大学数学概念题7篇(优质)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
大学数学概念题篇一
我用一句话来说明本节课中我的成功之处,那就是:“仰望星空,脚踏实地”。达尔文说过:“最有价值的知识,是关于方法的知识”,本节课我围绕“方法比知识更重要”这一教学价值观,紧扣“方法”二字进行突破;使学生从知识技能到思想方法上都得到培养;让学生在带着问题自读教材中学会阅读;在小组活动中学会知识的探索和归纳;在一题多解中训练发散思维,从而使能力目标得以达成,也使本节课的教学难点得以突破。
为了真正让学习知识落到实处,我又在每得出一个知识点后及时给出专项练习题强化训练;再分别以a、b、c三个水平层次进行分层练习,使不同层次的学生都有所收获,使知识目标顺利达成,也使学生真正掌握了本节课的教学重点。
不足之处:
成后两个性质的转化可能效果会更好,教学难点更容易突破。
第二个地方是小组合作环节,让学生通过分组活动折纸探索等腰三角形的性质时,主要还是优等生控制着整个局面,成绩较差的学生就只是看和做助手的份。如果我改成每个小组都定成绩较差的那个学生为发言人,使他们有表现的机会,然后成绩较好的一名学生为补充发言人,及时补充和完善小组得到的结论,可能更能调动全体学生学习的积极性。
教学是一门遗憾的艺术,因此教师只有不断地在反思中消除遗憾,才能不断地改进、完善教学,不断地提高教学水平。
仰望星空,它是那样的辽阔而深邃:教学教育的真理,让我苦苦地思考,“路漫漫其修远兮,吾将上下而求索”。
大学数学概念题篇二
1、直观形象地引入概念
数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。
2、运用旧知识引出新概念
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。我就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。把已有的知识作为学习新知识的基础,以旧带新,再化新为旧,如此循环往复,既促使学生明确了概念,又掌握了新旧概念间的联系。
3、用"变式"引导学生理解概念的本质
在学生初步掌握了概念之后,我经常变换概念的叙述方法,让学生从各个侧面来理解概念。概念的表述方式可以是多种多样的。如质数,可以说是"一个自然数除了1和它本身,不再有别的因数,这个数叫做质数。"有时也说成"仅仅是1和它本身两个因数的倍数的数"。学生对各种不同的叙述都能理解,就说明他们对概念的理解是透彻的,是灵活的,不是死背硬记的。有时可以变概念的非本质特征,让学生来辨析,加深他们对本质特征的理解。
4、从具体到抽象,揭示概念的本质
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。
1 揭示概念本质。课改对于概念教学的要求是淡化概念表述的“形式”,而注重其“实质”。具体地说,教学时对一些概念的定义形式不必花大力气,对一些文字叙述较繁的概念不必要求学生背诵,对涉及的一些较深的理论不必去深究,但对概念的实质要理解,要引导学生通过分析、比较、综合、抽象、概括等逻辑思维方法,把握事物的本质和规律,从而掌握概念。例如分式概念的教学,通过实例引导学生分析、综合,找出分式的特点:一是具有形式“a/b”;二是形式中的a、b表示整式;三是形式中的b必须含有字母;这三个条件缺一不可。这样一来,概念的`特征一目了然,学生易于接受,便于掌握。
为让学生充分理解概念,在呈现概念的定义之后,还需要向学生呈现概念的正反例证。呈现的例证要在本质属性上有变化,以利于学生正确地理解概念。如呈现了方程的定义后,接着给学生呈现一些有变化的例证:x=5,a+5=c。另外,还要呈现一些反例来从反面说明,如3+2=5,y7等。
