数学概念教学的论文(优秀21篇)
通过总结,我们可以帮助他人避免重蹈我们的覆辙。善于应用适当的学习方法和工作技巧是写一篇完美总结的关键技能之一。探寻历史背后的故事,了解历史对我们的影响和启示。
数学概念教学的论文篇一
摘要:函数的概念及相关内容是高中和职业类教材中非常重要的'部分,许多学生认为这些内容比较抽象、难懂、图像多,方法灵活多样。
以致部分学生对函数知识产生恐惧感。
就教学过程中学生的反应和自己的反思,浅淡几点自己的看法。
关键词:函数;对应;映射;数形结合。
1要把握函数的实质。
数学概念教学的论文篇二
在国陪计划课程学习之余,我研读了有关化学概念原理教学有关书目,对化学概念原理教学有我自己的两点认识,现在提出来我们共同探讨。
一、加强对教材的研究。
化学概念原理是初中化学新课程的重要组成部分,它分布在各个课程模块中,其中在上册有关章节覆盖的比较多,但是还是贯穿于整个化学教学始终。课程的概念原理教学具有主题覆盖面较广、教学要求较浅等特点。在教学中,教师要认真研究初中化学教材,处理好集中教学与分散概念原理教学的关系,把握教材的深度和广度,这样才能很好地实施教学。例如:在第四单元概念原理较为集中且抽象,在其它单元则不怎么明显,这要求老师把我概念的全线贯穿和重点强化引导。在概念知识较为集中的第四单元,教师要分散教学,把概念原理分散到教学的各个环节,比如习题设计,课堂内容称述及学生自主练习等过程中,不能要求学生一下子掌握,要逐渐渗透。在学生自主练习中给学生反复的阐述自己的思路,把概念原理教学融进去,例如学了化合价知识,要通过多做练习,多反复来达到记忆的目的,在作业联系的设计上,对于相同类型的题目,要多设多做。在平时教学中遇到这方面的问题要不厌其烦的'给同学们从头开始细细的讲解,至始至终,在往后的整个教学中予以贯述,切不可操之过急,让同学们慢慢内化。因学生差异略做调整。
二、加强对教学策略和方法的研究。
化学基本概念、基本原理的教学,教师可引导学生按照以下的程序组织教学,创设问题情景—提出考虑新问题的新视角—形成假设—验证假设—结论—整合知识结构。使学生的认知心理历经:原有平衡—不平衡—新的平衡—新的不平衡……的螺旋式上升的过程。例如“化学式的意义”一节教学中,教师首先引导学生复习化学式的概念,然后指明化学式所表示的几点含义,通过课本上的例子进行简单讲解,然后让同学们自我总结,老师然后再补充说明,提出化学式的四点含义,表示这种物质,表示这种物质的元素组成,表示这种物质的一个分子,表示物质中分子的微观构成。接下来给学生一道相似题目进行联系,然后订正,接下来改变题目难度,让同学们再练习,提出不同化学式含义的微小区别,接下来再回顾概念,再练习,当然这样的教学一堂课对初中生完全掌握这个概念不是件容易的事,因为一段时间的遗忘也是绊脚石,所以要下来后,加大练习,直至巩固。最终是学生对概念有一个清晰地认知。
因此我的概念原理教学多采用分散与集中相结合的方式,把难点分散到平时教学的各个环节,主要是要加大对概念原理的练习与评讲,在此过程中达到概念原理的掌握。
当然在此过程中要引导学生探究欲望,教师在教学的问题创设多方面功不可少。在化学基本概念、基本原理的教学中,问题情境的创设是基础,知识落实是关键。关于创设问题情景的方法很多,我们可以根据不同的内容去认真研究,精心设计。
数学概念教学的论文篇三
第一,注重概念教学理念创新。新课改背景下,更加强调学生的主体地位,为此概念教学首先应该注重教学理念的创新。一方面,要善于构建适宜的学习情境来激发学生学习的兴趣,不断提高学生学习的注意力。例如,对于“平面直角坐标系”的学习,教师可以首先讲述笛卡尔的故事,进而在引入直角坐标系的概念。这样不仅满足了学生的主体地位,而且有利于师生间良好的交流互动。另一方面,注重概念教学中“形式”与“实质”关系的处理。要在概念引入之前适当列举相关的实例来帮助学生理解。
第二,注重概念教学内容创新。注重教学内容的创新,首先要把握好教材的整体内容和概念层次特征。由于初中教材数学概念本身具有螺旋式上升的特点,学生一时无法理解,为此需要对教材相关概念进行整体把握,并将各部分的`概念进行层层推进。其次,要善于将概念的理解与实际应用相结合。数学概念学习的最终目的就是能够在实际生活中加以运用,不断提高学生动手实践能力。为此,教师在进行概念教学时,也要善于引用生活实例,将概念的理解与实际生活进行完美结合。
第三,注重概念教学方法创新。新课改强调要全面加强学生的素质教育,不断促进学生思维能力的提高。初中数学概念教学要注重教学方法的创新,首先教学方法的运用要能够揭示概念的本质,善于将抽象的概念具体化和形象化。其次,教师要积极引导学生对数学信息进行概括。学生作为学习的主体,教师要充分发挥其主观能动性,不能以为采用被动的教学模式,应该积极鼓励学生对数学信息进行概括,这不仅提高了学生的概括能力,而且有助于学生对概念更加清晰的认识和掌握。
3.结语。
总而言之,对初中数学概念教学进行不断创新具有重要的意义,它不仅能够有效提高初中课堂教学的有效性,而且能够满足时代发展对数学教学的要求。为了能够使初中数学概念教学创新取得良好的成效,要从教学理念创新,教学内容创新以及教学方法创新三个层面不断努力。通过三者的不断改进,能够有效激发学生的学习兴趣,突出了学社的主体地位,对于教师教学质量的提高以及学生能力的提升均起到推动作用。
数学概念教学的论文篇四
新一轮课程改革以为了每一位学生的发展为最高宗旨和核心理念,化学教育的基本理念变了,化学教育的目标也在变。21世纪是人才竞争的世纪。人才素质的提高主要依靠教育。传统式、满堂灌的教育,已不能适应未来人才的需要。
在教学时,要努力学习课程标准,严格把握教学内容的深广度和教学要求,克服传统惯性和一步到位的思想,不要随意提高难度。下面是我的心得体会:
1、遵循学生的认知规律,激发学生对化学的兴趣。初中学生其认知水平是较低的,他们重现象轻文字,重感性轻理性,重具体轻抽象,对化学中可见可闻的具体事物充满了好奇,充满了兴趣,而对化学的基本概念和基本理论这样抽象的、枯燥的知识感到厌烦,甚至于望而却步。所以化学的教学的一个重点是要在如何激发和保持学生的兴趣上下功夫。因为有了这种兴趣,在以后的化学学习中才会一直保持着积极的进取心和极高的热情,在化学学习中所遇到的各种难懂抽象的理论才能保持耐心,才能有去搞懂和解决的动力。因此,化学教学要将激发和保持学生的兴趣作为一个教学重点,一个基本的教学出发点。
2、语言表达准确,书写规范。这一点同上面一点一样也是对教师的要求。以往的经验充分的说明,学生在练习或者在作业中犯的不少错误都可以从任课教师的教上找到根源,如在讲解有关概念时语言不准确甚至出现错误的叙述;做气体点燃实验时不验证气体的`纯度:[为您编辑]在写化学方程式时忘了打沉淀符号:在进行摩尔质量的有关计算时不注意解题规范,不注意单位的换算等等。要纠正学生的这些错误,要求教师在教学过程中应该在语言表达和书写规范等方面对自己严格要求,为学生形成良好的学科素养作好榜样、表率。
3、控制教学深度,加强知识的横向对比。化学中的基本概念和基本理论本身就是比较难懂的,所以教学时一定要控制好深度,切不可深挖洞,想一下把什么都教到位,如我在听同校的老师上化合价一节时,讲了很多的内容,找了很多的课外的难题,生怕没有讲透。可这样大量的知识学生难以承受,难以理解,结果适得其反。因此教师一定不要盲目加深,我们要让学生透彻的理解基本概念基本理论的知识,我认为横向对比是一个比较好的办法,如学生分别学了物质的量的几个有关概念后,总搞不清他们的区别,于是我就让他们分组讨论,再各组交流,最后再一起总结,运用同中求异异中求同的比较和讨论,让学生在比较中理解、记忆,可以起到事半功倍的效果。
数学概念教学的论文篇五
在小学如何确定或选择应教的数学概念,是一个复杂的问题。根据我们的经验,在选定数学概念时既要考虑到需要,又要考虑到学生的接受能力。
(一)选择数学概念时应适应各方面的需要。
1.社会的需要:主要是指选择日常生活、生产和工作中有广泛应用的数学概念。绝大部分的数、量和形的概念是具有广泛应用的。但是社会的需要不是一成不变的,而是常常变化的。因此小学的数学概念也应随着社会的发展适当有所变化。例如,1991年我国采用法定计量单位后,原来采用的市制计量单位就不再教学了。
2.进一步学习的需要:有些数学概念在实际中并不是广泛应用的,但是对于进一步学习是重要的。例如质数、合数、分解质因数、最大公约数和最小公倍数等,不仅是学习分数的必要基础,而且是学习代数的重要基础,必须使学生掌握,并把它们作为小学数学的基础知识。
3.发展的需要:这里主要是指有利于发展儿童的身心的需要。例如,引入简易方程及其解法,不仅有助于学生灵活的解题能力,减少解题的困难程度,而且有助于发展学生抽象思维的能力。在我国的小学数学中,教学方程产生了很好的效果。小学生不仅能用方程解两三步的问题,而且能根据问题的具体情况选择适当的解答方法。这里举一个例子。
要求五年级的一个实验班的38名学生(年龄10.5―11.5岁)解下面两道题:
学生能用两种方法解:算术解法和方程解法。用每种方法解题的正确率都是91.7%。下面是两个学生的解法。
一个中等生的解法:
一个下等生的解法:
多少米?
