分式的教案(优质24篇)
教案应当合理安排教学时间和课堂管理。教案应该关注学生学习过程的质量和效果,及时进行教学反思和总结,以提高教学质量。这里给大家提供了几份优秀教案范文,供参考学习。
分式的教案篇一
1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。
3、使学生能够利用最简公分母进行验根。
教学难点:解分式方程,学生不容易理解为什么必须进行检验。
在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望。
为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去。
一、新课引入:
1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?
2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
3、产生增根的原因是什么?.。
二、新课讲解:
通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同。
点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。
在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。
分式的教案篇二
xxx的《分式的通分》,通过类比学习是数学教学的一种重要方法,小潘老师恰当地采用了这一点,值!教师示范---学生板演---巩固练习的过程清晰且训练较具体,巩固及时。但教学过程中,教师不注意细节,另外也多了一点严肃,少了一点轻松。
3月2日xx的《二元一次方程组的解法》,能把握学生的认知规律,通过复习旧知导入新知,注意解题的示范作用,课堂容量足,条理清晰。但课堂少活泼,很多可由学生解决的由教师替代了,拖堂也较长。
3月5日xx的《人类最宝贵的是生命》,学生对知识的掌握较好,从中可看出热爱上了这门功课,大多同学能围绕教师的提问动脑思考。授课形式多样,通过讲授、讨论、朗读等方式,达到了示范课的目的。
3月2日xx的《分式的基本性质》,能采用类比引入新课,讲解例题详细,对个别容易出错的地方能反复强调,及时反馈、巩固。选题类型较全面,课堂气氛略显沉闷,学生自主学习空间有待拓展。
3月7日xx的《数的开方》,知识点归纳条理清晰,采用学生回忆复习知识点,便于学生记忆和整理。结合知识点辅以相关例题、习题,讲练结合。例题规范,针对学生基础少扎实,采用此类复习方法能进一步夯实基础,值得肯定。
3月5日xx的《分式的约分》,习题设计难易合理有序。整堂课围绕找公因式这个关键,设计了多种题型,并通过老师讲解、学生探索、学生口答、学生模拟练习、学生板演等多种形式,使学生基本上能解决问题,但课堂气氛略显沉闷。
3月5日xx的《分式的约分》,通过分数运算类比引出分式的约分,学生容易理解,易于接受。课堂容量较大,但习题还需优化。老师讲解较多,师生双边活动需增多。3月8日xx的《图表的建立与编辑》,能结合生活实例引入课程,课堂气氛活跃,内容传授形式多样。
分式的教案篇三
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。下面是列方程解应用题大全,请参考!
类型一(简单的一步方程)。
4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)。
类型二(几倍多多少/少多少):
1、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?
类型三(买东西和卖东西):
1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?
类型四(和倍问题/差倍问题):
1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?
2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?
类型五(相遇问题、追及问题、鸡兔同笼)。
类型六(和差问题):
1、甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?
2、两个相邻自然数的和是97,这两个自然分别是多少?
3、两个连续自然数的和是153,这两个数分别是多少?
分式的教案篇四
“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:
3、教材的处理。
学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用.最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:
1、知识技能:
2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的.思想方法。
3、解决问题:通过探索分数的基本性质,积累数学活动的经验。
4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。
1、教学方法。
数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
2、学法指导。
现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。
3、教学手段。
我所采用的教学手段是多媒体辅助教学法。
活动1创设情境,引入课题。
教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。在活动中教师要关注:(1)学生对学过的知识是否掌握得较好;(2)学生对新知识的探索是否有深厚的兴趣。
设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。
活动2类比联想,探究交流。
教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。
设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。
活动3例题分析运用新知。
教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。在活动中教师要关注:(1)学生能否紧扣“性质”进行分析思考;(2)学生能否逐步领会分式的恒等变形依据。(3)学生是否能认真听取他人的意见。
活动4练习巩固拓展训练。
教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注:(1)大部分学生能否准确、熟练完成任务;(2)学生能否用数学语言表述发现的规律;(3)学生在运算中表现出来的情感与态度是否积极。
设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。
分式的教案篇五