2 加强概念类比。“有比较才有鉴别”。数学的一些概念和规律,理论性较强,而且比较抽象,如果将它与学生熟悉的(已知的)相关实体(事物)进行比较,就能帮助学生理解概念、掌握规律。例如,在教分式这个概念的时候,教师可以将其与学生已经学过的分数进行类比。由分数的分子分母是整数,类比得出分式的分子分母应该是整式。这样做,将新的内容放到学生熟悉的环境中,既提高了学生的兴趣,又降低了学生学习的难度。
3 重视运用变式。所谓变式,就是变换提供给学生的各种感性材料的表现形式,使其非本质属性时有时无,而本质属性保持恒在。如“方程”的变式中,“含有未知数的等式”这一本质不变,但未知数的个数、位置、表示的方式等有变化。教师要引导学生通过分析、对比,运用概念的特征对正反例证作出正确分类,把握事物隐藏的本质属性,克服思维定势的负效应。
小学生的思维还处于具体形象思维的阶段,对于数学课本上的专业术语理解困难,教师在讲解时,因为用词不当容易引起学生的误解,繁琐的解释甚至还会引起学生对数学产生厌烦心理。因此,教师可根据小学生好奇的心理,将抽象的词语转化为小学生容易接受的具体事物来举例说明。例如“平均数”表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标,解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总分数。这种专业术语教师也不知道该怎样解释学生才能听懂,此时教师就可以通过生活中的例子来为学生们说明平均数的概念:老师带来了五个苹果来教室,这个时候教室里坐着五个同学,老师便把这五个苹果分给了五个同学,每个同学都得到了一个苹果,十分高兴。每个同学手里都有一个苹果,这“一个苹果”就是平均数。教师用形象的例子为学生解释了平均数的含义,浅显易懂,学生形象地理解了“平均数”这一概念的本质特征,记忆牢固,大概了解了平均数的基本算法,教师再紧跟教材讲解课本上的运算方式,有效训练了学生的思维,提高了教学效率。
小学生好奇心极重,在好奇心的驱动下,对知识会产生强烈的渴望,教师用提问的形式引导学生思考,能够让学生在自由的氛围下散发思维,锻炼自己的数学能力,提高对数学概念的理解能力。例如在学习乘法时,学生没有多大的概念,教师就可以根据以前学过的加法知识通过提问引入对乘法知识的讲解:这里有三个书包,每个书包里装有两本书,请同学们先算一算这里一共有几本书?学生运用自己学过的加法知识很快算出了答案,这时老师再提问:还有没有更简单的算法将这几本书的数量算出来?事先预习过的学生应该对乘法已经有所了解,但仍与大部分学生一样对这种枯燥的词语感到生涩,教师在复习了加法知识的基础上,延伸出新知识乘法的概念,学生在经过思考后思维已经活跃起来,对于乘法的概念能够很快吸收理解并运用。
数学源于实践,又应用于实践。有些抽象的概念在经过动手实践之后一目了然,而小学生的动手能力极强,教师便可以根据这一特点,由表入里,由浅入深,引导学生探究数学规律。例如在教学“平行四边形的面积”时,由于之前学生并没有接触过这种形状,大脑一片空白,没有任何解题思路,因此,教师在课前就可以要求学生找到数学辅助工具包里的火柴棍和橡皮筋,将其绑成一个长方形,上课时,教师便要求学生把已经做好的长方形模具拿出来,观察教师是如何将长方形转化为平行四边形的,由此引出平行四方形的定义,方便进入“平行四边形面积”的教学内容。教师让学生先求出长方形的面积,再运用学过的知识通过自己的方法求出平行四边形,甚至可以用直尺对自己做好的模具进行测量,鼓励学生发散思维,用自己能想到的方式对平行四边形的面积进行计算,最后自己探索出求平行四边形面积的运算方式,通过动手实践、运用旧知识来解决新问题,学生的思维在兴趣的驱使下得到锻炼,使他们体会到成功的喜悦。