这道题是比较难的,学生没有遇到过。结果很有趣。58.3%的学生用方程解,41.7%的学生用算术方法解。而用方程解的正确率比用算术方法解的高22%。
下面是两个学生的解法。
一个优等生用算术方法解:
一个中等生用方程解:
解:设买来蓝布x米。
(二)选择数学概念时还应考虑学生的接受能力。小学生的思维特点是从具体形象思维向抽象逻辑思维过渡。一般地说,数学概念具有不同程度的抽象水平。在确定教学某一概念的必要性的前提下还应考虑其抽象水平是否适合学生的思维水平。为此,根据不同的情况可以采取以下几种不同的措施:
1.学生容易理解的一些概念,可以采取定义的方式出现。例如,在四五年级教学四则运算的概念时,可以教给四则运算的定义,使学生深刻理解四则运算的意义以及运算间的关系。而且使学生能区分在分数范围内运算的意义是否比在整数范围内有了扩展,以便他们能在实际计算中正确地加以应用。此外,通过概念的定义的教学还可以使学生的逻辑思维得到发展,并为中学的进一步学习打下较好的基础。
2.当有些概念以定义的方式出现时,学生不好理解,可以采取描述它们的基本特征的方式出现。例如,在高年级讲圆的认识时,采取揭示圆的基本特征的方式比较好:(1)它是由曲线围成的平面图形;(2)它有一个中心,从中心到圆上的所有各点的距离都相等。这样学生既获得了概念的直观的表象,又获得了其基本特征,从而为中学进一步提高概念的抽象水平做较好的准备。
3.当有些概念不易描述其基本特征时,可以采取举例说明其含义或基本特征的方法。例如,在教学“量”这概念时,可以说明长度、重量、时间、面积等都是量。对“平面”这个概念可以通过某些物体的平展的表面给以直观的说明。
数学概念的编排,在一定程度上可以看作是各年级对数学概念的选择和出现顺序。数学概念的合理编排不仅有助于学生很好地掌握,而且便于学生掌握运算、解答应用题以及其他内容。根据教学论和我们的实践经验,数学概念的编排应当符合下述原则:既适当考虑数学概念的逻辑系统性又适当考虑学生认知的年龄特点。为了贯彻这一原则,必须考虑以下几点。
(一)采取圆周排列:这一点不仅反映人类的认知过程,而且。
符合儿童的认知特点。如众所周知的,自然数的认识范围要逐渐地扩大,“分数”概念的意义也要逐步的予以完善。
(二)注意概念之间的关系:例如,小数的初步认识宜于放在分数的初步认识之后,以便于学生理解小数可以看作分母是10、100、1000……的分数的特殊形式。把比的认识放在分数除法之后教学,会有助于学生理解比和分数的联系。
(三)概念的抽象水平要符合学生的接受能力:例如,在低年级教学减法的含义,是通过操作和观察使学生理解从一个数里去掉一部分求剩下的部分是多少。而在高年级教学时,宜于通过实际例子给出减法的定义。在低年级教学平行四边形时,只要说明其边和角的特征而不教平行线的认识。但在高年级就宜于先介绍平行线,再给出平行四边形的定义。
(四)注意数学概念与其他学科的配合:数学作为一个工具与其他学科有较多的联系。有些数学概念,如计量单位、比例尺等在学习语文和常识中常用到,在学生能够接受的情况下可以提早教学。
小学生的数学概念的形成是一个复杂的过程。特别是一些较难的数学概念,教学时需要一个深入细致的工作的长过程。根据数学的特点和儿童的认知特点,教学时要注意以下几点。
(一)遵循儿童的认知规律,引导学生抽象、概括出所学概念的本质特征。例如,在低年级教学“乘法”这个概念时,可以引导学生摆几组圆形,每组的圆形同样多,并让学生先用加法再用乘法计算圆形的总数。通过比较引导学生总结出乘法是求几个相同加数和的简便算法。教学长方形时,先引导学生测量它的边和角,然后抽象、概括出长方形的特征。这样教学有助于学生形成所学的概念并发展他们的逻辑思维。
(二)注意正确地理解所学的概念。教学经验表明,学生对某一概念的理解常常显示出不同的水平,尽管他们都参加同样的活动如操作、比较、抽象和概括等。有些学生甚至可能完全没有理解概念的本质特征。这就需要检查所有的学生是否理解所学的概念。检查的方法是多样的,其中之一是把概念具体化。例如,给出一个乘法算式,如3×4,让学生摆出圆形来说明它表示每组有几个圆形,有几组。另一种方法是给出所学概念的几个变式,让学生来识别。例如,下图中有几个长方形摆放的方向不同,让学生把长方形挑选出来。
此外,还可以让学生举实例说明某一概念的意义,如举例说明分数、正比例的意义。
(三)掌握概念间的联系和区别。比较所学的概念并弄清它们的区别,可以使学生深刻地理解这些概念,并消除彼此间的混淆。例如,应使学生能够区分质数与互质数,长方形的周长和面积,正比例和反比例等。在教过有联系的概念之后,可以让学生把它们系统地加以整理,以说明它们之间的关系。例如,四边形、正方形、长方形、平行四边形和梯形可以通过下图加以系统整理,以说明它们的关系。
通过概念的系统整理使学生在头脑中对这些概念形成良好的认知结构。
(四)重视概念的应用。学习概念的应用有助于学生进一步加。
深理解所学的概念,把数学知识同实际联系起来,并且发展学生的逻辑思维。例如,学过长方体以后,可以让学生找出周围环境中哪些物体的形状是长方体。学过质数概念以后可以让学生找出能整除60的质数。
我们的实验表明,由于采取了上述的措施,学生对概念的理解的正确率有较明显的提高。下面是19xx年进行的一次测验中有关学生掌握数学概念的测试结果。
注:1.两个实验班都是五年级,年龄是11―12岁。一个对照班是五年制五年级,另一个是六年制六年级。
2.1991年用同一测验测试全国约200个实验班,也得到较好的结果。
上面的测试结果表明,实验班学生学习数学概念的成绩,在认数、几何图形,特别是在学习倒数、比例和扇形方面都优于对照班的学生。最后一项测试结果还表明,实验班学生在发展空间观念和作图能力方面优于对照班学生。
四结论。
在小学加强数学概念的教学对于提高学生的数学概念的认知水平具有重要的意义。
在小学如何确定教学的`数学概念是一个重要的复杂的问题。在选定概念时,既要很好地考虑需要,又要很好地考虑学生的接受能力。
合理地安排数学概念对于学生掌握他们有很大帮助。在编排概念时,既要充分考虑所教概念的逻辑系统性,又要照顾到不同年龄的学生的认知特点。
教学的策略对于形成学生的数学概念起着重要的作用。在教学概念时教师应当遵循儿童的认知规律和激发学生思考的原则,并且注意使学生正确理解概念的义,掌握概念间的联系和区别,并在实际中应用所学的概念。
(本文是1992年向第七届国际数学教育会议提交的论文,曾在大会第一研讨组上宣读。)。
数学概念教学的论文篇六
不论是皮亚杰还是奥苏伯尔在概念学习理论方面都认为概念教学的起步是在已有的认知结论的基础上进行的。因此,教学新概念前,如果能对学生认知结构中原有的概念适当作一些结构上的变化,引入新概念,则有利于促进新概念的形成。
2.类比法。
抓住新旧知识的本质联系,有目的、有计划地让学生将有关新旧知识进行类比,就能很快地得出新旧知识在某些属性上的相同(相似)的结构而引进概念。
3.喻理法。
为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念,谓之喻理导入法。
如,学“用字母表示数”时,先出示的两句话:“阿q和小d在看《w的悲剧》。”、“我在a市s街上遇见一位朋友。”问:这两个句子中的字母各表示什么?再出示扑克牌“红桃a”,要求学生回答这里的a则表示什么?最后出示等式“0.5×x=3.5”,擦去等号及3.5,变成“0.5×x”后,问两道式子里的x各表示什么?根据学生的回答,教师结合板书进行小结:字母可以表示人名、地名和数,一个字母可以表示一个数,也可以表示任何数。
这样,枯燥的概念变得生动、有趣,同学们在由衷的喜悦中进入了“字母表示数”概念的学习。
4.置疑法。
通过揭示数学自身的矛盾来引入新概念,以突出引进新概念的必要性和合理性,调动了解新概念的强烈动机和愿望。
数学概念教学的论文篇七
数学概念主要由内涵和外延组成,外延即指概念额全体,而内涵则指概念的本质特征。要想把握好数学概念,其核心就在于要准确理解其内涵与外延。例如,对于平行四边形这一概念而言,对边平行且相等类似的属性综合则属于其内涵,而正方形、菱形等则属于它的外延对象。数学概念教学作为数学教学重要的组成部分,是进行数学学习的核心,其根本任务就在于准确揭示出概念的内涵与外延。实施数学概念教学需要依据一定的指导思想,它融合了哲学、数学以及心理学三者的理论。同时实施数学概念教学还应当遵循一定的教学原则,例如:动力性原则、过程性原则、层次性原则等。
数学概念教学的论文篇八
概念是对感性材料的综合,是对事物内在本质的反映。纵观数学的发展过程,一切数学公式、法则、规律的得出都离不开概念。在小学里,数学概念包括:数的概念、运算的概念、数的整除性概念,量的计量概念、几何形体的概念、比和比例的概念、式的概念、应用题的概念、统计。的概念等,共约500多个。这些概念支撑了十二册教科书中所涉及的数与代数、空间与图形、统计与概率、实践与应用等四个领域的庞大的数学体系,不仅是数学基础知识的重要组成部分,也是发展思维、培养数学能力的基础。但是,当前的概念学习还存在着一些问题,如重计算,轻内涵;重结论,轻过程;重课本,轻实践等,这些问题是如何产生的?通过听课、访谈、填写调查问卷等形式,我找到了答案。我认为产生的本质原因是缺失了对数学作为一门科学的学术关照。因此,让数学概念学习栖居在学术的土壤里是一个值得重视和研究的课题。笔者结合教学实践谈三点想法:
一、从日常数学与学术数学的连接点切入。
阔的背景,有着不得不产生的理由,并且附着着人类进步和数学发展过程中积淀的最闪亮的思想火花。因此,在概念教学中我们一定要深入地研究概念产生的背景,并且分析学术数学与日常数学的区别,从而从本质上理解概念的内涵。
二、概念解读能深入也能浅出。
研究表明,儿童学习概念一般依据感知——表象——概念——运用的程序,也就是说概念的有意义学习建立在丰富直观的感知基础上。为此,不管教师对概念的解读有多深入,多学术化,在课堂上,我们还是必须通过演示、操作等方式,为学生提供充分的感知体验。
三、从旧知的锚桩处起航。
数学学科是一门逻辑性很强的学科,这就决定了数学概念相互间的联系非常密切,很多概念的学习就是概念的同化过程,尤其是运算概念。小数、分数的四则运算的意义、法则甚至运算定律都类同于整数四则运算,对这类概念的教学,就要从旧知与新知的连接点入手。
我读了张奠宙、郑毓信等数学教育专家的新著,指出了数学教育应防止去数学化,而应努力营建以数学为核心的教育。张奠宙先生说:数学教育,自然是以‘数学’内容为核心。数学课堂教学的优劣,自然应该以学生能否学好‘数学’为依据;数学教育啊,可否更多地关注‘数学’的特性!