本节是学习了分式的基本性质后的内容,是分式的基本运算内容之一。其中,分式加减运算是本节课的重点,异分母的分式加减是本节课的难点,而异分母的分式加减运算是本节课的难点。而异分母的分式加减运算可以转化到同分母的分式加减运算中,因此,掌握好同分母的分式加减运算是关键,本人从以下几方面作反思:
(1)成功之处。
本课从实际问题引入,让学生直接感受到实际生活中会碰到分式的加减运算,这就有必要掌握分式加减运算的方法,从而引出本节内容。
由于分数与分式有着很多类似的性质,因而从直观的分数加减法运算开始。先探究同分母分式的加减运算的法则,通过类比的思想方法,由数的运算引出式的运算规律,体现数学知识由具体到抽象,从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,学生很快融入了课堂,调动了学生学习的积极性。而后,同样利用类比方法,安排了异分母分式加减运算的学习,这样由简到繁,由易到难,符合学生认知的发展规律,有助于知识的层层落实与掌握,而且通过通分将异分母的分式加减转化为同分母的分式加减运算上,注重知识间的联系,体现了数学中转化的思想方法,课堂上气氛活跃,学生们积极参与,从课堂学生做习题的情况来看,知识掌握比较好,知识已落实到位。
(2)不足之处。
本课出现了有头无尾的情况,前后呼应还没做到位,没有解决引例中“分式的加减教学反思”如何计算这个问题,这是本节课的一个最大的遗憾。课堂教学真的是“一门缺憾的艺术”正是有着这样或那样的缺憾,才使我们更有动力的在探索地道路上大步前行。
一节数学课,经过反思,会发现许多值得推敲的地方,会发觉好多细节的地方需要精心设计,在反思中,能提升自己的认识,为以后的教学积累宝贵的经验,让自己更贴近学生。
分式的教案篇六
(1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的`数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。
二.教学重难点。
重点:分式的概念。
难点:识别分式有无意义;用分式描述数量关系。
三.教法与学法。
基于以上教材特点和学生情况的分析,我在本节课主要采用引导发现教学法,借助于计算机课件,通过问题情境建立模型解释、应用与拓展的模式展开教学。
四.教学过程。
《数学课程标准》明确指出:数学教学是数学活动的教学,学生是数学学习的主人。为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:发现新知再探新知应用新知深化拓展小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。
分式的教案篇七
下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。
一、说教材。
1、教材内容:
我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
2、教材地位:
分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的.混合运算作准备,为分式方程作铺垫。
3、教学目标。
知识目标:
能力目标:
(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)、能解决一些与分式有关的简单的实际问题。
情感目标:
(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
二、说教法。
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法。
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。
2、合作学习。
四、说教学程序。
1、类比学习,探索法则。(约3分钟)。
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)。
分式的教案篇八
教学内容:用字母代表未知数,列出符合题中条件的等式,解方程(例3,课本第159―160页,练习二十四)。
教学目的:通过复习使学生能教熟练地用字母代表未知数,列出符合题中条件的等式;列方程解应用题。从而培养学生抽象思维的能力和分析问题、解决问题的能力。
分式的教案篇九
1.理解分式的基本性质。
2.会用分式的基本性质将分式变形。
二、重点、难点。
1.重点:理解分式的基本性质。
2.难点:灵活应用分式的基本性质将分式变形。
3.认知难点与突破方法。
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、例、习题的意图分析。
1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入。
1.请同学们考虑:与相等吗?与相等吗?为什么?
2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解。
p7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
p11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
p11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变。
解:=,=,=,=,=。
六、随堂练习。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.约分:
(1)(2)(3)(4)。
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改变分式的值,使下列分式的分子和分母都不含“-”号。
(1)(2)(3)(4)。
七、课后练习。
1.判断下列约分是否正确:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号。
(1)(2)。
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
4.(1)(2)(3)(4)。
分式的教案篇十
应用题教学是培养学生分析问题和解决问题的一个非常重要的手段。但应用题阅读量大、建模难度高,学生往往无从下手。在教学中,我发现教师教的吃力,学生学的也很吃力,很多学生看见应用题就有一种说不出的恐惧感。于是在列分式方程解应用题的教学中,我试着运用表格分析法来进行应用题的教学,让学生有章可循,并取得了很好的效果。
一、教学案例展示。
分析:题中涉及工作量、工作效率、工作时间三量关系,甲、乙两种状态。根据题意,设乙每分钟能输入x名学生的成绩,则甲每分钟能输入2x名学生的成绩,用表格分析问题。
步骤一:列出表格。
步骤二:依次填写表格信息。
分式的教案篇十一
【知识技能】:
【过程与方法】:经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题,解决问题的能力,渗透数学的转化思想,培养学生的应用意识。
【情感态度与价值观】:培养学生努力寻找解决问题的进取心,体会数学的应用价值。
【教学重点】:解分式方程的基本思路和解法。
1.这个问题中给出了哪些信息,等量关系是什么?
