数学仅仅是一个起步,更重要的是在学生形成概念之后,要善于为学生创造条件,使学生经常地运用概念,才能有更大的飞跃。只有学生会运用所掌握的概念,才能更深刻地理解概念,从而更好地掌握新的数学知识。
数学概念教学的论文篇十三
摘要:童话既充满想象,也包含着人世间的各种复杂情感,幼儿在了解童话故事的同时,也可以见识到人生百态,也能够品尝各种不同的人生滋味,他们的情感体验也会出现显著的分化和丰盈。教师要基于幼儿心理、幼儿想象和幼儿情感优化童话教学。
在儿童文学中,童话是其中不可缺少的重要构成,所以,很多幼儿园已经将儿童文学纳入教学实践中,但是实际教学过程中,很多教师并没有充分了解童话教学的深层次含义,仅仅将其视为传播知识的一种方式,期望能够对儿童品德的塑造、知识的积累以及语言的发展方面起到一定的作用,这是对幼儿审美感知能力的极大忽视。在儿童文学中,童话所独具的典型的教育功能以及认知效果的判定都需要基于幼儿审美感受而有所体现。
一、基于幼儿心理,优化童话教学。
很多人也会将幼儿童话叫做幼儿童话故事,这一体裁主要是针对幼儿而创作的,所以故事的讲述也需要结合具体的对象,虽然是相同的事件,但是在向不同的对象进行表达的过程中,会存在显著的不同。如果面向的是成年人,那么描述应当更细致,情节更具曲折性,事件应更感人,语言自然要成人化;如果面向的对象是幼儿,那么不管是人物的刻画还是事件的讲述,都应当简单,可能不需要过于感人,但是语言表达一定要幼儿化。只有当所有的文学要素都能够和接受者的心理相吻合,才能够使其畅通无阻地感受作品的内涵,以此保障教育效果。例如:有个幼儿在听了《乌鸦喝水》这个故事之后很有感触,希望自己能够成为具有智慧的小乌鸦。所以,在生活中,经常把自己比作小乌鸦,“小乌鸦渴了,要喝水了。”“小乌鸦饿了,想要吃饭。”在孩子的心灵内,对于乌鸦的智慧非常佩服,所以特别渴望成为那样极具智慧的人,但是能够用于表达自我的素材有限,也不会使用过于复杂的表现语言,所以,很多孩子都会以乌鸦自比,这也是典型的幼儿心理简单的集中体现。对于幼儿童话而言,具有非常显著的特征:语言拟人化,说话做事具有儿童的特点。所以,童话的创编必须要充分了解儿童的典型心理特征,这样才能够创编出具备这两个特征的童话。在教学童话的过程中,如果不能充分理解儿童的心理特征,其分析必然肤浅;如果在研究童话教学的过程中,不突出其心理特点,就难以把握教学根本。
二、基于幼儿想象,优化童话教学。
在幼儿的世界中充满着想象力,如果仅仅基于表面上来看,他们的想象似乎好笑又幼稚,但是在促进思维能力的健康发展方面具有极为重要的作用。在童话世界中,儿童可以放飞心灵,尽情徜徉,他们的感性认知会逐渐过渡至系统化以及逻辑化的'方向。例如:通过《小兔乖乖》这个故事,幼儿可以自主分析并得出由于小白兔的细心和谨慎,连大灰狼都骗不了它的结论。随着情节的起承转合以及幼儿粗浅的二次加工和想象,能够形成对创造能力以及想象能力的有效训练。由此可见,童话形象和童话事件能够在儿童脑海中形成动态发展的鲜活印象。爱因斯坦就曾经提出过这样的观点:相比较知识而言,想象能力更重要,因为知识是有限的,但是想象是无边的,它能够推动进步,是促进知识进化的源泉所在。夸张、虚拟的故事特征能够与儿童富于想象的心理特征相吻合。当他们听到故事中的角色遭遇困难时,迫切渴望知道具体的解决方法和结果。此时教师可以基于提问或者也可以借助引导的方式,激发幼儿的想象,使他们自主思考出解决问题的办法。故事能够为儿童提供广阔的想象空间,只需要教师把握恰当时机,使幼儿能够在听故事的过程中充分发挥个体的想象能力以及创造力。