受个人专业成长经历的影响,这些年,我对数学课堂的研究和探索集中于数学文化与数学思维上,总想着我的教育能使孩子们的数学素养得以有效地提高。一路行来一路思,而今先生精辟、深遂的论断让我眼前更亮。是呀,数学教育一定是数学与教育学双重价值视野关照的,如果缺失了对数学本质的关照,那么即便是再漂亮的课也只能略逊风骚。以上,我以概念学习为例,谈了我对数学课堂基于数学学术视野的实践与渴望,其实需要数学学术视野关照的又岂止是概念学习,因此,本文也只当是抛砖引玉,希望引起大家的思考。
数学概念教学的论文篇九
数学概念有抽象性和具体性双重特点,由于反映了数学对象的本质属性,所以是抽象的,数学概念往往用特定的数学符号表示,这在简明的同时又增大了抽象程度,同时数学概念又有具体性的一面。比如,点、线、面的教学应先让学生从具体事物中对概念有所体会,笔尖在纸上点一下得到的痕迹是点的形象、拉紧的绳子得到直线的形象、平静的湖面得到平面的形象,这属于基础,必须掌握,然后再把数学概念与日常生活中的概念加以区别。再比如,在方程的教学中可以先给出实际问题,让学生找出其中的等量关系,得出方程,再明确该类方程的.定义,在探索知识的过程中达到理解的目的,使学生更容易接受概念。
二、牢记数学符号并正确使用数学符号。
充分揭示一个概念的内涵,就是指揭示基本内涵的重要的、常用的等价形式,这是学生内化知识的一种方法。比如,对于平行四边形的概念,除了定义以外,“两组对边分别相等的四边形”“两组对角分别相等的四边形”“一组对边平行且相等的四边形”“两条对角线互相平分的四边形”这些等价形式,都揭示了平行四边形的本质属性。再比如,对于一次函数的概念,在教学过程中应强调y=kx+b只是定义的一种表现形式,当采用不同字母时,也是一次函数,若不能理解这一点,就不能算真正理解了一次函数的概念。
三、渗透逻辑知识,促进概念的内化。
中学数学教师应该将逻辑知识渗透到概念教学之中。例如,各种特殊四边形概念的建立就需要渗透逻辑知识,在四边形概念的基础上定义平行四边形时,应该让学生懂得平行四边形是四边形的特例,它具有一般四边形的一切性质,此外还具有特有的性质———两组对边分别平行,再用韦恩图表示出这两个概念之间的关系,那么不仅能使学生理解平行四边形的概念,防止仅形式地记住定义,而且容易用同样的方法建立起各种特殊四边形的概念,这就促进了新概念在学生头脑中的内化。当各种特殊四边形的概念都建立起来以后,还可以把它们综合在一起,用韦恩图表示出四边形、平行四边形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形等概念间的逻辑关系,从而使学生对这些概念的理解更深入更系统。
四、重视概念的形成,注意设计多种教学方案。
概念形成的过程是从大量具体例子出发,根据实际经验,分化出各种属性,类化出共同属性,以归纳的方法抽象出本质属性,再概括到一类事物中,从而形成概念。概念形成的学习形式接近于人类自发形成概念,在教学过程中,学生掌握概念不必经历概念形成的较长过程,可以在教师指导下进行。例如,在学习直线与直线的位置关系时,可以让学生观察实例,回顾把几根杆子立直的生活经验,观察铁轨等,让学生尝试描述其本质属性。如果学生回答不正确,教师不能简单地加以否定,应在讨论中引导学生逐步向本质属性靠拢,最后得出准确定义;如果学生较早地回答出正确结果,教师也可暂时不加以肯定,而是让学生来判断,并可有意提出错误答案让大家辨别,当学生能说出其错误所在之后,教师才给出结论,由于这种教学容易受到突发状况的影响,所以教师在课前需要进行多种考虑,设计出多种可能的教学方案。这种概念教学的形式虽然比较费时,但可以使教学过程生动活泼,加深学生对知识的理解和掌握。
五、揭示定义的合理性,加强对概念的理解。
在教学中,教师应充分揭示定义的合理性。例如三角函数概念的引入,这相对于学生以往接触的函数,有其特别之处,除了自变量是角以外,学生常容易困惑的是,如何在角的终边上任取一点p?解决这个教学难点的关键就在于揭示定义的合理性,即这四个比值都不随角的终边上p点选取的不同而变化,达到这个理解层面,就可以攻破难点了。对于由概念的推广引入的新概念,都存在揭示定义合理性的问题。一个数学概念在数学发展的一定阶段,其内涵与外延都是确定的,但是在不同的阶段它的内涵与外延又是发展的。例如指数概念的教学,从正整数指数,扩充到零指数和负整数指数,整数指数进一步发展,扩充到分数指数,发展到有理数指数,每一步推广都存在合理性问题,即新概念完全包含了旧概念作为它的特殊情况并使幂的运算法则仍适用,所以随着概念教学的深化,层次的明确有利于学生掌握并熟练使用。以上只是我在教学过程中总结积累的几点经验,中学数学概念教学还在尝试探索阶段,需要进一步提高,很多方面还有待于寻找更好的方法,作为数学教师,我会继续探索如何更好地进行概念教学。
数学概念教学的论文篇十
数学概念教学,是课堂教学的重要组成部分,也是数学教学的核心。在课堂教学中探讨概念教学,其实就是在探讨数学教学的本质,也就是在研究如何抓住数学教学的牛鼻子。在初中数学教材中,概念多而分散,死记硬背显然是不可取的。那么,在课堂教学中如何让学生理解和掌握概念呢?下面结合自己的教学实践谈点体会。
一、联系生活,探究概念的形成过程。
数学来源于生活,生活为数学教学提供了丰富的素材。在数学概念教学中,教师应从学生的认知发展水平和已有经验出发,创设问题情境,使学生经历观察、猜测、交流、验证、反思等活动感知概念,激发学生的学习兴趣和探究欲望。概念是对生活现象的提炼,让学生在生活情境中体验概念形成与发展的过程,能够帮助学生理解和掌握概念,也能够使学生的思维能力得到提高。例如,在讲“圆”时,对于圆的概念,教师可以让学生从生活中找出圆的实例,如车轮、奥运五环等,并提出问题:为什么车轮要制作成圆形?这样的问题,激发了学生的探究热情。在探究中,学生可以发现:圆,“一中同长”,把车轮制作成圆形可以保证车轴与地面的距离始终相等,从而确保车辆在行驶的过程中保持平衡。在此基础上,学生使用圆规画出一个圆,可以得出:平面上到定点的距离等于定长的所有点组成的图形叫作圆。同时,引导学生对于定义的形成过程进行别样的表述。如,从集合的角度考虑:到定点距离等于定长的点的集合叫作圆;也可以用轨迹来定义:平面上一动点以一定点为中心、一定长为距离运动一周的轨迹称为圆。这样,使圆的定义深入到学生心中。生活是认识概念、探究概念发生和发展的重要场所。利用生活中的实例,帮助学生建构数学概念,能够起到形象直观的作用,也让学生从情感上更加乐于探究,从而加深学生对概念的理解和掌握。
二、揭示本质,理解概念的内涵与外延。
数学概念教学的重点是,让学生把握概念的内涵与外延。只有这样,才能揭示概念的本质和关键,促使学生掌握概念。概念的内涵其实就是概念的“质”,也就是概念的根本,概念的外延是概念的“量”,也就是所有对象的和。明确了概念的内涵与外延,就等于把握住了概念的全部。内涵和外延是概念教学不可分割的两部分。只要揭示概念的内涵,就会涉及概念的外延。将两者相统一,才能使概念教学更加完美。例如,在讲“一次函数”时,学生对于函数是陌生的,而函数又是整个中学阶段的重要内容,函数思想贯穿于中学数学的始终。函数概念对于学生来说比较抽象,它是由学生已经熟悉的研究静止现象到研究运动变化现象的提升,实现了由常量到变量的转变,让学生的认知观念实现了质的飞跃。教师可以让学生明确两个变量一一对应的关系,也就是对于自变量(x)的每一个确定的值,y都有唯一确定值与其对应。在这里,学生就会从中找到关键词,即“每一个”、“唯一确定”,也就把握了函数的本质“对应”。在把握了内涵的`基础上,教师可以用解析式或图象的形式给出不同的函数,让学生了解概念的外延,从而使概念教学显得丰满和有条理。在概念教学中,抓住概念的本质是教学的关键。只有让学生把握概念的内涵与外延,才能使学生理解和掌握概念,从而提高学生的思维水平和数学素养。
三、实际应用,培养学生的应用意识。
实际应用是概念教学的根本目的。只有让学生感受到学习的价值和意义,才能激发学生的学习欲望,才能让学生乐于参与学习活动。在概念教学中培养学生的应用意识,其实就是要让学生有意识地用所学的概念解决生活中的问题。这样教学,既是对概念的巩固,也是培养学生的能力与素质的重要环节。实际应用,促进了课堂教学的情境设置,也使学生理解了数学概念。例如,在讲“锐角三角函数”时,对于三角函数的概念,教师可以用实际生活中的例子来引导学生探究,提高学生的应用意识和实践能力。如,测量旗杆的高度,学生除了想到用学过的三角形相似之外,还可以用刚学的锐角三角函数来解决。如仰角60°时,量得自己离旗杆底端12m,则可以得出旗杆大约高多少米?再次移动位置,量出与旗杆的距离和仰角的度数,用计算器计算后检查求得的结果是否相同,从而加深学生对正切概念的掌握。实际应用,使概念教学的实用性得到体现,学生在“学会”的基础上“会用”,激发了学生进一步学习的动力,使学生由“学会”到“会学”。总之,概念教学,不仅是为了让学生获得更多的知识与技能,更重要的是让学生积累经验和掌握方法。教师要让数学概念深入学生学习的全过程,使学生在自主学习与合作探究中深入地把握数学的本质。概念教学,既要突出量的积累,又要注重质的提升,在为学生创设丰富生活情境的前提下,让学生探究发现概念的本质,并将知识应用于生活中。
数学概念教学的论文篇十一
研究发现,学生头脑中的错误概念有极强的顽固性,这是因为学生花了相当多的时间与精力建构了自己的“朴素理论”,所以用传统传授方法学习生物科学概念是低效的。
学生头脑中的前概念或错误概念具有广泛性、自发性、特异性、表象性、迁移性和隐蔽性等特征。
诊断的最有效技术是实施诊断性评价。就是通过一定方式发现学生学习中存在的问题,分析这些问题产生的原因,从而为改进和调整教学策略提供依据。
诊断性评价既需要以日常观察为主要手段的定性分析,又需要以诊断性测验为主要手段的定量分析。
(一)日常观察。1.提问;2.访谈;3.问卷调查;4.制作概念图。(二)诊断性测验。也可称之为概念诊断性测试。选择精心设计的有针对性的内容,设法将学生容易产生错误理解的知识点呈现给学生,让学生的前概念在测试中“曝光”。
(一)概念转变学习。
概念转变学习的机制:1.同化,指学生用自己已有的观念理解新现象的过程;2.顺应,指学生转变或重组原有观念以便更好地理解和接受新现象的过程。为了促使学生进行概念转变,必须提供四个条件:1.学习者对当前的概念产生不满。2.学习者必须尽可能地理解科学概念。3.学习者必须认为科学概念是合理的。4.学习者必须认为科学概念是有用的。它们可用于解释和预测各种现象。
教师必须充分了解学生相关学科的原有知识经验背景,了解学生有哪些错误概念,并充分运用学生的原有概念创设教学中的认知冲突(情境),以此作为引发学生进行概念转变学习的契机。
1.揭示学生的前科概念,这是实现概念转变学习的前提。