【师生行为】:教师提出问题,学生思考回答,在活动中教师关注:(1)学生能否将实际问题转化为数学问题(2)不同层次学生对实际问题抽象出数学模型的掌握情况。
【设计意图】通过实际中的行程问题,引导学生从分析入手,列出含未知数的式子表示有关量,并列出方程,引发学生学习兴趣,提出问题引发思考,为探索分式方程及分式方程的解法作准备,自然引出学习课题。
1.问题:
(1)方程与以前所学的整式方程有何不同?
(2)满足什么特点的方程叫分式方程?
板书:像这样分母中含有未知数的方程,叫做分式方程。归纳:确定是不是分式方程,主要是看是否符合分式方程的概念,方程的分母中含有未知数,像这样的方程才属于分式方程。
2.练习。
【教师提出问题】:
1.这样的方程你以前解过吗?
2.你以前解过什么方程?
3.那你能不能把这个方程转化为你会解的方程即整式方程呢?
4.怎么转化呢?
【师生行为】:教师提出问题,学生思考,讨论后在全班交流探究结果。教师在活动中关注:学生能否观察出分式方程与整式方程的区别学生是否有利用“转化思想”解决问题的意识学生是否在参与合作交流的活动中获取知识,学生是否从多角度来研究分式方程的解法。
【设计意图】:主要让学生运用“转化思想”探讨解分式方程的方法,鼓励学生从多角度思考问题,解释所获得结果的合理性,培养学生的发散思维。
环节三。应用迁移,巩固提高问题:(1)解分式方程:上面两个方程中,为什么去分母后所得整式方程的解是它的解,而去分母所得整式方程的解却不是它的解呢?(3)探究:分式方程无解的原因是什么?(分式方程去分母后的整式方程的解代入原分式方程分母中,分母为0无意义,所以分式方程无解)(4)探究:如何检验分式方程的。解?1.直接代入原方程(计算量大,很少用)2.间接代入最简公分母(常用检验方法)。
【设计意图】:主要让学生通过自己探索实践,找出分式方程无解的原因及验根的必要性。学生在教学活动中通过积极参与和有效参与,来达到知识与能力、过程和方法、情感态度与价值观的全面落实。
环节四。总结反思,拓展升华探究:解分式方程基本思路是什么?有哪些步骤?每一步的目的是什么?解分式方程的基本思路是:分式方程通过去分母转化成整式方程。步骤:
口诀:一化二解三检验四作答。
【设计意图】:通过探究,引发学生的思考,让学生在自主探究合作交流中归纳总结解分式方程的基本思路和步骤,在合作交流中获得成功的快乐。
分式的教案篇十二
本节“分式方程”是人教版八年级下册第16章第3节的内容,是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。
在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路(使方程逐步化为x=a的形式)已经比较熟悉,而分式方程的未知数在分母中,它的解法比以前学过的方程复杂,需通过转化思想,化分式方程为整式方程。
1、明确什么是分式方程?会区分整式方程与分式方程。
3、知道分式方程产生增根的原因,并学会如何验根。
教学难点:理解分式方程可能产生增根的原因。
1、忆一忆。
(1)什么叫方程?什么叫方程的`解?
(2)什么叫分式?
(3)结合具体例子说出解一元一次方程的步骤。
设计意图:
让学生由旧知识的回忆自然引出新知识便于学生理解接受。
2x-(x-1)/3=63x/4+(2x+1)/3=0。
2、猜一猜。
板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点学生易得出:分母中含有未知数的方程叫分式方程。
设计意图:
采用这种形式引入今天的话题,让学生觉得不是在上数学,而象是在拉家常,让学生没有负担,另外,学生在前面的回忆的基础上很容易猜出来分式方程的概念。这样使学生感受到数学的简单,从而树立学好数学的信心。
3、辨一辨。
判断下列方程是不是分式方程,并说出为什么?