成人大都认为幼儿的情感体验少且肤浅,实际上并非如此。在幼儿欣赏故事的时候,他们的反应着实让人吃惊,既敏感又丰富。他们会随着故事中角色的情感变化而体现出不同的反映:既感受着故事欣赏所带给他们的快乐,这是来自于求知欲的充分满足;同时,童话本身所具有或诙谐幽默、或惊险刺激、或高兴悲哀的情节,也会激发孩子情绪的激荡。可能有些时候幼儿的情绪或者情感会在心底有所隐藏,然而一旦外露,幼儿就会表现得非常激动,可能眉飞色舞,甚至还会手舞足蹈,充分暴露着他们的天真活泼的神态。在《白雪公主》这出童话剧的表演过程中,在“王子”的号召之下,大家一起呼唤已经昏迷的白雪公主,孩子们的呼喊声一声比一声响,甚至是旁边扮演“坏皇后”的孩子也在卖力地呼喊着,此时不会有一个孩子吝啬他的声音;在听《老虎外婆》这个故事时,孩子们瞪大着双眼,于是老虎成为坏蛋的代名词,甚至有一天,当我打开课本,有老虎的地方,被黑色的蜡笔涂抹了,“吓”得我不得不向孩子们解释:“这不是真的。”又如:在听完《三个强盗》之后,一个非常胆小的小朋友说:“他们实际上一点都不可怕,因为他们总在帮助别人。”在我读完《白雪公主》这个故事之后,其中一个小女生认为,这个皇后肯定不漂亮,因为她认为,她的心地不好。此时,便能够充分说明,孩子们已经能够明确区分内在美以及外在美,并能够了解内在美的重要性。实际上每一个童话在创作时,作者都希望向孩子展示真善美,期望能够通过耳濡目染对他们的情感形成潜移默化的积极影响。
总之,在研究幼儿童话教学的过程中,不但要掌握童话的教学方法,同时也应当充分理解童话的内容,这样获得的教学方法才能够具备扎实的根基,才能够经得住考验,才有可能经久不衰。
参考文献:
[1]杜和林.引导幼儿走入童话世界[j].学前教育,2016(11).
[2]王新新.幼儿童话教学例谈[j].中国校外教育,2015(10).
作者:张晓晓单位:江苏省海门市海西幼儿园。
数学概念教学的论文篇十四
数学概念是学生接触与学习每一个新知识点必先学习的东西,它对于学生的整个数学科目的学习来说是基石一般的存在,因此学生从小学数学概念起必须打好学习的基础,让学生在清晰的了解各种概念的基础上,帮助他们学习最基本的数学知识,只有这样才能让数学学习的路越走越平整、越走越宽敞。
1、从数学概念的涵义与构成方面来看。首先是涵义方面,从教学的角度来看,数学概念指的是在客观现实中数量关系与空间形式二者的本质属性在人们脑中所形成的反应,其表现为数学用语中的一些专用名词、符号或术语等,比方说是“周长”、“体积”。其次是概念的构成方面,一般来说数学概念是可以分成两个组成部分,一个是内涵,另一个是外延。概念的内涵其实指的就是这个概念所反映出来的所有对象的一个共同本质属性总和。比方说是三角形的概念,它的内涵所指的就是其本质属性中“三条线段”与“围成”的总和。而概念的外延指的就相对会比较广泛,它指的是此概念所囊括的一切对象总和。以四边形的概念为例,它就包括了正方形、长方形、梯形等所有很多对象。