2.引发学生的认识冲突,这是实现概念转变学习的契机和动力。引发学生认识冲突的两种策略:(1)通过特殊文本产生认知冲突。一种是批驳性文本,另一种是非批驳性文本。(2)通过合作学习中学生的讨论与对话引发认知冲突。
3.鼓励认知顺应,这是实现概念转变学习的关键。所谓顺应,是指对原有认知结构的调整和改变,以便更好地理解和接纳新现象。在生物学教学中,一般可以通过探究性实验来引发和解决认知冲突,实现认知顺应,重建新的生物概念。
摘自《课程・教材・教法》第5期。
数学概念教学的论文篇十二
素质教育的实质是实施主体性教育。素质教育的重点是培养学生的创新精神和实践能力。因此,我认为,在素质教育下的小学数学新授课的教学模式的指导思想是:以新的教学观念为先导,进而改变教师的教学行为。“模式”的实施要体现数学课堂教学的重心不但在数学知识上,应该在培养人的发展上转移;体现从接受性学习向积极参与转移。因此要有利于提高全体学生参与的程度,有利于活跃学生的思维,有利于加强学生之间的交往和有利于教学目标的全面达成。模式构建的基础是民主平等的教学观,新型的师生关系。
一、新授课的基本模式与操作流程:
小学数学新授课的基本教学模式是:“创设情景,引入新课——自主探究,交流提高——巩固深化,拓展应用——总结回顾,评价反思”
(一)创设情景,引入新课。
创设情景,激发学习动机,是引导学生主动参与学习过程的前提。托尔斯泰说:“成功的教学需要的不是强制,而是激发学生的学习兴趣。”要引起学生迫切学习的欲望,教师要在教学内容和学生求知心理之间创设一种“不平衡”,把学生引入与所提问题有关的情景中,产生弄清求知的迫切需要,积极主动的参与学习活动。
教学开始,在进行必要的基本训练的基础上,教师要结合学生的认知水平和生活实际,创设一定的问题情景,引导学生提出数学问题,置学生于问题情景之中,使其处于很想弄懂但又无法弄懂,有所知但不全知的心理状态,从而产生认知冲突,激活思维。教师顺势利导,引入新课。
这一环节要干净利落,不能拖泥带水,控制在5分钟以内。
(二)自主探究,交流提高。
此环节是课堂教学的核心部分,是培养学生学习能力和习惯、发展学生个性、激发学习兴趣的有效空间。可分以下几步进行。
1、自主探究。
针对上一环节创设的问题情景,学生进行自主探索活动,形成自己的解决问题的基本思路。
2、小组讨论。
学生已经有了自己的见解,在学习小组内进行讨论,可以形成并协助解决探索过程中所出现的一些困难。学生在小组讨论时,可以直接说明自己的观点,最终形成小组的统一意见。由于学生之间的知识水平差距不大,又有类似的表述语言,比较容易畅所欲言,发表观点,既掌握了知识,又发展了能力。
3、全班交流。
学生小组讨论的结果、探讨问题的效果如何,需要进行必要的交流。在这里,教师的作用相当于节目主持人,让各小组尽情发表观点,争辩、质询、接受、吸收。在这个过程中,热烈的气氛会调动学生学习的积极性,集体的力量可以促使学生勇敢的阐述观点。学生的辨析、推理能力以及表达能力在这个过程中得到了训练和提高。
4、形成共识。
当学生的交流取得一定进展时,教师应该及时加以肯定和表扬,不断引导学生理解领会知识,掌握方法和技能。教师可以根据学生活动的情况,针对交流中存在的问题,作必要的小结性讲解,对学生的研究情况、交流情况、以及问题解决的方法,给予客观评价,使学生进一步明确解决此类问题的策略,感受解决问题的愉快。
(三)巩固深化,拓展应用作为数学课必不可少的组成部分,它是进一步巩固知识、深化知识、由知识转化成能力、提高学生应用水平、减轻学生课外作业负担的有效环节。巩固深化,拓展提高的基本形式是练习。只有经过充分练习,才能形成熟练的技能技巧,进一步发展能力、开发智力。练习分为基本练习和拓展练习。基本练习在先,拓展练习在后。基本练习具有例题特征,主要目的是巩固所学知识。拓展练习是体现知识的系统性,使新知识纳入已有的认知结构加深对新知的理解,培养学生的学习兴趣,发展学生的个性特长。
本环节15分钟左右,根据第二环节的时间适当调整。
(四)总结回顾,评价反思。
作为一节课的终结部分,可以先让学生说一说这节课学到了哪些知识,有哪些收获,对自己进行一下评价,然后教师对学生参与学习的精神状态进行肯定,对学生进行积极评价,使学生产生获取知识的喜悦,充满后继学习的信心。
一般控制在3分钟之内。
二、小学数学新授课教学模式运用的基本要求:
1、破除以教师为中心的教育观念,树立“和谐课堂”的观念,在这里“和谐课堂”主要是指一种民主、平等、合作、交流、自由、开放、安全、愉悦的课堂,建立一个以学生为主体、问题解决为主线、学生自主探究学习和教师有效指导相结合的“和谐课堂”。
2、转变以知识为本位的教学观念,树立以学生的发展为目标的教育思想。让学生在课堂上积极参与、自主探索、合作交流,做到“动而不乱、动而有序、动而有节”,不放任,也不过于严肃。
3、改变以传授知识为主要目的的传统课堂教学模式,实践以问题解决为主线,以学生全面发展为目标的新型课堂教学模式,鼓励全体学生参与学习活动,教师要尽量适应学生个别差异和不同兴趣的具体要求,创造一些开放性的问题情境,引导学生思考,提出问题,鼓励学生积极探索和大胆尝试,养成自主探究的学习习惯。
4、要着眼于学生数学素养的提升和整体素质的提高,在问题解决方案的探索过程中,培养学生自主探究的意识,创造性的思维品质,合作学习的精神和解决问题的能力,使学生成为具有丰富的知识,健康的情感、健全的个性和良好的道德行为习惯的一代新人,使他们在未来的社会生活中能自尊、自信,敢于迎接社会的挑战。
三、新授课教学应注意的问题:
1、创设问题情景应该是最重要的一个环节,是学生活动成败的关键。备课时,教师要立足于学生的生活实际,结合教科书内容,提出有价值的数学问题。
2、要扩大学生活动的空间。教师作为教学活动的主导者,要积极参与到学生活动中去,给予必要的指导和帮助,但在学生进行“自主探究、小组交流”时,不要进行集体讲述,要使学生充分的活动。
3、要创设平等、民主、和谐的教学氛围,尽量避免一问一答的交流方式,鼓励学生大胆发言,勇于辩论,教师不可随意打断学生的思路。
4、课堂训练要目的明确,层次分明,讲求实效。训练形式应该多样化,尽可能避免重复单调。练习题的设计应遵循下列要求:(1)基本练习覆盖面要宽,起点要低;(2)练习题量要大些,对比较重要的知识重点练习,比较模糊的知识集中练习;(3)练习分层进行,由浅入深;(4)设计必做题和选做题,各类学生有所兼顾。
5、此新授课的基本操作模式是结合当前的教学改革形势制定的,各环节反映了新授课的基本规律。教学时,应根据具体的教学内容和学生的认知特点灵活掌握,不可千篇一律,机械套用。
数学概念教学的论文篇十三
当前高中语文课堂教学中有效性的缺失严重抑制了课堂教学功能的整体实现。追求“有效教学”,关注学生的发展已成为课改的热点问题。
1.课堂教学有效性缺失的诊断。
首先表现在班级学习机会差异悬殊,部分学生课堂实用时间少。以高中语文阅读教学为例,有人研究发现,学生获得分析课文的机会有多有少,大约只有1/5左右能力强、思维敏捷的学生能参与分析课文的全过程,3/5左右的中等生长期只能得到部分参与分析全篇课文的机会,还有1/5左右的学困生因理解能力差而长期得不到独立分析课文的机会。现代教学研究发现,学生的学习差异常常是课堂实用时间差异造成的。在一系列的连续学习中,初始学习中微弱的实用时间差异可能导致后续学习实用时间差异的扩大。因此说,课堂教学学生实用时间的不均是有效性缺失的具体体现。
其次表现在课堂教学密度小、质量差。课堂教学密度是指教学活动中合理运用的时间与一节课总时间的比例。为了提高课堂教学效率,既要尽量提高一般教学密度,又要适当掌握特殊密度。但是,笔者调查发现,在语文课堂上教师因上课离题或提问宽泛或用语罗嗦、师生教学准备不足而出现了大量的无效活动。有些片面强调提高特殊教学密度,忽视课堂理解、巩固和新旧知识综合贯通的教学环节,从而使学生因新知识掌握不牢而影响后续学习,造成教学效率下降。同时,教学密度不仅有量的大小,更有质的好坏。同样的教学时间,既可以用于记忆和理解,也可用于分析、综合和创造性的学习活动。教学中用于低层学习任务的时间过多,用于高层创新思维能力培养的时间减少,使教学密度量大质差。题海式学习便是典型。
2.课堂教学有效性缺失的矫治。
2.1制定准确、明确且有层次的教学目标,避免课堂随意盲目。现代教学理论和实践都证明:有效的教学必先具备有效的教学目标。而有效的教学目标的设计首先要求是准确和明确。语文教学目标的准确应体现在摆脱“知识中心论”,定位于学生素质的全面发展。即不仅重视学生对语文知识的适度掌握,更要重视培养学生的语文运用能力以及创新思维能力;不仅重视发展学生的智力因素,而且注重发展学生的非智力因素。当然,目标众多,并非时时处处都要一应俱全,面面俱到。具体到一篇课文、一节课,可以适当增删,有所侧重。语文教材中每一篇课文都是优秀而且有着丰富的精神内涵,浓浓的人文气息,可以讲解的内容很多。但是我们教师在进行每一篇文章的课堂教学时,一定要明确本篇文章、本节课的教学重点是什么,做到有的放矢,减少教学的盲目性和随意性,那种兴之所至的即兴发挥极不利于课堂教学有效性的提高,“任它千瓢水,我只取一瓢饮”说的就是这个道理。我们教师应该遵循语文学科的内在规律,从《语文课程标准》这一总要求出发,结合学生身心发展规律,紧密联系生活实际,明确课堂教学重点。例如笔者在教学《诗人谈诗》这篇文章时,结合本篇课文的特点,明确了这样的教学重点:尽量通过本节课的教学,让学生了解一些鉴赏现代诗歌的角度和方法,提高自我的鉴赏水平,理解为什么“一千个观赏圆月的人就有一千个月光下的故事”。于是笔者根据明确的这一教学重点,进行教案设计,展开教学活动,取得了不错的教学效果。同样,培养学生的思维品质、陶冶学生的道德情感等方面的目标,也应作出确切的规定。毫无疑问,只有高度明确的教学目标才有现实的可操作性和可评价性。其次,是要有一定的层次。即根据学生认知结构、学习水平、动机意志等的差异,制定不同层次的教学目标。在实践中,如能按照“最近发展区”理论把获得某种知识所需时间和认知发展水平大体相当的学生进行归类分层,并确定与各层次学生的实际可能性相协调的分层递进教学目标,教学效率即可大幅度提高。因此,有效的语文教学,决不能搞“一刀切”,让全体学生接受同一水平的教育。
2.2创设民主、和谐的课堂教学环境,激发学生情感,有效催化学生思维。心理学家罗杰斯曾指出,一个人的创造力只有在其感觉到“心理安全”和“心理自由”的条件下才能获得最大限度的表现和发展。教育学研究也表明,人在轻松、自由的心理状态下才可能有丰富的想象,才会迸发出创造性思维的火花。由此看来,语文课堂教学要实现有效教学,营造一个民主、宽松的教学环境必不可少。许多卓有成效的语文教师之所以取得教学的高效率,其诀窍之一正是贯彻教学民主原则,给学生充分的自由。全国著名特级教师魏书生即是典型代表。他不仅班级管理依靠民主,讨论问题发扬民主,就连每节的教学目标、教学内容和教学方法也跟学生共同商量。