1/(x-2)=3/xx(x-1)/x=-1(3-x)/=x/2。
2x+(x-1)/5=103/x=2/(x-3)(2x+1)/x+3x=1。
指出:
分式方程与整式方程的区别(分母中含不含未知数)。
设计意图:
学生说出来了分式方程的概念还远远不够,通过这道题使学生更进一步的巩固分式方程的概念。(x-1)/x=-1这个方程可能学生会有争议,让学生说出自己的意见后,老师可总结,在判断方是否为分式方程时,不能化简,以形式为准。
4、想一想。
提出该如何解方程呢?让学生讨论后得出:
通过去分母,方程两边同乘以各分母的最简公分母,回忆最简公分母的定义。
设计意图:
让学生自己去想该如何解,然后老师加以指导,这样会使学生感觉到自己真正是课堂的主人,从而全身心地投入学习。
5、试一试。
(1)80/(x+5)(2)1/(x-5)=10/x.x-25。
方程两边同乘以x(x+5)得:方程两边同乘以(x+5)(x-5)得:
80x=60(x+5)x+5=10。
80x=60x+300x=5。
20x=300。
x=15。
提醒学生检验,对比两个方程发现问题。
设计意图:
通过提醒学生检验,让学生自己发现问题。从而自然引出话题。
6、议一议。
分式方程为什么会产生增根?(两边都乘以了一个零因式,但这个根是整式方程的解)所以分式方程的检验代入最简公分母即可,提出,分式方程能不检验吗?通过讨论使学生得出分式方程必须检验,因为分式方程的检验是为了看是不是增根,而不是检验对错,所以必须检验。
7、说一说。
1、程两边都乘最简公分母,约去分母,化为整式方程。
3、把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,必须舍去。
可简单记作:
一化二解三检验。
设计意图:
让学生对所学知识上升到一个理论高度。
8、做一做。
解方程:
(1)2/(x-3)=3/x(2)x/(x-1)-1=3/(x-1)(x+2)。
分式的教案篇十三
3、某项工程在工程招标时,接到甲、乙两个工程队投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲乙两的投标书预算,有如下方案:。
(1)甲队单独完成这项工程刚好如期成完成;。
(2)乙队单独完成这项工程要比规定的日期多用6天;
(3)若甲乙两合做3天,余下的的工程由乙队单独做也正好如期完成.
那么在不耽误工期的前提下,你觉得那一种施工方案最节省工程款?请说明理由.
4、据林业专家分析,树叶在光合作用下产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用,已知一片银杏树叶一年的平均滞尘量比一片国槐叶一年的平均滞尘量的2倍少4毫克,若每年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年平均滞尘量。
5、八(1)班同学周末乘汽车到游览区游览,游览区距学校120千米,一部分学生乘慢车先行,出发后1小时后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是快车的速度的1.5倍,求快车的速度.
6、小明7:20分离家上学去,走到距离家500米的商店时,买学习用品用了5分钟从商店出来,小明发现按原来的速度还要30分钟才能到学校,为了8:00之前赶到学校,小明加快了速度每分钟比原来多走25米,求小明从商店到学校的速度。
7、甲、乙两车从a、b两地相向而行,甲车比乙车早开出15分钟,甲、乙两车的速度之比为2:3,相遇时,甲比乙少走6千米,已知乙走这条路要1.5小时,求甲乙两车的速度及a、b的距离。
(1)求第一批购进书包的单价是多少元?
(1)今年三月份甲种电脑每台售价为多少元?
分式的教案篇十四
总体说明:本节共三个课时,它分为分式方程的认知,分式方程的解答,以及分式方程在实际问题中的应用。彼此之间由浅入深。是“实际问题——&sh&sh分式方程建模&sh&sh&sh——求解——解释解的合理性”过程。本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础。同时应注意对学生进行过程性评价,要延迟评价学生运算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算理的理解上。
学生的知识技能基础:学生在小学以及七年级学过解应用题,以及在本章第三节所讲述的分式加减时所引入的问题的提出及问题的解答。对实际问题进行建模有初步地了解,具备分析问题,处理问题的能力。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些问题建模活动,解决了一些简单的现实问题,感受到找出问题等量关系的作用。获得了解决实际问题所必须的一些数学活动经验基础。同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力。
教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,解释所获得结果的合理性。对于常用的数量关系,虽然学生以前大都接触过,但在本节的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。为此,本课时的教学目标是:
知识与技能:
(1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。
(2)通过观察,归纳分式方程的概念。
(3)体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义。
过程与方法:采用的是尝试——归纳相结合的方法,根据开始提出的多个实际问题。教师鼓励学生进行尝试,利用具体情境中的等量关系列出分式方程,归纳出分式方程的定义。
情感与态度:在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力。
本节课设计了6教学环节:小麦实验田问题——高速公路问题——电脑网络培训问题——捐款问题——管理问题——课时小节。
如果设第一块实验田每公顷的产量为 ,那么第二块试验田每公顷的产量是___________g.