大学数学概念题篇三
(1)以问题为活动的核心。在组织活动前,结合学习内容和学生实际,创设问题情境。
(2)探究是一个活动过程也是学生的思维过程,引导学生多角度思考问题,理解公式的结构特征,达到运用自如的效果。
(3)促进学生发展是活动的目的。让学生在参与平方差公式的探究推导、归纳证明、验证应用的过程中促进学生代数推理能力、表达能力、数学思想方法等得方面的进一步发展。
通过这节课我认为今后的教学还需要备好教材,设计好自己的教案,注重学生的主体地位,渗透数学思想方法,把握好知识的发生过程,不是机械的记忆、简单的叠加,而要做到在理解基础上记忆,符合认知规律的重新构建,设计时注意要有阶梯,且要适度,提高自己的点拨技巧,为上好每一节课而不懈努力。
大学数学概念题篇四
这堂课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且还敢于质疑并且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。
这堂课是研究函数的概念。这节课主要采用了探索、发现、归纳、反馈的教学流程,达成了对函数的概念的教学。
函数性质的研究是高中阶段数学学习的一个重要组成部分,因此函数概念的学习是研究函数性质时应予以考查的一个重要方面,并且要在后续学习中体现这个性质的应用。它在计算函数值,讨论函数单调性,绘制函数图象均有用处,对学生来说这是一个新的概念。引进新概念的过程也是培养学生探索问题、发现规律、作出归纳的过程。因此在教学时没有生硬地提出问题,而是采用生活中的事例引入,继而引出数值在直角坐标系中的对应关系导出新概念,不仅顺乎自然而且为以后研究函数奇偶性的几何意义(图形对称的两条定理)埋下伏笔。
本堂课的一个亮点是反馈过程中给出几个例题后所引起学生的思考、发言、争执、讨论以至正确答案的达成一致的过程,其中教师起了很及时和恰当的提示。学生的勇于质疑使课堂上呈现一派生气勃勃的景象,学习积极性和主动性得到了充分调动,使学生对看似简单的函数的概念也产生了不容轻视感,同时也发展了能力。一般来说学生在学习一些简单的知识点时会觉得乏味,在组织教学时充分考虑了这些浅显、平淡的知识还有一些值得思索和注意的地方。真正体现出“浅显中有新意,平淡中有隽永”。
我上课的最大风格是注重将新概念讲清讲透,能在师生互动的过程中培养学生的探索能力和高度概括能力,并使学生举一反三。难能可贵有同学能概括出的结论,因此可以以它作为下节课研究函数奇偶性的引入语。
总体来说,这堂课较好地使学生在学习中完成了“引起关注————激发热情————参与体验”的过程,是一堂比较成功的课。
遗憾之处是发言的学生由于受时间的约束,发言的人数和长度不够理想。
(1)函数的概念,看起来比较简单,学生学习时也往往感觉的乏味。因此,在组织教学时必须考虑到如何使学生感到这些浅显、平淡的知识还有一些值得思索与注意的地方。
(2)根据学生的接受能力可将内容安排两节课的教学。
大学数学概念题篇五
这堂课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且还敢于质疑并且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。
这堂课是研究函数的概念。这节课主要采用了探索、发现、归纳、反馈的教学流程,达成了对函数的概念的教学。