这种民主作风将教师的意愿不知不觉化作了学生自己的意愿,给课堂带来了活力与生机,大大提高了学习时间的利用率。笔者在平时的教学中常常发现,当学生被尊重,其情感被激发的时候,他们会表现出听得专心,说得由心,读得用心,写得贴心的特点,并且这一学习过程会让他们经久回味,难以忘怀,很好的激发了学生的学习兴趣,提高了学生的学习效率。
激发学生情感的主要途径有:角色朗读、音乐渲染、情境再现、艺术性描述、联系学生自身生活经历等等。教师要深入研读教材,注重课堂语言表达,挖掘文本情感之美,通过音乐让学生沉浸于文本营造的氛围中;通过朗读让学生体味作者内心情感的迸发,引起共鸣;通过回顾自身生活经历来唤醒学生相应的情感体验;通过情境再现的方式来拉近作者和学生的心灵上的距离。此外,教师自身也应该充满激情,深入挖掘体悟并且利用文本中的情感因素,从而去感染学生,调动学生的学习兴趣。教师要保持愉快、乐观的情绪,让师生之间、生生之间、师生与文本之间获得情感上的共鸣,这样,师生思维也就异常活跃,教学效率自然提高了。
2.3提高学生参与教学全过程的程度,引导学生积极投入学习过程.《语文课程标准》指出:“学生是学习和发展的主体。语文课程必须根据学生的身心发展和语文学习的特点,关注学生的个性差异和不同的学习需求,爱护学生的好奇心,求知欲,充分激发学生的主动意识和进取精神,倡导自主、合作、探究的学习方式。”语文课堂必须坚持学生的主体地位,教师、文本都应该为学生服务,最大限度的去挖掘学生的主观能动性,从而发展学生思维,开阔学生眼界,提升学生的语文素养,让学生全员、全程、有效参入。没有学生的主动参与,就没有成功而有效的课堂教学。有专家指出:“考察语文教学效率的标准之一,应该是学生积极主动参与的程度。在一堂课上,如果70%以上的学生以主人翁的姿态,积极主动地参与语文教学的全过程,这就可以说是一堂高效率的课。真正有效的教学不是简单地让学习者占有别人的知识,而是要建构自己的知识经验,形成自己的见解。”因此,依靠教师单方面的积极性,不争取学生参与教学的主动性,是无论如何难以实现有效教学的。
我们教师在课堂教学中,应该如何坚持学生的主体地位,发挥学生主观能动性让学生全程有效参入呢?笔者认为,应从以下几个方面着手:首先,我们教师在课堂教学中要把主动权还给学生,坚持以生为本的课堂教学,认清学生的生理和心理的发展的阶段特征,把学什么、怎么学的`话语权交给学生,学生可以参与制定教学目标、选择教学方法、质疑解惑、与他人合作和教学评价等教学的全过程。这样从根本上改变长期以来教师向学生“奉送真理”的状况,把“发现真理”的主动权交给学生,最大限度地提高学生对教学活动的参与程度,从而做到如美国教育家杜威所言“使教育过程成为真正的师生共同参与的过程,成为真正合作的相互作用的过程”。其次,我们教师在课堂教学中要给学生主动积极参与教学活动的机会。学生在课堂上不应该是以往的一个被动的接受者的角色。要增强学生课堂主人翁意识,启迪学生智慧,发展学生能力,培养学生创新精神。魏书生说得好:“教师不替学生说学生自己能说的话,不替学生做学生自己能做的事,学生能讲明白的知识尽可能让学生讲。”再次,我们教师要让自己成为学生课堂学习的主导者,参与者,促进者,合理有效的控制课堂教学,积极参与学生的讨论话题,平等发表自己的见解,尊重每一个学生恰当巧妙的把新旧知识、课内外知识有机的结合起来呈现给学生,给学生提供有效的思考线索,并且对学生的思维成果及时反馈、点评,教师与学生通过这样的语文课堂真正一起完成学习任务,共同成长。
总之,语文课要求语文教师一定要按语文教学规律办事,从语文学科的内在规律出发,努力寻找并掌握提高课堂教学有效性的策略或技术,彻底改变“教师教得辛苦,学生学得痛苦”这一现状,在有限的语文课堂中,让学生取得尽可能多的教学效果,获得最大限度的进步和发展。
数学概念教学的论文篇十四
数学概念是学生接触与学习每一个新知识点必先学习的东西,它对于学生的整个数学科目的学习来说是基石一般的存在,因此学生从小学数学概念起必须打好学习的基础,让学生在清晰的了解各种概念的基础上,帮助他们学习最基本的数学知识,只有这样才能让数学学习的路越走越平整、越走越宽敞。
1、从数学概念的涵义与构成方面来看。首先是涵义方面,从教学的角度来看,数学概念指的是在客观现实中数量关系与空间形式二者的本质属性在人们脑中所形成的反应,其表现为数学用语中的一些专用名词、符号或术语等,比方说是“周长”、“体积”。其次是概念的构成方面,一般来说数学概念是可以分成两个组成部分,一个是内涵,另一个是外延。概念的内涵其实指的就是这个概念所反映出来的所有对象的一个共同本质属性总和。比方说是三角形的概念,它的内涵所指的就是其本质属性中“三条线段”与“围成”的总和。而概念的外延指的就相对会比较广泛,它指的是此概念所囊括的一切对象总和。以四边形的概念为例,它就包括了正方形、长方形、梯形等所有很多对象。
2、小数学概念的特点。小学时期数学概念的特点其他可以从三个方面来进行简单的归纳:第一个就是其呈现形式上的特点。由于小学数学是一个引导学生入门的时期,因此它的概念在呈现方式上也会显得更为多样化,像是最初采用图画的方式,再到后来的描述方式,最后还有定义式等等。第二个特点就是直观性较强。一般来说数学概念最为突出的特点就是其抽象性与概括性,但我们在进行小学阶段数学教学时,就会发现小学数学概念通常都会定义得比较直观,比较形象具体,基本都是以小学生的接受能力与理解能力为起点来进行设计的。第三个特点是教学阶段性较强。小学时期的教学会受到很多客观原因的局限,从而导致教师在进行数学教学时,所讲解的数学知识也会存在极强的阶段性。比方说在低年级时,孩子们的理解能力与认识能力还尚未发展到一定的水平,因此对于很多抽象性的知识很难理解,因此教师在讲解时就只能通过分阶段逐步渗透的办法来解决问题。
二、小学数学概念教学的策略。
开展概念教学可以从多种形式与内容入手,既要梳理各种概念之间的联系与区别,又要形成统一的系统概念体系,可以从以下几个方面进行:
1、采用不同呈现形式开展小学数学概念教学。概念教学的形式众多,可以从图画式教学入手,教师在采用这种方式进行教学时,一定要注意引导学生自主的去发掘图画中所蕴含的真正涵义,从而达到揭示概念本质的效果,从而让学生对概念有个更清晰的认识。以梯形概念教学为例,教师在开展教学工作时,应该要就所展示出来的图画适时的引导学生去探索并揭示出梯形的本质特征,并且最终实现将表象图画转换成抽象数学语言的目的。其次是描述式,其实采用这种呈现形式的概念一般都是“字”与“形”相结合的,比方说是小数的概念、直线的概念,在概念描述中直接就把其本身的图形或默示所标示出来了,教师在进行教学时只需要把“形”所表达的意思与孩子们传达清楚再结合“字”就能使他们快速掌握这个知识点。还有就是定义式,这种方法一般适于一些高年级的学生,相对而言它的概括性以及抽象性都会强很多,因此教师在教学时可以适时的采用一些直观的教学工具或举例讲解等办法,将抽象的知识转化成具体形象的事物,让学生们快速理解与掌握。
2、从概念间的区别与联系入手,让学生形成数学概念系统。首先是同一概念在教学时的联系与区别。因为小学数学在很多时候,虽然是同一个概念,但是在不同的时期所要求的教学程度是大不相同的,因此对于概念的讲解程度也会有所区别。以分数的教学为例,在三年级时我们的教学要求只是停留在让孩子们认识分数的程度,而在五年级时,我们就必须向他们解释分数的真实意义与性质。再比方说是方程这一概念,在刚开始学习的时候,我们只要求学生有一个基础的了解与渗透,而到高年级后就会要求他们对方程给与一个明确的定义。其次是不同概念之间也存在着联系。虽然有些概念它们是大不相同的,但是在某些程度上也是存在着一定的联系,因为数学的概念并不是孤立的,它们是相辅相成的。教师在进行日常教学时应该有意识的引导学生去探索与明确这些数学概念之间所存在的联系,为他们更好的构建概念系统打下结实的基础。
三、结束语。
总之,教师在开展小学数学概念教学时必须以学生实际情况为根据,采用最为合适的方法进行概念教学,因为只有从小打好基础,才能实现数学概念教学的目标。
参考文献。
[1]卢增友.小学数学概念教学的策略[j].现代交际.(07)。
[2]许中丽.提升小学数学概念教学有效性策略的研究综述[j].南昌教育学院学报.(03)。
数学概念教学的论文篇十五
数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。我就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。苏霍姆林斯基说:“教给学生能借助已有的知识去获取知识,这是最高的.教学技巧之所在。”
常言说,实践出真知,手是脑的老师。学生通过演示学具,可以理解一些难以讲解的概念。通过演示(手),思维(脑),形成概念,符合实践、认识,再实践、再认识的规律。这比老师演示、学生看,老师讲解、学生听效果好,印象深、记忆牢。
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。
学习的目的是为了解决实际问题。而通过解决实际问题,势必加深对基本概念的理解。如学生学了小数的意义之后,我就让学生利用课外时间,到商店了解几种商品的价钱,写在作业本上,第二天让他们在课上向大家汇报。通过了解的过程,非常自然地对小数的意义,读、写法得以运用与理解。又如学了各种平面图形后,我让学生回家后,观察家里那些地方有这些平面图形。通过这种形式的作业,学生感到新鲜,有趣。这不仅巩固了所学概念,还提高了学生运用数学概念解决实际问题的能力。
在学生形成正确的数学概念之后,进一步设计各种不同形式的概念练习题,让学生综合运用、灵活思考、达到巩固概念的目的,这也是培养检查学生判断能力的一种良好的练习形式。
学习数学仅仅是一个起步,更重要的是在学生形成概念之后,要善于为学生创造条件,使学生经常地运用概念,才能有更大的飞跃。只有学生会运用所掌握的概念,才能更深刻地理解概念,从而更好地掌握新的数学知识。
数学概念教学的论文篇十六
数学教学的理论和实践研究表明,儿童在进入学校之前、在学习学校数学之先,头脑里并非空白一片,像一块“白板”。事实上,他们在每天的玩耍中和生活中学会了数字的加减运算,形成了一定的“数学概念”。他们对现实世界中的空间形式和数量关系有自己的看法和理解,这种在接受正规的学校教育之前所拥有的概念一般称为前概念(也有学者称之为观念)。他们的这种前概念是朴素的,虽不精确,但含有合理的成分,是儿童在现实生活中认识特殊事物的一个有价值的工具,是儿童学习新概念、建构新意义的基础,因此,在教学中不应把学生建立在前概念基础上的原有认知结构看成是一种思维的“垃圾”加以排斥,而应作为认知的基础,有待于向高级的科学的认知结构转换。然而,与科学的数学概念相比,他们的前概念往往含有错误的倾向,有的甚至就是错误的,因而,前概念有时也称为错误概念,它们对数学教学具有重要影响。一般来说,学生头脑中的前概念尤其是错误概念不但会妨碍对新知识的理解和建构,而且会导致学生产生新的错误概念。因此,加强对学生的前概念特别是错误概念的研究就成为数学教学的一项重要任务。本文拟对数学教学中学生的错误概念的诊断与矫治作一初步探讨。