根据题意,可得方程:
活动目的:为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:在第一问中,同学们七嘴八舌,得到了许多等量关系。1、第一块实验田的
面积=第二块实验田的面积。2、每公顷的产量 。3、第一块实验田每公顷的产量 第二块试验田每公顷的产量。感觉到每人都能想一点,但都不全。第三问得到也有多种方案。例1、 ,2、 这时教师就应适时引导 , , 每步的实际意义是什么?这样帮学生排除了第二种形式。
活动内容:从甲地到乙地有两条长路:一条是全长600 的普通公路,另一条是全长480 的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45 ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?
活动目的:再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:这次讨论的声音比第一次要少些,可能感觉比上一题容易。找出的等量关系有(1)600=客车在普通公路上行驶的平均速度 客车由普通公路从甲地到乙地的时间。
(2)480 =客车在高速公路上行驶的平均速度 客车由高速公路从甲地到乙地的时间。
(3)客车在高速公路上行驶的平均速度减去客车在普通公路上行驶的平均速度
(4)由高速公路从甲地到乙地的时间 由普通公路从甲地到乙地的时间。
同样注意引导学生每一步的实际意义。
如果设原定是 人,那么每人平均分摊______________元。
人数增加到原定人数的2倍后,每人平均分摊_________________元。
根据题意,可得方程_______________________________________________-.
活动目的: 由浅入深,出了一道比上题难度大一点的问题。还是为了训练学生找出问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:这次学生讨论的声音又大了点,找出了如下的等量关系
(1) 实际参加活动的人数=原定人数 。
(2) 原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元。
根据题意:
活动目的:这次让学生独立思考,不再借助别人的力量。根据前面几题的练习,看同学们对找等量关系到底掌握了多少。特别关注那些后进生。以便及时调整教学进度。
教学效果:
这次不允许讨论,学生花的时间比上二题多些。当然有的学生还是反应很快,还有一部分学生则花了有5分钟的时间。在这个班,说明学生之间的差异还是很大的。
活动目的 :这个例题还是采取独立思考的原则,主要是针对刚才教师发现上一题做慢,做错的同学。努力引导他们找到问题中的等量关系。
教学效果:再次提醒刚才做错的和做的很慢的同学。让他们找到等量关系。由于我的提醒和同学们的注意力高度集中,从检查的效果来看,比上一次大有进步。
活动内容 : 对于一个现实问题 找到它的等量关系 建立分式方程 分母中含有未知数的方程叫做分式方程 同时注意每一步的实际意义。
活动目的:让学生感受到在实际问题中,一定要找到它的等量关系,最好是越多越好。根据等量关系来列方程,这个方程不是唯一的,今天的分式方程就是以前没有接触过的。同时培养学生有条理的思考及其语言表达能力。
教学效果:小节最好由同学们讨论,再派代表来叙述。而不是让老师说。教师只是顺势把学生的话进行一个归纳。关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中数量关系,并用分式方程表示,能否表达自己解决问题的过程。大家基本都知道核心是找到等量关系,从而找到它的方程。
布置作业:p87——随堂练习第一题p88——习题3.6——1,2,3
1、教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。这些问题的提出要根据本班学生的实际情况,学生能力强的,就要找一些难度大的。学生能力弱的,就要找一些难度小的。还可以因势利导的编一些与同学们生活息息相关的例子。当然,这些问题的提出都必须以现实生活为背景。不要出一些与实际生活不符的纯理论问题。
2、课堂上要把激发学生学习的积极性放在首位,多让学生说,帮助学生培养发展有条理的思考及其语言表达能力。同时要多注意困难学生的疑问。不要让一些思维活跃的学生的回答代替了其他同学的思考。使小组学习更有实效性。
3、列分式方程解决应用问题要比列一次方程(组)稍复杂一些。教学是要引导学生抓住寻找等量关系,恰当选设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量等关键环节,细心分析问题中的数量关系。一定要在这方面多花时间,要让你“会”转化为学生“会”。只要学生脑子里有分析这种问题的“意识”这节课才有收获。
分式的教案篇十五
1.了解分式、有理式的概念.