函数性质的研究是高中阶段数学学习的一个重要组成部分,因此函数概念的学习是研究函数性质时应予以考查的一个重要方面,并且要在后续学习中体现这个性质的应用。它在计算函数值,讨论函数单调性,绘制函数图象均有用处,对学生来说这是一个新的概念。引进新概念的过程也是培养学生探索问题、发现规律、作出归纳的过程。因此在教学时没有生硬地提出问题,而是采用生活中的事例引入,继而引出数值在直角坐标系中的对应关系导出新概念,不仅顺乎自然而且为以后研究函数奇偶性的几何意义(图形对称的两条定理)埋下伏笔。
本堂课的一个亮点是反馈过程中给出几个例题后所引起学生的思考、发言、争执、讨论以至正确答案的达成一致的过程,其中教师起了很及时和恰当的提示。学生的勇于质疑使课堂上呈现一派生气勃勃的景象,学习积极性和主动性得到了充分调动,使学生对看似简单的函数的概念也产生了不容轻视感,同时也发展了能力。一般来说学生在学习一些简单的知识点时会觉得乏味,在组织教学时充分考虑了这些浅显、平淡的知识还有一些值得思索和注意的地方。真正体现出“浅显中有新意,平淡中有隽永”。
我上课的最大风格是注重将新概念讲清讲透,能在师生互动的过程中培养学生的探索能力和高度概括能力,并使学生举一反三。难能可贵有同学能概括出的结论,因此可以以它作为下节课研究函数奇偶性的引入语。
总体来说,这堂课较好地使学生在学习中完成了“引起关注————激发热情————参与体验”的过程,是一堂比较成功的课。
遗憾之处是发言的学生由于受时间的约束,发言的人数和长度不够理想。
(1)函数的概念,看起来比较简单,学生学习时也往往感觉的乏味。因此,在组织教学时必须考虑到如何使学生感到这些浅显、平淡的知识还有一些值得思索与注意的地方。
(2)根据学生的接受能力可将内容安排两节课的教学。
大学数学概念题篇六
数学概念很抽象,而小学生对事物的认识,是从具体到抽象、从感性到理性、从低级到高级,逐步上升、逐步发展的。小学低年级学生的思维,还处于具体形象思维的阶段。到了中高年级,虽然随着知识面的不断扩大,概念的不断增多,而不断向抽象逻辑思维过渡。但这种抽象逻辑思维在很大程度上仍要凭借事物的具体形象或表象。因此,我们在教学中,应该通过实物图像的直观性,联系儿童熟悉的事例或已有的知识,来形象地引进新的概念。例如:在教学“千克”和“克”、“米”和“厘米”等较小的重量长度单位时,可先用让学生称、掂、量的方法,然后在此基础上利用已有的概念,用思维的形式建立起“吨”、“千米”等较大的新的重量、长度单位的概念。通过具体的计算,引进运算定律;通过教具、实物的演示,引入几何概念。概念的引入方式是概念教学的关键一步,这一步做得如何,将直接关系到学生对概念的理解和掌握程度。小学生掌握概念,是一个主动而复杂的认知过程,只有为他们提供丰富而典型的感性材料,通过直观教学,才能逐步抽象,内化成概念。
抓住概念的本质属性,加深对概念的理解。
概念是客观事物本质属性的概括,学生理解概念的过程即是对概念所反映的本质属性的把握过程。为准确把握概念的本质属性,加深学生对概念的理解,可从以下几个方面着手。
首先是抓关键词。小学数学中包含着大量的数学概念,而有些概念往往是由若干个词或词组组成的定义。这些数学语言表述精确,结构严谨,对这一类事物的本质属性作了明确的阐述。我们在教学时就要“抓”住这些本质的东西不放,让学生建立起正确的概念。如,在学习“由三条线段围咸的图形,叫做三角形”这一概念时,就应抓住“三条线段”和“围”字不放,从而让学生明确组成三角形的两个基本条件,加深对三角形意义的理解。
其次是运用变式。所谓变式,就是所提供的事例或材料,不断地变换呈现形式,改变非本质属性,使本质属性恒在,由此帮助学生准确形成概念。在小学数学概念的教学中,巧用变式,对于学生形成清晰的概念有明显的促进作用,它有利于开发学生的思维,使学生透过现象看本质,可以使概念的本质属性更加突出,达到化难为易的效果。同时也有利于激发学生学习兴趣,调动学生积极性,主动性。如在三角形概念教学中,可通过不同形态(锐角三角形、直角三角形和钝角三角形)、不同面积、不同位置的三角形与一些类似三角形的图形进行比较,就可以帮助学生分清哪些属于三角形的本质属性,哪些属于三角形的非本质属性,从而准确地理解三角形的概念。