对于学生的错误概念,不同的学者使用了不同的术语,如相异概念(viennot,1979)、幼稚概念(resnick,1983)?相异框架(driver&easley,1978)等“。笔者认为,将misconception译为“误解概念”可能更为恰当,因为现代心理学在研究学生学习过程中经常遇到的l些错误概念时普遍采取了一种更为“宽容”的态度,认为学生所具有的观念,无论是在学习前就已形成的朴素观念,还是在各种情景、包括在学习过程中发展起来的“非标准观念”,都是学生建构活动的产物。一般来说,学生的错误概念主要有以下特征。
1.额固性。
研究发现,学生头脑中的错误概念具有极强的顽固性(或稳定性),即使在他们学习了科学的数学概念以后,也会背相应的数学概念的形式定义,但是,在解决实际问题的过程中,那些错误概念仍会潜在地存在着,影响学生的思维和问题解决。这就是说,学生的错误概念不可能被科学概念自动“抹去”。为什么学生的错误概念具有如此的顽固性呢?这是因为学生花了相当多的时间和精力建构了自己的“朴素观念”,无论在感情上还是在心理上都是有依赖感的,这些朴素的观念曾经在他们的经验中发挥过一定的作用。顽固性成为概念转变教学的严峻挑战。
2.隐蔽性。
所谓隐蔽性,就是学生本人不能自觉地意识到自己的错误概念,常常坚持和使用自己的错误概念去观察、思考和解决有关数学问题。这是因为学生的前概念是潜移默化地形成的,以潜在的形式存在着,平时并不表现出来。由于这种隐蔽性,为错误概念的揭示增加了难度,所以需要数学教师采用各种方法来帮助学生抛弃错误概念。
3.表象性。
学生认知事物的能力有限,他们的前概念主要形成于日常生活的`直接经验和教学中对知识的字面理解,往往比较肤浅、直观,一般停留在表象水平上,还不能脱离具体表象而形成抽象的概念。因而,自然也就无法摆脱局部事物或个别现象的片面性和局限性而把握其本质,使得错误概念具有表象性的特征,这也就为错误概念的诊断和矫治提供了可能。
在数学教学中错误概念诊断的有效方法是实施诊断性评价(diagnosticassessment)。所谓诊断性评价,就是通过一定的方式(定量的和定性的)发现学生在学习中存在的问题,并分析这些问题产生的原因,从而为改进和调整教学策略提供依据。诊断性评价能够帮助教师发现学生的错误概念,查明学生在概念学习中产生困难的真正原因,从而采取教学对策,促进学生概念的生成和转变学习。具体来说,有以下几种方法。
1.出声思考。
出声思考(thinkingaloud)是认知心理学研究的一种方法,是指被试在进行操作的同时,报告其头脑中的思维过程。学生的思维活动是我们无法感知的,出声思考好似学生把思维过程直接呈现在我们面前,因而能让我们比较有效地进行考查。这是发现隐蔽在学生头脑中错误概念的一种简便、有效的方法。这种方法要求被试报告头脑中想到了什么,而不是为什么这样想。边思考边报告可能会影响被试的思维活动和报告的真实性,但研究表明,只要被试经过有效的训练,出声思考并不会影响思维的正常进行。因此,出声思考是考查学生错误概念的一种有效方法。
2.制作概念图。
所谓概念图(conceptmapping)就是把两个以上以及它们之间的关系通过连接词以图解的形式表示出来形成的概念关系图。它要求学生将有关某一主题不同层级的概念置于方框或圆圈中,再以各种连线将相关的概念或命题连接起来,以形象化的方式表征学习者的认知结构及对某一主题概念的理解。制作概念图,可以帮助教师了解学生对有关主题概念的理解(包括前概念)。例如,通过制作数系图,就能了解初一学生对负数的认识情况。
3.诊断性测试。
这是指以诊断学生普遍存在的前概念、揭示其错误概念产生的原因为目的的一种特殊的测试。诊断性测试需要编制测试题,测试题的编制和选择要针对所学内容,精心设计,要将学生容易产生错误理解的知识点呈现给学生,让学生的前概念(错误概念)在测试中“曝光”。例如,要求小学生作出钝角三角形三边上的高,即可发现学生关于“垂直”的前概念。垂直,作为几何概念的本质特征是点跟直线的位置关系,而相应的生活概念(前概念)的本质特征是方向的上或下。测试表明,学生在学习几何概念中的垂直时,大多以日常概念的“垂直”去置换几何概念的相互垂直,从而导致作图错误。
4.访谈。
访谈是以口头形式,根据被询问者的回答而收集的客观的、不带偏见的事实材料,以正确把握对象知识结构的一种方式。访谈的核心是准备好访谈计划,包括所提问题。问题要简单明了,易于口头回答。访谈时要做好心理调控,营造一种平等、民主、坦诚、和谐的氛围。由于直面交谈,访谈法具有较好的灵活性和适应性,能够勘察学生的深层思维,是诊断学生对某些知识点的理解和揭示错误概念的一种最佳方法。但它对访谈者要求较高,工作量也较大,适合个案研究。
一般来说,为了全面、准确地揭示学生的错误概念,在实际操作过程中不是单独使用某一种方法,而是几种方法常常结合起来使用,发挥各种方法的优势。
诊断学生的错误概念只是一种手段,不是目的,目的是为教学决策提供依据,以便矫治学生的错误概念。针对学生的错误概念,西方学者进行了大量研究,提出了概念转变学习现,被认为是矫治学生错误概念,实现概念转变学习的一种有效策略。
在传统的数学教学中,认为只要向学生传授科学的数学概念,学生的错误概念便会自动得到更正或为科学的数学概念所代替。建构主义指出,知识是不能被传递的,学习是学习者根据自己已有的知识经验去主动建构的过程。大量的教学实践也表明,学生错误概念的顽固性,致使这种做法是低效的甚至是无效的。实现概念转变学习,最有效的方法是进行概念转变教学(conceptualchangeteach?ing)。所谓概念转变教学,就是促使学生原有概念改变、发展和重建的过程,就是学生由前概念(错误概念)向科学概念转变的过程。
1.了解学生已有的知识经验,促进前概念向科学的数学概念转变。
建构主义的概念转变教学观认为,有效教学始于学生原有的知识和技能。通过对专家教师与新手的比较研究发现,在教学策略上,专家教师更关注学生的巳有知识和经验,了解学生可能面对的困难,知道如何挖掘学生已有知识以使新的信息有意义。因此,针对学生前概念的干扰,在进行数学概念教学时,首先应当了解、正视学生的前概念,发挥前概念的经验性、浅显性和通俗性的特点,使学校教学的数学概念以此为铺垫,促进学生由浅人深、由表及里地从经验性概念转变到理论性概念,即通过对前概念的充实、区分或增加层级组织,使前概念转变成科学的数学概念。
事实上,“学生对数学的思考往往来自于个别范例和活动”。课堂上教授的数学概念的抽象性、概括性、精确性的特点也迫切需要以日常概念的具体性、特殊性和操作性成分为依托,以便能分化它的理论侧面,使之借助学生的具体经验和事实,变得容易理解。在传统教学中,学校数学教学的失败在很多情况下是学生在学校中所学到的正规数学概念与源于日常生活的数学概念相脱离而导致的。实践表明,一旦教师注意到学习者带到学习任务中已有知识和经验,并将这些当作新概念的起点时,在教学过程中监控学生的概念转化,就能促进学生的概念学习。
2.引发认知冲突,辨清新旧界限,实现概念转变学习。
当学生的前概念与新概念不一致或矛盾时,必须辨清它们之间的分歧所在,学生才能转变、重组自己的已有观念。学生在真正学习新概念之前,需要对根深蒂固的错误概念进行重组,因为这些错误概念会干扰学习。格劳斯认为,改变“错误概念对新概念学习排斥”现象的唯一可能方法是迫使学生正确面对他们的错误认识与所学的科学原理之间的矛盾。
因此,教师必须让学生意识到他们的错误(前)概念,他们才能改变自己的观念,进行认知结构的重建。而促使学生转变错误概念的最好方式是引发认知冲突,认知冲突使学生产生对前(或错误)概念的不满。只有经过这种冲突才能促使学生产生重建概念的心理表征。通过挑选涉及已知错误概念的关键任务,教师能够帮助学生检验他们的思维,弄清楚为什么他们的各种各样的想法需要改变,以及怎么改变,这种模式便会使学生进人认知冲突。
一般来说,认知冲突的产生主要有以下三种情况:一是认知冲突产生于学生的预测同其经验的结果相反时;二是认知冲突产生于学生的观点与教师的观点不一致时;三是认知冲突产生于学生之间不同观念的碰撞中。认知冲突激起学生的求知欲和探索心向,促使学生进行认知结构的同化和顺应。因此,引发认知冲突是激励学生实现概念转变学习的契机和条件。
1.重视概念生成的凝聚,构建概念网络。
凝聚(encapsulation)是数学概念转变学习的一^有效策略,是指概念由“过程”向“对象”的转化。因为在数学中很多概念最初是作为一个过程得到引进的,如函数概念最初是作为对应法则引进的,但随着学习的不断深入,其最终又转化成了一个研究对象--对其性质等进行研究,如单调性、连续性、可导性等,从而函数就获得了新的意义,变成了数学对象。正因如此,函数概念的表征学习就经历了一个凝聚的过程:对应说一映射说一关系说,使函数概念实现了由过程到对象的转变,从而达到“凝聚”。可见,在概念学习中,学生仅凭单纯的机械记忆概念的形式定义是不行的,是不可能真正理解新概念并在新的情境中进行正确的应用的,而必须搞淸概念的来龙去脉--建立概念网络。由于数学概念是相互联系的,具有一定的复杂性,所以只有在与其他概念所形成的网络中才能全面地理解它。
概念转变学习观认为,新概念的学习是以已有知识和经验为基础的一个主动的意义建构过程,建构的方式是同化和顺应。同化和顺应是概念转变的机制。同化,使原有认识结构的内容在量上得到充实和丰富;顺应,使原有认知结构得到重组或重构,统摄程度更高,发生了结构性的变化。这也说明,学生头脑中所拥有的概念的心理表征是相互联系的,是具有一定的结构关系的。
对学习和理解数学概念来说,结构是关键。当不同数学概念的内在表征之间建立了一定的联系时,就可称谓建立了概念网络。组织良好的概念网络是一种“立体结构”:在层与层之间,可比喻为垂直的谱系,在同一层级上则像蜘蛛网一样。“当网络的结构像谱系那样时,一些表征从属于另一些表征,即作为后者的细节从属于更为一般的表征……在第二个比喻中,网络就像一张蛛网,其中的结点可以被看成所代表的各条信息,结点间的线则代表信息间的联系或关系。蛛网中的各个点最终都是相互联结的,从而可按照已建立的联系在其中转移”。例如,多边形就可形成一种立体结构概念网络,它是“谱系”与“蛛网”的混合。