2.理解分式有意义的条件,能熟练地求出分式有意义的条件.
1.重点:理解分式有意义的条件.
2.难点:能熟练地求出分式有意义的条件.
1.让学生填写p127[思考],学生自己依次填出:,,,.
请同学们跟着教师一起设未知数,列方程.
设江水的流速为v/h.
轮船顺流航行90所用的时间为小时,逆流航行60所用时间小时,所以=.
3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?
p128例1.当下列分式中的字母为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解。
出字母的取值范围.
[补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2.当为何值时,分式的值为0?
(1)(2)(3)。
[分析]分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解.
[答案](1)=0(2)=2(3)=1。
1.判断下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.当x取何值时,下列分式有意义?
(1)(2)(3)。
3.当x为何值时,分式的值为0?
(1)(2)(3)。
1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.
(3)x与的差于4的商是.
2.当x取何值时,分式无意义?
3.当x为何值时,分式的值为0?
分式的教案篇十六
分式的基本性质是一章非常重要的知识,对于学生今后的数学学习有着很大的影响。
教学目标。
1、认知目标:通过类比分数的基本性质,使学生理解和掌握分式的基本性质;掌握约分的方法和最简分式的化简方法。
2、能力目标:使学生学习类比的思想方法,培养类比转化的思维能力;使学生掌握分式的基本性质,培养正确进行分式变形的运算能力。
3、情感目标:通过与分数的类比,导出分式的基本性质,渗透事物是联系及变化发展的辨证关系。即类比——联系——归纳——发展。
教学重点及难点。
重点是理解并掌握分式的基本性质。
难点是灵活运用分式的基本性质进行分式的恒等变形及最简分式的化简方法。
教学用具准备教学流程设计教学过程设计。
一、情景引入。
3.思考。
问题(1):还记得分数的基本性质吗?问题(2):分式是否也有这样的性质?
二、学习新课1.概念辨析。
3.巩固练习课后练习。
三、问题拓展。
(1)对于分式的基本性质的应用学生较容易出错的情况辨析:(2)对于利用分式的基本性质将分式的分子、分母化成整系数形式的习题,如不改变分式的值,把分式中分子、分母的多项式各项系数化成整数,并使最高次项的系数为正.(3)对于可将分式先化简再求值的题目的练习。
[以上这些问题可在学生学有余力的前提下,加深对分式的基本性质的理解和掌握。]。
四、课堂小结。
1、分式的基本性质?分式的基本性质是分式变形和运算的理论依据。
2、约分的方法?约分是实现化简分式的一种手段.通过约分将分式化成最简才是目的.而最简分式为分式间的进一步运算提供了便利条件。
五、作业布置。
分式的教案篇十七
(1)去分母法。
去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程。但要注意,可能会产生增根。所以,必须验根。
产生增根的原因:
当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解。
检验根的方法:
将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。
为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去。
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公。
分母为0。
用去分母法解分式方程的一般步骤:
(i)去分母,将分式方程转化为整式方程;
(ii)解所得的整式方程;
(iii)验根做答。
(2)换元法。
为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决。辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法。换元法是解分式方程的一种常用技巧,利用它可以简化求解过程。
用换元法解分式方程的一般步骤:
(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;
(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;
(iii)把辅助未知数的值代回原设中,求出原未知数的值;
(iv)检验做答。
注意:
(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程。
(2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法。
(3)无论用什么方法解分式方程,验根都是必不可少的重要步骤。
将本文的word文档下载到电脑,方便收藏和打印。
分式的教案篇十八
1、掌握同分母分式加减法则。
2、会进行同分母分式的加减运算。
同分母分式的加减运算。
有的题目中涉及到分式的分母做适当的转化能运用同分母分式的加减法则,过程较为复杂。
学习过程设计教学过程设计
同分母分式相加减法则:
同分母的分式相加减,
分母不变,分子相加减.
1.填空:
则两者的概率之和=_____+_______=________.
3.计算,
正确的结果是()
4.计算:
5.先化简再求值:,
其中x=2.
你还有哪些地方不是很懂?请写出来。
下列运算对吗?如不对,请改正.