2、小数学概念的特点。小学时期数学概念的特点其他可以从三个方面来进行简单的归纳:第一个就是其呈现形式上的特点。由于小学数学是一个引导学生入门的时期,因此它的概念在呈现方式上也会显得更为多样化,像是最初采用图画的方式,再到后来的描述方式,最后还有定义式等等。第二个特点就是直观性较强。一般来说数学概念最为突出的特点就是其抽象性与概括性,但我们在进行小学阶段数学教学时,就会发现小学数学概念通常都会定义得比较直观,比较形象具体,基本都是以小学生的接受能力与理解能力为起点来进行设计的。第三个特点是教学阶段性较强。小学时期的教学会受到很多客观原因的局限,从而导致教师在进行数学教学时,所讲解的数学知识也会存在极强的阶段性。比方说在低年级时,孩子们的理解能力与认识能力还尚未发展到一定的水平,因此对于很多抽象性的知识很难理解,因此教师在讲解时就只能通过分阶段逐步渗透的办法来解决问题。
二、小学数学概念教学的策略。
开展概念教学可以从多种形式与内容入手,既要梳理各种概念之间的联系与区别,又要形成统一的系统概念体系,可以从以下几个方面进行:
1、采用不同呈现形式开展小学数学概念教学。概念教学的形式众多,可以从图画式教学入手,教师在采用这种方式进行教学时,一定要注意引导学生自主的去发掘图画中所蕴含的真正涵义,从而达到揭示概念本质的效果,从而让学生对概念有个更清晰的认识。以梯形概念教学为例,教师在开展教学工作时,应该要就所展示出来的图画适时的引导学生去探索并揭示出梯形的本质特征,并且最终实现将表象图画转换成抽象数学语言的目的。其次是描述式,其实采用这种呈现形式的概念一般都是“字”与“形”相结合的,比方说是小数的概念、直线的概念,在概念描述中直接就把其本身的图形或默示所标示出来了,教师在进行教学时只需要把“形”所表达的意思与孩子们传达清楚再结合“字”就能使他们快速掌握这个知识点。还有就是定义式,这种方法一般适于一些高年级的学生,相对而言它的概括性以及抽象性都会强很多,因此教师在教学时可以适时的采用一些直观的教学工具或举例讲解等办法,将抽象的知识转化成具体形象的事物,让学生们快速理解与掌握。
2、从概念间的区别与联系入手,让学生形成数学概念系统。首先是同一概念在教学时的联系与区别。因为小学数学在很多时候,虽然是同一个概念,但是在不同的时期所要求的教学程度是大不相同的,因此对于概念的讲解程度也会有所区别。以分数的教学为例,在三年级时我们的教学要求只是停留在让孩子们认识分数的程度,而在五年级时,我们就必须向他们解释分数的真实意义与性质。再比方说是方程这一概念,在刚开始学习的时候,我们只要求学生有一个基础的了解与渗透,而到高年级后就会要求他们对方程给与一个明确的定义。其次是不同概念之间也存在着联系。虽然有些概念它们是大不相同的,但是在某些程度上也是存在着一定的联系,因为数学的概念并不是孤立的,它们是相辅相成的。教师在进行日常教学时应该有意识的引导学生去探索与明确这些数学概念之间所存在的联系,为他们更好的构建概念系统打下结实的基础。
三、结束语。
总之,教师在开展小学数学概念教学时必须以学生实际情况为根据,采用最为合适的方法进行概念教学,因为只有从小打好基础,才能实现数学概念教学的目标。
参考文献。
[1]卢增友.小学数学概念教学的策略[j].现代交际.(07)。
[2]许中丽.提升小学数学概念教学有效性策略的研究综述[j].南昌教育学院学报.(03)。
数学概念教学的论文篇十五
在小学数学教学中,不仅要让学生掌握数学教材中的概念、定义,还要让学生具备运用数学知识的能力。在教学中,教师要注重培养学生的创新意识,让他们在学习中摆脱定势思维的影响,从多个角度对问题进行分析,提高数学综合能力。教师要给学生创设一个和谐的学习氛围,对他们进行鼓励和引导,让学生具备积极的探究精神,在自主学习中不断获得进步。
一、构建良好的师生关系,激发学生的学习兴趣。