运用已有知识经验建构新概念的转化过程,在本质上就是不断丰富和建立新的认知结构,形成纵横交错、联系密切的概念网络,就是将一个新概念纳入已有的概念网络,或者由于新概念的进入与原有观念中的错误概念的冲突而引起概念网络的重组或重构,从而组织成为一个联系更为合理、观念更为恰当的新网络。将一个新概念纳人已有认知结构,其与概念网络中结点的联系越为密切且为多层级间的联系,反映主体对其理解就越为全面和深刻。理解一个数学概念就是指新概念的心理表征已经成为主体已有的概念网络的一个组成部分,即与主体已有的认知结构建立了广泛的联系。这种联系既有逻辑的联系,也有认知之间的联系,且理解的程度就取决于联系的数目和强度。说一个数学概念被理解了,就是指其和现有的网络是由更强或更多的关系联结着的。
因此,在数学概念转变学习中,我们就不能着眼于或满足于学生已有(记住)数学概念的数量;与其相比,概念间的良好组织更为重要。总之,只有新概念与头脑中组织良好的概念网络建立稳定、灵活、密切的联系之后,才可说是获得了新概念和实现了概念转变学习。
综上所述,开展关于学生头脑中的前概念或错误概念的研究,是当前数学教学改革的需要,是运用建构主义理论指导数学教学改革的需要。如何揭示学生头脑中那些朴素的、不精确的、甚至是错误的概念,采用何种教学策略帮助学生将这些错误概念转变为科学的数学概念,仍是摆在我们面前的需要深入探讨的重要而又有意义的课题。
数学概念教学的论文篇十七
作为教师,在传授知识之前,应当精心备课,对教材潜心研究,做到有条不紊,最忌出现知识教学上的失误。但语文教师在讲授知识时,恰当地把握时机,由一时一地采取错误结论,让学生思考、争议、辨析,然后教师点拨,纠正错误,明确错误的结论,以假明真,欲正先反,以反求正,这样可能会收到更好的效果。
一、学生对重点知识忽视,注意力不集中。
语文教师在讲授课文时,不可能只讲重点。其它知识不兼顾;也不可能一开始就讲重点。因而可能到了讲授重点知识时,学生还以为这也是一般性知识,不予重视。这时候,教师为了让学生对这个重点知识掌握牢固,可以有意将这个重点知识讲错,以引起学生注意。如教白居易《琵琶行(代序)》一文,由于课文较长。当教师讲到“同是天涯沦落人,相逢何必曾相识”这一关键语句时,教师可有意讲道:“这两句诗同学们认为是不是写诗人爱上了琵琶女而相见恨晚呢?”这一问必定会调动学生的兴趣。教师再让学生反复讨论,最后教师强调:“这两句承上启下,从琵琶女的凄零身世过渡到诗人的宦途潦倒,沟通了诗人与琵琶女的感情渠道,在抒情中说理,表明诗人和琵琶女在身世上的共同点,引起诗人对琵琶女的同情,并非爱上她。这两句诗是全诗的关键句也是名句,同学们要引起重视。”这样可加深学生的印象。
二、学生对某些知识混淆不清,需要分辨。
语文教师对某一篇课文讲完以后,课文中有些知识学生可能混淆不清,为了让学生对此有较深印象,教师也可以有意将知识教错,如教《我的叔叔于勒》一文时可以对课文分析之后讲道:“同学们,这篇课文题目是‘我的叔叔于勒’,主人公也是于勒吗?”这一问必然引起学生争议。教师最后作结论:“课文题目虽然是‘我的叔叔于勒’,但文章的主人公是菲利普夫妇而不是于勒。菲利普夫妇的性格刻画是通过他们对待于勒的态度变化来完成的,作者对于勒的描写也是以侧面描写为主,于勒的命运只是构成情节的需要,是为刻画主人公菲利普夫妇服务的,因而于勒不是主人公。作者用这个标题,像一面镜子照出了菲利普夫妇受金钱腐蚀的丑恶灵魂。”这样学生就不会对主人公再弄混淆了。
三、学生对某些知识疑惑不解。
语文老师在讲课的时候,对于知识的传授,学生不一定能接受下来,也许教师讲解之后,学生还是疑惑不解,这时老师可放意将知识讲错,引起学生注意并弄清楚明白。如教《守财奴》一文时,学生对于葛朗台的生活情况可能会疑惑不解。葛朗台拥有千万法郎,怎么会住在一所阴暗、古老的房子里,且衣服穿着也极不讲究?对此老师可讲道:“葛朗台拥有千万法郎,自己生活却这样俭朴,他这样是为了救济穷苦大众吗?”然后让学生畅所欲言,老师总结:“葛朗台这样做完全是由他的性格造成的,他是一个吞钱兽,金钱是他的上帝,发财是他唯一的目的、唯一的安慰。占有金子、独自观摩金子成了一种无法控制的绝对欲望。他弟弟因破产自杀,他不但袖手旁观,反而借此搞了一次公债交易,赚了一笔巨款,把投靠他的侄儿一脚踢开。连妻子和独生女的命运也毫不关心,还以女儿为诱饵,勾引别人为他的利益而奔忙。他在弥留之际也想把神甫的镀金十字架抓到手里。这个凶狠残忍、贪财好利、悭吝成癖的葛朗台只能是拜金主义的畸形动物,他怎么会花一个法朗去救济别人呢?”
四、学生对老师讲授不感兴趣。
一节课时间学生不可能始终倾心听讲,往往老师讲得口干舌燥,学生对此不感兴趣,出现情绪低落的气氛,整个课堂显得死气沉沉。这时老师如果不变换一下方式,仍然我行我索地讲下去是收不到好的效果的`。不如故意将某知识讲错,启发学生得出正确的答案。如教《装在套子里的人》一文讲主人公别里科夫时,老师可讲道:“别里科夫是一个遵纪守法的模范。我们要虚心地学习他。”学生对此可能有争议,老师最后点拨:“别里科夫这种所谓的正人君子的作风,是因为他因循守旧、思想僵化、安于精神奴役而造成的。他的所作所为,貌似遵纪守法实则损人利己,拍马告密,揭发别人的所谓‘隐私’以图保全自己,或晋级晋位。他的存在对渴望自由的人们是一种无形的威慑。”通过这一讨论总结,就可活跃课堂气氛。
把错误教学法恰当地引入语文教学之中。有时候会收到一定的效果;但如果老师不掌握时机,最后在正确的答案上不强调,不突出,可能会起到相反的作用,让学生记住的反而是那个错误的知识。因此,教师必须精心设计,力求收到良好的教学效果。
数学概念教学的论文篇十八
1.教学主要内容。
4.我的思考学习目标、活动设计、组织与实施是如何落实对教学内容分析的理解,特别是核心数学思想的落实。(说明:教学内容分析应该建立在教师良好的数学素养之上。可以在教学组内或学区中心集体研讨,或专家的指导下完成。需要注意的是,对教学内容的分析应体现在学习目标和教学过程的设计上。)。
二、学生分析。
4.学生学习的兴趣、学习方式和学法分析。
5.我的思考:下面的学习目标、活动设计、组织与实施是如何落实对学生分析的理解。说明:学生分析应该通过学生调研,以作为科学依据,不能仅凭经验判断个性化的工作,不能由他人的结果简单代替自己的学生分析。
已有知识基础的调研可以通过设计几个指向明确的小问题实现,对这方面的数据统计及分析是更为重要的,这种分析是教师设计和修正“学习目标”的重要依据。
学生经验、学生学习困难、学生学习兴趣等的调研可以通过访谈实现,可以是抽样,也可以是有针对性的,如对于学困生做特别的访谈,可能会发现他们身上所具有的学习要素。调研中可以将学生测验、访谈、小组观察等结合起来。
三、学习目标。
1.知识与技能。
2.过程与方法(数学思考、解决问题)3.情感态度价值观。
说明:以学生为主语。1.教学内容分析和学生分析是学习目标制定的依据和前提。因此,如果对教学内容分析的要求越透彻,对学生分析的要求越科学和规范,学习目标的设计就越不是一件简单而迅速的工作。
2.学习目标是为学生的“学”所设计,教师的“教”是为学生的学习目标的达成服务的。学习目标是个性化的,又是尊重数学学科发展需要和学生未来学习需要的。3。学习目标的制定应从以上几个方面进行思考,但具体形式不一定逐条对应。4.学习目标应该在下面的教学活动中得到实在的落实。特别是教学活动中设计意图应该阐释,活动及其组织与实施是如何为达成目标服务的。
四、教学活动。
五、教学效果评价。
目的是检测学习目标是否实现,为进行教学反思和改进教学提供依据。可以采取测验、访谈、课堂观察等多种方式评价教学效果。教学设计中应包括教学效果评价的方案。例如,对于知识技能目标达成度的评价,可以设计当堂课或课后能够做的1—2个小问题。
以下几点供教师思考:
(1)情境的作用是什么?应该为学习目标服务,不是仅仅追求“热闹”。
(2)如何组织教学活动,如小组活动的组织、信息技术的使用、练习的设计等,使得它们更为有效?(3)学习目标是教学设计的核心,设计了就要努力执行和实现。所有的教学活动和教学设计都应该为促成“目标”的实现服务。
(4)教学是需要设计的,最后达到寓教于“无形”之中。
数学概念教学的论文篇十九
(1)运算内容要求上有差异。小学大多是具体数的运算,而初中数学多侧重于代数式的计算,要求学生有更高的思维能力。
(2)学习习惯及理解上有差异。小学生对知识点的理解比较简单,习惯于教师传授,而初中老师要求学生形成自主学习习惯,学会多层次、多角度逻辑分析,学会寻找知识点的连续性关系,指导学生获取知识,尤其在几何学习中要结合图形与符号语言,形成严密的逻辑思维。
(3)知识记忆方法上有差异。小学数学知识较为简单,对理解、分析方法使用的程度要求不高,多运用记忆方法掌握知识,而初中数学知识逐渐复杂,学生主要以理解、分析、归纳为主的方法来进行学习,同时还要学会从日常的生活问题中抽象出数学模型,形成数学思想,不断寻找数学课学习的门路。
(4)数学思维上有差异。小学数学基本上直观教学,主要依靠形象思维,而初中数学侧重归纳推理论证,多以抽象思维为基础。小学与初中数学概念上的差异性,直接影响到初中数学概念教学,结合多年的教学实际,笔者认为应从以下几方面入手。
(1)合理衔接新旧知识。在进行概念教学前,教师应仔细分析学生已有的知识、可能存在的认知障碍和困难,结合学生已经掌握的知识,明确新旧知识间的联系,对学生进行启发,帮助学生同化旧知识,掌握新知识,顺利学习新知识。比如学生在小学学过分数,但仍有很多学生不能将除法的商与分数联系起来,由于习惯性思维喜欢将结果表示成小数,这里教师要帮助学生克服这种思维定势,让学生养成把商的结果表示成分数的习惯,以适应初中数学的要求。
(2)注重培养学生的思维能力。初中数学知识中抽象思维占很大比重,尤其在几何教学中更是如此,所以应注重学生的抽象思维能力培养,让学生能从教师的课堂引导中,快速形成抽象思维习惯,形成分析、判断、归纳、总结的抽象思维能力。例如初一年级的“一元一次方程的应用”就是将生活中问题转化为方程来解,学生虽然在小学学过方程的思想,但要求不高,学生也不喜欢用方程来解,教师要在教学中使学生掌握方程解应用题的优点,明白有的问题用算术的方法求解是很困难的,而用方程则非常方便,而且能够找出已知和未知的关系,恰当的设元,方便解决问题。
(4)正确理解并能运用数学概念符号。学生学习数学概念主要是通过抽象的术语、名词、符号等信息来认识的,数学中的计算、推理、证明也多数通过抽象的符号来实现。因此,教学时首先要明确概念,其次要讲明白概念的'内涵和外延,尤其是同旧知识的联系和区别,还有具体使用时的约束条件以及容易混淆之处,使学生牢固掌握数学概念。
综上所述,在新课程标准下,中学教师应积极应用新思路、新技术,加强自身教学能力建设,掌握概念教学的相关技能,深刻认识到新课改赋予的新内涵,加强对学生主体地位的重视,着重培养创新能力与实践水平,营造良好的课堂氛围,激发学生的学习兴趣,提高教学效率与教学效果,增强学生的信心和学习积极性,顺利实现数学知识的掌握和熟练运用。
参考文献:。