1.(口算)计算:
2.计算:
教后反思分式的加减,学生最容易错的是异分母分式进行加减,需要同分才可以进行计算。在同分的过程中要找到最简公分母。
分式的教案篇十九
1、让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。
2、使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算
3、引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力。
【重点难点】:
重点:分式的乘除法、乘方运算
难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。
一、复习提问:
(1)什么叫做分式的约分?约分的根据是什么?
(2)下列各式是否正确?为什么?
二、探索分式的乘除法的法则
1.回忆:
计算:×(-9)
2.例1计算:
(1); (2).
由学生先试着做,教师巡视。
3.概括:分式的乘除法用式子表示即是:
分式的教案篇二十
一、新课引入:
1.解分式方程的基本思路是什么?解分式方程常用的两种方法是什么?
2.在匀速运动过程中,路程s、速度v、时间t三者之间的关系是什么?
3.以前所学过的列方程解应用题的步骤有哪些?
二、新课讲解:
分析:
(1)题目中已表明此题是行程问题,实质上是速度、路程、时间三者关系在题中的隐含.
(2)题目中所隐含的等量关系是:甲从张庄到李庄的时间比乙
分式的教案篇二十一
p5例1. 当x为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母x的取值范围.
设计意图:该例题是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.
(补充)例2. 当m为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
分式的教案篇二十二
1、经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程(方程中分式不超过两个),会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系与区别。
2、通过探究,领会“类比”和“转化”这两种重要的数学思想,培养思维的严密性和条理性。
3、通过小组合作探究,增强团队意识,感受成果共享受愉快。
分式方程如何转化为一元一次方程来求解和验根。
分组准备:
1、回顾什么是最简公分母?
2、解一元一次方程的一般步骤,解方程:2(x-1)/3=5/6。
4、分式的基本性质,等式的基本性质。
4.解方程。
1、解一元一次方程2(x-1)/3=5/6。
3、例1……。
4、例2……。
活动1提出问题,激发兴趣。
1、教师出示问题:
你还记得怎样解一元一次方程吗?试一试。2(x-1)/3=5/6。
2、指名解题,师生点评,共同回忆解一元一次方程的步骤及每一步的方法和依据。
3、教师出示上一节课中所列的分式方程9000/x=15000/(x+3000),并提出问题:
这是我们上节课所列的方程,有什么特点?你能解吗?试一试(复习分式方程的概念)。
从而导出新课,板书课题。
活动2合作探究,解决问题。
1、学生分小组尝试解上面的方程,并了解学生解题情况,看有无学生发现先将分式方程转化为整式方程,再求解,若有则因势利导,若无,则通过后面的例题慢慢渗透。同时肯定利用比例的知识解题的方法。
2、教师出示例1。
前面我们每位同学都尝试了解分式方程,有的同学很有办法,将它解出来,并且有理有据,但也有的同学一时还解不出来,下面让我们一起再来探讨如何解分式方程。
3、教师引导学生解方程,注意分式方程如何转化为一元一次方程,渗透转化思想,注意展示解题的步骤和格式,注意告诉学生检验转化后方程的解是不是原分式的解。
4、教师出示例2,并指名上讲台演练。
学生自主练习,看看自己能不能解分式方程,并把过程简要地写下来。
5、师生共同点评。
通过学生的讨论,补充,教师告诉学生“增根”这一概念,并简要介绍产生增根的原因。(x=2不是原方程的根,因为它使得原分式方程的分母为零,我们称它为原方程的增根,产生增根的原因是,我们在方程的两边同乘了一个可能使分母为零的整式)从而要求学生解分式方程时必须验根,同时探讨检验的方法。
活动3小结归纳,巩固提高。
1、通过本节课的学习,请你想一想解分式方程一般需要经过哪几个步骤?
2、完成“随堂练习”:(1)3/(x-1)=4/x;(2)x/(2x-3)+5/(3-2x)=4(及时点评,纠错)。
活动4师生互动,疑难探讨。
1、学生把在学习中的疑难问题提出来,师生共同探讨。
2、在解分式方程的过程中,我们应注意些什么问题?