随着新课改的进行,教师在小学数学教学中,要给学生创设一个和谐的学习氛围,充分激发学生的积极性,让他们在教师的指导下进行知识探究,加深对知识的理解。教师要改变传统的教学方式,在新的教学模式中和学生处于平等的地位,积极主动的和他们交流,及时对他们遇到的问题进行指导。在和学生进行积极沟通的过程中,教师要对学生充满耐心和爱心,让学生感受到来自教师的爱,对教师产生信任的情感。在积极的教学互动过程中,拉近了师生的距离,构建了良好的师生关系,使课堂教学在和谐、活跃的氛围中进行。在教学中,教师要对学生的学习进行指导,使他们掌握科学有效的学习方法,提高学习效率,让学生在学习过程中感受到更多成功的乐趣,激发他们学习数学的兴趣。
二、创设问题情境,提高学生参与学习的主动性。
在教学中,要提高教学效率,激发学生的参与热情,教师需要创设丰富的问题情境,运用问题来引导学生,使他们积极主动的探究教材中的内容。通过思考和分析,让学生具备了归纳总结的能力,使他们在探究中能够进行自主学习,促进思维的深入发展。例如,在教学“图形的拼组”时,教师可以让学生用不同形状的三角形拼组出长方形、正方形、平行四边形。然后教师提出问题:你能用五颜六色的三角形拼出什么美丽的图形。在趣味性的问题指引下,学生开始进行积极的探究。有的学生用剪刀剪出大小不同的三角形,并涂上不同的颜色,进行拼组;有的学生在纸上画出各种各样的三角形进行拼组。在拼组过程中,学生的积极性高效,他们充分发挥了创新思维,拼组除了各种各样美丽的图形。问题情境的创设能够激活学生的思维,使他们进行积极的思考和分析,随着探究的进一步深入,使使他们的思维也获得发展。在提问题时,教师既要考虑问题的有效性,还要考虑问题的趣味性,使问题能够使学生产生探究知识的欲望,在他们的积极参与中实现高效的课堂教学。
三、结合多媒体教学,加深学生对知识的理解。
在小学数学教学中,运用多媒体辅助教学,能够激发学生的学习积极性,让他们在直观、生动的学习情境中分析、理解知识,加深他们对知识的理解,促进数学综合素质的提高。在创设多媒体情境时,教师要从学生的数学知识结构出发,选择他们感兴趣的内容进行设计,让学生产生强烈的学习动机,促使他们进行积极主动的探究数学知识。运用多媒体进行教学,能够让抽象的知识转化成直观、动态的教学课件,使学生在直观的观看过程中促进他们的思维发展,让学生能够高效的理解所学的知识。多媒体对数学教学具有极大的促进作用,但是,在教学中,教师要合理适度的选择运用多媒体。对于一些简单的数学知识,教师可以让学生自主探究来学习;对于一些抽象、复杂的知识,教师要运用多媒体来加深学生对知识的理解,有效提高学生的学习效率。例如,在教学《长方体的认识》时,教师为了让学生在平面图形和立体图形之间建立联系,加深他们的学习效果,教师就可以利用多媒体来设计教学内容,通过演示用点、线、面来组成长方体,让学生更深刻的认识到立体图形的构成,促进他们抽象思维和立体空间思维的发展。
四、采用小组合作学习方式,发展学生的探索精神。
在小学数学课堂上采用小组合作学习方式,能够活跃课堂氛围,激发学生的参与积极性。在合作学习过程中,学生在小组范围内对教师布置的学习任务进行探究。学生的学习只有通过自身的探索活动才可能是有效的,因此,在小组合作学习中,教师要让学生积极的对知识进行探究,以达到对知识的深层理解。在小组合作探究过程中,教师应引导学生主动从事观察、实验、猜测、验证、推理与合作交流等数学活动,从而使学生形成对数学知识的理解和有效的学习策略。因此,教师要给学生充足的时间,让他们在合作中充分地经历探索事物的数量关系,变化规律的过程。