[1]赵国荣.初中数学概念教学的有效生成策略探微[j].新校园(理论版),(2)。
[2]郭会杰.初中数学概念教学情境创设的一些思考[j].中学英语之友教育研究与实践,2016(6)。
[3]陆洪华.浅谈初中数学概念教学的“三注重”[j].文理导航教育研究与实践,(4)。
数学概念教学的论文篇二十
摘要:童话既充满想象,也包含着人世间的各种复杂情感,幼儿在了解童话故事的同时,也可以见识到人生百态,也能够品尝各种不同的人生滋味,他们的情感体验也会出现显著的分化和丰盈。教师要基于幼儿心理、幼儿想象和幼儿情感优化童话教学。
在儿童文学中,童话是其中不可缺少的重要构成,所以,很多幼儿园已经将儿童文学纳入教学实践中,但是实际教学过程中,很多教师并没有充分了解童话教学的深层次含义,仅仅将其视为传播知识的一种方式,期望能够对儿童品德的塑造、知识的积累以及语言的发展方面起到一定的作用,这是对幼儿审美感知能力的极大忽视。在儿童文学中,童话所独具的典型的教育功能以及认知效果的判定都需要基于幼儿审美感受而有所体现。
一、基于幼儿心理,优化童话教学。
很多人也会将幼儿童话叫做幼儿童话故事,这一体裁主要是针对幼儿而创作的,所以故事的讲述也需要结合具体的对象,虽然是相同的事件,但是在向不同的对象进行表达的过程中,会存在显著的不同。如果面向的是成年人,那么描述应当更细致,情节更具曲折性,事件应更感人,语言自然要成人化;如果面向的对象是幼儿,那么不管是人物的刻画还是事件的讲述,都应当简单,可能不需要过于感人,但是语言表达一定要幼儿化。只有当所有的文学要素都能够和接受者的心理相吻合,才能够使其畅通无阻地感受作品的内涵,以此保障教育效果。例如:有个幼儿在听了《乌鸦喝水》这个故事之后很有感触,希望自己能够成为具有智慧的小乌鸦。所以,在生活中,经常把自己比作小乌鸦,“小乌鸦渴了,要喝水了。”“小乌鸦饿了,想要吃饭。”在孩子的心灵内,对于乌鸦的智慧非常佩服,所以特别渴望成为那样极具智慧的人,但是能够用于表达自我的素材有限,也不会使用过于复杂的表现语言,所以,很多孩子都会以乌鸦自比,这也是典型的幼儿心理简单的集中体现。对于幼儿童话而言,具有非常显著的特征:语言拟人化,说话做事具有儿童的特点。所以,童话的创编必须要充分了解儿童的典型心理特征,这样才能够创编出具备这两个特征的童话。在教学童话的过程中,如果不能充分理解儿童的心理特征,其分析必然肤浅;如果在研究童话教学的过程中,不突出其心理特点,就难以把握教学根本。
二、基于幼儿想象,优化童话教学。
在幼儿的世界中充满着想象力,如果仅仅基于表面上来看,他们的想象似乎好笑又幼稚,但是在促进思维能力的健康发展方面具有极为重要的作用。在童话世界中,儿童可以放飞心灵,尽情徜徉,他们的感性认知会逐渐过渡至系统化以及逻辑化的'方向。例如:通过《小兔乖乖》这个故事,幼儿可以自主分析并得出由于小白兔的细心和谨慎,连大灰狼都骗不了它的结论。随着情节的起承转合以及幼儿粗浅的二次加工和想象,能够形成对创造能力以及想象能力的有效训练。由此可见,童话形象和童话事件能够在儿童脑海中形成动态发展的鲜活印象。爱因斯坦就曾经提出过这样的观点:相比较知识而言,想象能力更重要,因为知识是有限的,但是想象是无边的,它能够推动进步,是促进知识进化的源泉所在。夸张、虚拟的故事特征能够与儿童富于想象的心理特征相吻合。当他们听到故事中的角色遭遇困难时,迫切渴望知道具体的解决方法和结果。此时教师可以基于提问或者也可以借助引导的方式,激发幼儿的想象,使他们自主思考出解决问题的办法。故事能够为儿童提供广阔的想象空间,只需要教师把握恰当时机,使幼儿能够在听故事的过程中充分发挥个体的想象能力以及创造力。
成人大都认为幼儿的情感体验少且肤浅,实际上并非如此。在幼儿欣赏故事的时候,他们的反应着实让人吃惊,既敏感又丰富。他们会随着故事中角色的情感变化而体现出不同的反映:既感受着故事欣赏所带给他们的快乐,这是来自于求知欲的充分满足;同时,童话本身所具有或诙谐幽默、或惊险刺激、或高兴悲哀的情节,也会激发孩子情绪的激荡。可能有些时候幼儿的情绪或者情感会在心底有所隐藏,然而一旦外露,幼儿就会表现得非常激动,可能眉飞色舞,甚至还会手舞足蹈,充分暴露着他们的天真活泼的神态。在《白雪公主》这出童话剧的表演过程中,在“王子”的号召之下,大家一起呼唤已经昏迷的白雪公主,孩子们的呼喊声一声比一声响,甚至是旁边扮演“坏皇后”的孩子也在卖力地呼喊着,此时不会有一个孩子吝啬他的声音;在听《老虎外婆》这个故事时,孩子们瞪大着双眼,于是老虎成为坏蛋的代名词,甚至有一天,当我打开课本,有老虎的地方,被黑色的蜡笔涂抹了,“吓”得我不得不向孩子们解释:“这不是真的。”又如:在听完《三个强盗》之后,一个非常胆小的小朋友说:“他们实际上一点都不可怕,因为他们总在帮助别人。”在我读完《白雪公主》这个故事之后,其中一个小女生认为,这个皇后肯定不漂亮,因为她认为,她的心地不好。此时,便能够充分说明,孩子们已经能够明确区分内在美以及外在美,并能够了解内在美的重要性。实际上每一个童话在创作时,作者都希望向孩子展示真善美,期望能够通过耳濡目染对他们的情感形成潜移默化的积极影响。
总之,在研究幼儿童话教学的过程中,不但要掌握童话的教学方法,同时也应当充分理解童话的内容,这样获得的教学方法才能够具备扎实的根基,才能够经得住考验,才有可能经久不衰。
参考文献:
[1]杜和林.引导幼儿走入童话世界[j].学前教育,2016(11).
[2]王新新.幼儿童话教学例谈[j].中国校外教育,2015(10).
作者:张晓晓单位:江苏省海门市海西幼儿园。
数学概念教学的论文篇二十一
在小学数学教学中,不仅要让学生掌握数学教材中的概念、定义,还要让学生具备运用数学知识的能力。在教学中,教师要注重培养学生的创新意识,让他们在学习中摆脱定势思维的影响,从多个角度对问题进行分析,提高数学综合能力。教师要给学生创设一个和谐的学习氛围,对他们进行鼓励和引导,让学生具备积极的探究精神,在自主学习中不断获得进步。
一、构建良好的师生关系,激发学生的学习兴趣。
随着新课改的进行,教师在小学数学教学中,要给学生创设一个和谐的学习氛围,充分激发学生的积极性,让他们在教师的指导下进行知识探究,加深对知识的理解。教师要改变传统的教学方式,在新的教学模式中和学生处于平等的地位,积极主动的和他们交流,及时对他们遇到的问题进行指导。在和学生进行积极沟通的过程中,教师要对学生充满耐心和爱心,让学生感受到来自教师的爱,对教师产生信任的情感。在积极的教学互动过程中,拉近了师生的距离,构建了良好的师生关系,使课堂教学在和谐、活跃的氛围中进行。在教学中,教师要对学生的学习进行指导,使他们掌握科学有效的学习方法,提高学习效率,让学生在学习过程中感受到更多成功的乐趣,激发他们学习数学的兴趣。
二、创设问题情境,提高学生参与学习的主动性。
在教学中,要提高教学效率,激发学生的参与热情,教师需要创设丰富的问题情境,运用问题来引导学生,使他们积极主动的探究教材中的内容。通过思考和分析,让学生具备了归纳总结的能力,使他们在探究中能够进行自主学习,促进思维的深入发展。例如,在教学“图形的拼组”时,教师可以让学生用不同形状的三角形拼组出长方形、正方形、平行四边形。然后教师提出问题:你能用五颜六色的三角形拼出什么美丽的图形。在趣味性的问题指引下,学生开始进行积极的探究。有的学生用剪刀剪出大小不同的三角形,并涂上不同的颜色,进行拼组;有的学生在纸上画出各种各样的三角形进行拼组。在拼组过程中,学生的积极性高效,他们充分发挥了创新思维,拼组除了各种各样美丽的图形。问题情境的创设能够激活学生的思维,使他们进行积极的思考和分析,随着探究的进一步深入,使使他们的思维也获得发展。在提问题时,教师既要考虑问题的有效性,还要考虑问题的趣味性,使问题能够使学生产生探究知识的欲望,在他们的积极参与中实现高效的课堂教学。
三、结合多媒体教学,加深学生对知识的理解。
在小学数学教学中,运用多媒体辅助教学,能够激发学生的学习积极性,让他们在直观、生动的学习情境中分析、理解知识,加深他们对知识的理解,促进数学综合素质的提高。在创设多媒体情境时,教师要从学生的数学知识结构出发,选择他们感兴趣的内容进行设计,让学生产生强烈的学习动机,促使他们进行积极主动的探究数学知识。运用多媒体进行教学,能够让抽象的知识转化成直观、动态的教学课件,使学生在直观的观看过程中促进他们的思维发展,让学生能够高效的理解所学的知识。多媒体对数学教学具有极大的促进作用,但是,在教学中,教师要合理适度的选择运用多媒体。对于一些简单的数学知识,教师可以让学生自主探究来学习;对于一些抽象、复杂的知识,教师要运用多媒体来加深学生对知识的理解,有效提高学生的学习效率。例如,在教学《长方体的认识》时,教师为了让学生在平面图形和立体图形之间建立联系,加深他们的学习效果,教师就可以利用多媒体来设计教学内容,通过演示用点、线、面来组成长方体,让学生更深刻的认识到立体图形的构成,促进他们抽象思维和立体空间思维的发展。
四、采用小组合作学习方式,发展学生的探索精神。
在小学数学课堂上采用小组合作学习方式,能够活跃课堂氛围,激发学生的参与积极性。在合作学习过程中,学生在小组范围内对教师布置的学习任务进行探究。学生的学习只有通过自身的探索活动才可能是有效的,因此,在小组合作学习中,教师要让学生积极的对知识进行探究,以达到对知识的深层理解。在小组合作探究过程中,教师应引导学生主动从事观察、实验、猜测、验证、推理与合作交流等数学活动,从而使学生形成对数学知识的理解和有效的学习策略。因此,教师要给学生充足的时间,让他们在合作中充分地经历探索事物的数量关系,变化规律的过程。开展小组合作,一方面可以发挥学生“群体”的学习作用,让学生获得更多的自主学习的机会与空间,互相启发,从而学会合作、学会交流;另一方面、可以使学生敢于质疑问难,敢于大胆求新,从而培养学生的探索精神和创新意识。例如,在教学“圆周长”时,为了探究圆周长到底与什么有关,有怎么样的关系,教师可以设计这样的教学过程:课前,学生准备好直径分别是5厘米、6厘米、7厘米的圆片;课上,小组合作测量边长,分滚动法、绕线法等小组;小组讨论:周长与什么有关,有怎样的关系;总结:周长与直径有怎样的关系。在整个教学过程中,学生互相合作,经过测量、计算、讨论,得出周长与直径的关系,达到培养学生创新能力的目的。
总之,在小学数学新课改的过程中,教师要改变传统的教学观念,坚持以人为本的教学理念,对教学模式进行创新,充分激发学生的学习主动性,培养他们的自主学习意识和责任感,使他们积极的投入到课堂学习中,积极的进行知识探究,大胆的和教师进行知识讨论,促进他们数学思维的深入和发展。在教学中,教师要深入探究教材内容,结合新的教学理念来精心设计教学,使教学能够充分激发学生的学习兴趣,让他们在丰富、生动的课堂情境中探究、分析数学知识,有效提高他们的数学综合素质。