再次是正反对比。从正反两个方面进行概念教学,是数学教学行之有效的方法。例如,方程的定义是“含有未知数的等式”,在这个定义里,要特别注意“含有未知数”和“等式”两个概念,为了使学生进一步理解什么是方程,除了正面揭示外,还可以用反面衬托的方法,比如让学生做如下练习:在下面各式中指出哪些是方程那些不是方程。
通过练习,组织学生进行正反两方面的分析,学生对方程这一概念理解得更为深透了。
把握巩固深化的时机,确保概念的形成。
大学数学概念题篇七
数学概念很抽象,而小学生对事物的认识,是从具体到抽象、从感性到理性、从低级到高级,逐步上升、逐步发展的。小学低年级学生的思维,还处于具体形象思维的阶段。到了中高年级,虽然随着知识面的不断扩大,概念的不断增多,而不断向抽象逻辑思维过渡。但这种抽象逻辑思维在很大程度上仍要凭借事物的具体形象或表象。因此,我们在教学中,应该通过实物图像的直观性,联系儿童熟悉的事例或已有的知识,来形象地引进新的概念。例如:在教学“千克”和“克”、“米”和“厘米”等较小的重量长度单位时,可先用让学生称、掂、量的方法,然后在此基础上利用已有的概念,用思维的`形式建立起“吨”、“千米”等较大的新的重量、长度单位的概念。通过具体的计算,引进运算定律;通过教具、实物的演示,引入几何概念。概念的引入方式是概念教学的关键一步,这一步做得如何,将直接关系到学生对概念的理解和掌握程度。小学生掌握概念,是一个主动而复杂的认知过程,只有为他们提供丰富而典型的感性材料,通过直观教学,才能逐步抽象,内化成概念。
抓住概念的本质属性,加深对概念的理解。
概念是客观事物本质属性的概括,学生理解概念的过程即是对概念所反映的本质属性的把握过程。为准确把握概念的本质属性,加深学生对概念的理解,可从以下几个方面着手。
首先是抓关键词。小学数学中包含着大量的数学概念,而有些概念往往是由若干个词或词组组成的定义。这些数学语言表述精确,结构严谨,对这一类事物的本质属性作了明确的阐述。我们在教学时就要“抓”住这些本质的东西不放,让学生建立起正确的概念。如,在学习“由三条线段围咸的图形,叫做三角形”这一概念时,就应抓住“三条线段”和“围”字不放,从而让学生明确组成三角形的两个基本条件,加深对三角形意义的理解。
其次是运用变式。所谓变式,就是所提供的事例或材料,不断地变换呈现形式,改变非本质属性,使本质属性恒在,由此帮助学生准确形成概念。在小学数学概念的教学中,巧用变式,对于学生形成清晰的概念有明显的促进作用,它有利于开发学生的思维,使学生透过现象看本质,可以使概念的本质属性更加突出,达到化难为易的效果。同时也有利于激发学生学习兴趣,调动学生积极性,主动性。如在三角形概念教学中,可通过不同形态(锐角三角形、直角三角形和钝角三角形)、不同面积、不同位置的三角形与一些类似三角形的图形进行比较,就可以帮助学生分清哪些属于三角形的本质属性,哪些属于三角形的非本质属性,从而准确地理解三角形的概念。
再次是正反对比。从正反两个方面进行概念教学,是数学教学行之有效的方法。例如,方程的定义是“含有未知数的等式”,在这个定义里,要特别注意“含有未知数”和“等式”两个概念,为了使学生进一步理解什么是方程,除了正面揭示外,还可以用反面衬托的方法,比如让学生做如下练习:在下面各式中指出哪些是方程那些不是方程。
通过练习,组织学生进行正反两方面的分析,学生对方程这一概念理解得更为深透了。
把握巩固深化的时机,确保概念的形成。