开展小组合作,一方面可以发挥学生“群体”的学习作用,让学生获得更多的自主学习的机会与空间,互相启发,从而学会合作、学会交流;另一方面、可以使学生敢于质疑问难,敢于大胆求新,从而培养学生的探索精神和创新意识。例如,在教学“圆周长”时,为了探究圆周长到底与什么有关,有怎么样的关系,教师可以设计这样的教学过程:课前,学生准备好直径分别是5厘米、6厘米、7厘米的圆片;课上,小组合作测量边长,分滚动法、绕线法等小组;小组讨论:周长与什么有关,有怎样的关系;总结:周长与直径有怎样的关系。在整个教学过程中,学生互相合作,经过测量、计算、讨论,得出周长与直径的关系,达到培养学生创新能力的目的。
总之,在小学数学新课改的过程中,教师要改变传统的教学观念,坚持以人为本的教学理念,对教学模式进行创新,充分激发学生的学习主动性,培养他们的自主学习意识和责任感,使他们积极的投入到课堂学习中,积极的进行知识探究,大胆的和教师进行知识讨论,促进他们数学思维的深入和发展。在教学中,教师要深入探究教材内容,结合新的教学理念来精心设计教学,使教学能够充分激发学生的学习兴趣,让他们在丰富、生动的课堂情境中探究、分析数学知识,有效提高他们的数学综合素质。
数学概念教学的论文篇十六
数学教学的理论和实践研究表明,儿童在进入学校之前、在学习学校数学之先,头脑里并非空白一片,像一块“白板”。事实上,他们在每天的玩耍中和生活中学会了数字的加减运算,形成了一定的“数学概念”。他们对现实世界中的空间形式和数量关系有自己的看法和理解,这种在接受正规的学校教育之前所拥有的概念一般称为前概念(也有学者称之为观念)。他们的这种前概念是朴素的,虽不精确,但含有合理的成分,是儿童在现实生活中认识特殊事物的一个有价值的工具,是儿童学习新概念、建构新意义的基础,因此,在教学中不应把学生建立在前概念基础上的原有认知结构看成是一种思维的“垃圾”加以排斥,而应作为认知的基础,有待于向高级的科学的认知结构转换。然而,与科学的数学概念相比,他们的前概念往往含有错误的倾向,有的甚至就是错误的,因而,前概念有时也称为错误概念,它们对数学教学具有重要影响。一般来说,学生头脑中的前概念尤其是错误概念不但会妨碍对新知识的理解和建构,而且会导致学生产生新的错误概念。因此,加强对学生的前概念特别是错误概念的研究就成为数学教学的一项重要任务。本文拟对数学教学中学生的错误概念的诊断与矫治作一初步探讨。
对于学生的错误概念,不同的学者使用了不同的术语,如相异概念(viennot,1979)、幼稚概念(resnick,1983)?相异框架(driver&easley,1978)等“。笔者认为,将misconception译为“误解概念”可能更为恰当,因为现代心理学在研究学生学习过程中经常遇到的l些错误概念时普遍采取了一种更为“宽容”的态度,认为学生所具有的观念,无论是在学习前就已形成的朴素观念,还是在各种情景、包括在学习过程中发展起来的“非标准观念”,都是学生建构活动的产物。一般来说,学生的错误概念主要有以下特征。
1.额固性。
研究发现,学生头脑中的错误概念具有极强的顽固性(或稳定性),即使在他们学习了科学的数学概念以后,也会背相应的数学概念的形式定义,但是,在解决实际问题的过程中,那些错误概念仍会潜在地存在着,影响学生的思维和问题解决。这就是说,学生的错误概念不可能被科学概念自动“抹去”。为什么学生的错误概念具有如此的顽固性呢?这是因为学生花了相当多的时间和精力建构了自己的“朴素观念”,无论在感情上还是在心理上都是有依赖感的,这些朴素的观念曾经在他们的经验中发挥过一定的作用。顽固性成为概念转变教学的严峻挑战。
2.隐蔽性。
所谓隐蔽性,就是学生本人不能自觉地意识到自己的错误概念,常常坚持和使用自己的错误概念去观察、思考和解决有关数学问题。这是因为学生的前概念是潜移默化地形成的,以潜在的形式存在着,平时并不表现出来。由于这种隐蔽性,为错误概念的揭示增加了难度,所以需要数学教师采用各种方法来帮助学生抛弃错误概念。
3.表象性。
学生认知事物的能力有限,他们的前概念主要形成于日常生活的`直接经验和教学中对知识的字面理解,往往比较肤浅、直观,一般停留在表象水平上,还不能脱离具体表象而形成抽象的概念。因而,自然也就无法摆脱局部事物或个别现象的片面性和局限性而把握其本质,使得错误概念具有表象性的特征,这也就为错误概念的诊断和矫治提供了可能。
在数学教学中错误概念诊断的有效方法是实施诊断性评价(diagnosticassessment)。所谓诊断性评价,就是通过一定的方式(定量的和定性的)发现学生在学习中存在的问题,并分析这些问题产生的原因,从而为改进和调整教学策略提供依据。诊断性评价能够帮助教师发现学生的错误概念,查明学生在概念学习中产生困难的真正原因,从而采取教学对策,促进学生概念的生成和转变学习。具体来说,有以下几种方法。
1.出声思考。
出声思考(thinkingaloud)是认知心理学研究的一种方法,是指被试在进行操作的同时,报告其头脑中的思维过程。学生的思维活动是我们无法感知的,出声思考好似学生把思维过程直接呈现在我们面前,因而能让我们比较有效地进行考查。这是发现隐蔽在学生头脑中错误概念的一种简便、有效的方法。这种方法要求被试报告头脑中想到了什么,而不是为什么这样想。边思考边报告可能会影响被试的思维活动和报告的真实性,但研究表明,只要被试经过有效的训练,出声思考并不会影响思维的正常进行。因此,出声思考是考查学生错误概念的一种有效方法。
2.制作概念图。
所谓概念图(conceptmapping)就是把两个以上以及它们之间的关系通过连接词以图解的形式表示出来形成的概念关系图。它要求学生将有关某一主题不同层级的概念置于方框或圆圈中,再以各种连线将相关的概念或命题连接起来,以形象化的方式表征学习者的认知结构及对某一主题概念的理解。制作概念图,可以帮助教师了解学生对有关主题概念的理解(包括前概念)。例如,通过制作数系图,就能了解初一学生对负数的认识情况。
3.诊断性测试。
这是指以诊断学生普遍存在的前概念、揭示其错误概念产生的原因为目的的一种特殊的测试。诊断性测试需要编制测试题,测试题的编制和选择要针对所学内容,精心设计,要将学生容易产生错误理解的知识点呈现给学生,让学生的前概念(错误概念)在测试中“曝光”。例如,要求小学生作出钝角三角形三边上的高,即可发现学生关于“垂直”的前概念。垂直,作为几何概念的本质特征是点跟直线的位置关系,而相应的生活概念(前概念)的本质特征是方向的上或下。测试表明,学生在学习几何概念中的垂直时,大多以日常概念的“垂直”去置换几何概念的相互垂直,从而导致作图错误。
4.访谈。
访谈是以口头形式,根据被询问者的回答而收集的客观的、不带偏见的事实材料,以正确把握对象知识结构的一种方式。访谈的核心是准备好访谈计划,包括所提问题。问题要简单明了,易于口头回答。访谈时要做好心理调控,营造一种平等、民主、坦诚、和谐的氛围。由于直面交谈,访谈法具有较好的灵活性和适应性,能够勘察学生的深层思维,是诊断学生对某些知识点的理解和揭示错误概念的一种最佳方法。但它对访谈者要求较高,工作量也较大,适合个案研究。
一般来说,为了全面、准确地揭示学生的错误概念,在实际操作过程中不是单独使用某一种方法,而是几种方法常常结合起来使用,发挥各种方法的优势。
诊断学生的错误概念只是一种手段,不是目的,目的是为教学决策提供依据,以便矫治学生的错误概念。针对学生的错误概念,西方学者进行了大量研究,提出了概念转变学习现,被认为是矫治学生错误概念,实现概念转变学习的一种有效策略。
在传统的数学教学中,认为只要向学生传授科学的数学概念,学生的错误概念便会自动得到更正或为科学的数学概念所代替。建构主义指出,知识是不能被传递的,学习是学习者根据自己已有的知识经验去主动建构的过程。大量的教学实践也表明,学生错误概念的顽固性,致使这种做法是低效的甚至是无效的。实现概念转变学习,最有效的方法是进行概念转变教学(conceptualchangeteach?ing)。所谓概念转变教学,就是促使学生原有概念改变、发展和重建的过程,就是学生由前概念(错误概念)向科学概念转变的过程。
1.了解学生已有的知识经验,促进前概念向科学的数学概念转变。
建构主义的概念转变教学观认为,有效教学始于学生原有的知识和技能。通过对专家教师与新手的比较研究发现,在教学策略上,专家教师更关注学生的巳有知识和经验,了解学生可能面对的困难,知道如何挖掘学生已有知识以使新的信息有意义。因此,针对学生前概念的干扰,在进行数学概念教学时,首先应当了解、正视学生的前概念,发挥前概念的经验性、浅显性和通俗性的特点,使学校教学的数学概念以此为铺垫,促进学生由浅人深、由表及里地从经验性概念转变到理论性概念,即通过对前概念的充实、区分或增加层级组织,使前概念转变成科学的数学概念。
事实上,“学生对数学的思考往往来自于个别范例和活动”。课堂上教授的数学概念的抽象性、概括性、精确性的特点也迫切需要以日常概念的具体性、特殊性和操作性成分为依托,以便能分化它的理论侧面,使之借助学生的具体经验和事实,变得容易理解。在传统教学中,学校数学教学的失败在很多情况下是学生在学校中所学到的正规数学概念与源于日常生活的数学概念相脱离而导致的。实践表明,一旦教师注意到学习者带到学习任务中已有知识和经验,并将这些当作新概念的起点时,在教学过程中监控学生的概念转化,就能促进学生的概念学习。
2.引发认知冲突,辨清新旧界限,实现概念转变学习。
当学生的前概念与新概念不一致或矛盾时,必须辨清它们之间的分歧所在,学生才能转变、重组自己的已有观念。学生在真正学习新概念之前,需要对根深蒂固的错误概念进行重组,因为这些错误概念会干扰学习。格劳斯认为,改变“错误概念对新概念学习排斥”现象的唯一可能方法是迫使学生正确面对他们的错误认识与所学的科学原理之间的矛盾。
因此,教师必须让学生意识到他们的错误(前)概念,他们才能改变自己的观念,进行认知结构的重建。而促使学生转变错误概念的最好方式是引发认知冲突,认知冲突使学生产生对前(或错误)概念的不满。只有经过这种冲突才能促使学生产生重建概念的心理表征。通过挑选涉及已知错误概念的关键任务,教师能够帮助学生检验他们的思维,弄清楚为什么他们的各种各样的想法需要改变,以及怎么改变,这种模式便会使学生进人认知冲突。
一般来说,认知冲突的产生主要有以下三种情况:一是认知冲突产生于学生的预测同其经验的结果相反时;二是认知冲突产生于学生的观点与教师的观点不一致时;三是认知冲突产生于学生之间不同观念的碰撞中。认知冲突激起学生的求知欲和探索心向,促使学生进行认知结构的同化和顺应。因此,引发认知冲突是激励学生实现概念转变学习的契机和条件。
1.重视概念生成的凝聚,构建概念网络。
凝聚(encapsulation)是数学概念转变学习的一^有效策略,是指概念由“过程”向“对象”的转化。因为在数学中很多概念最初是作为一个过程得到引进的,如函数概念最初是作为对应法则引进的,但随着学习的不断深入,其最终又转化成了一个研究对象--对其性质等进行研究,如单调性、连续性、可导性等,从而函数就获得了新的意义,变成了数学对象。正因如此,函数概念的表征学习就经历了一个凝聚的过程:对应说一映射说一关系说,使函数概念实现了由过程到对象的转变,从而达到“凝聚”。可见,在概念学习中,学生仅凭单纯的机械记忆概念的形式定义是不行的,是不可能真正理解新概念并在新的情境中进行正确的应用的,而必须搞淸概念的来龙去脉--建立概念网络。由于数学概念是相互联系的,具有一定的复杂性,所以只有在与其他概念所形成的网络中才能全面地理解它。
概念转变学习观认为,新概念的学习是以已有知识和经验为基础的一个主动的意义建构过程,建构的方式是同化和顺应。同化和顺应是概念转变的机制。同化,使原有认识结构的内容在量上得到充实和丰富;顺应,使原有认知结构得到重组或重构,统摄程度更高,发生了结构性的变化。这也说明,学生头脑中所拥有的概念的心理表征是相互联系的,是具有一定的结构关系的。
对学习和理解数学概念来说,结构是关键。当不同数学概念的内在表征之间建立了一定的联系时,就可称谓建立了概念网络。组织良好的概念网络是一种“立体结构”:在层与层之间,可比喻为垂直的谱系,在同一层级上则像蜘蛛网一样。“当网络的结构像谱系那样时,一些表征从属于另一些表征,即作为后者的细节从属于更为一般的表征……在第二个比喻中,网络就像一张蛛网,其中的结点可以被看成所代表的各条信息,结点间的线则代表信息间的联系或关系。蛛网中的各个点最终都是相互联结的,从而可按照已建立的联系在其中转移”。例如,多边形就可形成一种立体结构概念网络,它是“谱系”与“蛛网”的混合。
运用已有知识经验建构新概念的转化过程,在本质上就是不断丰富和建立新的认知结构,形成纵横交错、联系密切的概念网络,就是将一个新概念纳入已有的概念网络,或者由于新概念的进入与原有观念中的错误概念的冲突而引起概念网络的重组或重构,从而组织成为一个联系更为合理、观念更为恰当的新网络。将一个新概念纳人已有认知结构,其与概念网络中结点的联系越为密切且为多层级间的联系,反映主体对其理解就越为全面和深刻。理解一个数学概念就是指新概念的心理表征已经成为主体已有的概念网络的一个组成部分,即与主体已有的认知结构建立了广泛的联系。这种联系既有逻辑的联系,也有认知之间的联系,且理解的程度就取决于联系的数目和强度。说一个数学概念被理解了,就是指其和现有的网络是由更强或更多的关系联结着的。
因此,在数学概念转变学习中,我们就不能着眼于或满足于学生已有(记住)数学概念的数量;与其相比,概念间的良好组织更为重要。总之,只有新概念与头脑中组织良好的概念网络建立稳定、灵活、密切的联系之后,才可说是获得了新概念和实现了概念转变学习。
综上所述,开展关于学生头脑中的前概念或错误概念的研究,是当前数学教学改革的需要,是运用建构主义理论指导数学教学改革的需要。如何揭示学生头脑中那些朴素的、不精确的、甚至是错误的概念,采用何种教学策略帮助学生将这些错误概念转变为科学的数学概念,仍是摆在我们面前的需要深入探讨的重要而又有意义的课题。