活动5目标小结,提高能力。
1、指名谈谈本节课有什么收获。
2、布置作业:p82第1题练习本上,第2、3题小组讨论后完成在草稿本上。
分式的教案篇二十三
1.知识与技能。
能掌握解分式方程的步骤,会如何解分式方程。
2.过程与方法。
通过一步步引导,使学生掌握解分式方程其实是转化为整式方程求解后验证解是否成立个一个过程。
3.情感、态度与价值观。
探求新知是一个将新知与旧知如何建模链接的过程,边探索,边完成这个过程。
二、重点与难点。
1.重点。
2、难点。
分式方程转化整式方程时的理论依据及具体步骤。
三、学情分析及课前反思。
本节课的学习前,学生已经熟练掌握解整式方程的求解,等式的基本性质,分式的运算。因此只需要点一下,应该就可以顺利过渡。教师的任务是如何能恰当地点一下,并让学生知其所以然。
四、重难点突破。
1、前面复习时复习分式的性质要详尽并板书。
2、不按照传统的顺序,给出题目后马上给出整式方程,引起学生的学习兴趣。
五、课前反思。
此引入部分不宜太长,也不能忽视等式基本性质的复习。最终需要达到的目的就是在课堂前10分钟内学生要掌握解分式方程是转化成一个整式方程求解的过程。经过多年实践,在环节三中,很多学生会理解成所谓的交叉相乘,必须予以及时纠正,否则出现有常数项时会产生混乱。二是在环节四后直接板书完整过程,学生容易漏掉检验这一步骤。所以等到学生在做题后,试误后予以引导,强化效果更好。
六、教学过程。
教学环节。
教学活动。
教师活动。
学生活动。
设计意图。
环节一:复习引入。
提问:1、方程的定义2、等式的基本性质。
提问并板书的方程定义,既然加上补充成分式方程的定义;板书等式的基本性质1,等式两边同时加或减同一个数或式子,等式仍然成立,等式的性质2,等式左右两边同时乘或除不等于0的数或式子,等式仍然成立。
1、全体口答。
环节二:
以旧带新;触类旁通。
板书90/(30+x)=60/(30-x)。
提问能解吗?
隔行后板书:
90(30-x)=60(30+x)并提问:能接吗?
问题1有点迟疑,部分有提前学的同学回答能解;问题2异口同声回答能解。
环节三:
明确依据;强化新知。
提示:注意观察两个方程,发现他们的联系吗?再引导学生看刚才复习过的`等式基本性质。
稍作思考后回答:交叉相乘。引导后知道应该是运用等式的性质二。
引导学生将未知转化为已知,分式方程可以通过转化成我们已经很熟练的整式方程求解。
环节四:
板书步骤;规范格式。
按照书本的规范格式作为示范板书,给学生一个规范。
补上刚才留空的一行:方程左右两边同时乘以两个分式的最简公分母(30-x)(30+x),去分母得。强调这一步就是去分母,是将分式方程化为整式方程的关键一步。
看老师板书。
环节五:
留白过程,满下伏笔。
后面整式方程的解题过程已经检验过程都留空,为一下强调检验过程铺垫。
提问:以下过程大家都懂了吧,那我就不详细下了。
认真听课。
环节六:
先做后教,加深印象。
板书另外四道解分式方程的题目作练习,根据完成情况再评讲。
板书四道题目:
(1)5/x=7/(x-2)。
(2)2/(x+3)=1/(x-1)。
(3)1/(x-5)=10/(x2-25)。
(4)x/(x-1)-1=3/(x-1)(x+2)。
堂上练习本完成练习。
学生解题后,引导学生回顾等式的性质中除为什么要强调不为0,是否这5道题的值都符合原方程。(4)(5)两个方程是无解的,因为解代入分母中为0。这时再强调分式方程接完后必须要检验。
七、板书设计。
等式的性质。
课题。
例题(1)练习(2)~(5)。
八、课后反思。
效果还是不错的,学生基本能掌握分式方程求解过程关键是运用等式的基本性质去分母。需要后面多一个课时才能达到熟练程度。
分式的教案篇二十四
《分式》是北师大版八年级下册第3章第一节内容。本节课的主要内容是分式概念、意义和用分式表示数量关系。分式是小学所学分数的延伸和扩展,也是今后继续学习分式的性质、运算以及解分式方程的前提。
学生在七年级已经学习了整式,也初步养成了自主探究的数学学习意识。分式学习的方法与整式相类似可以通过类比进行分式的学习。依据课程标准,教材特点和学生认知水平,将本节课的教学目标确定为以下3个方面: (1)知识:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。
(2)能力:学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3 情感:通过数学活动,体验数学活动充满着探索和创造,体会分式的模型思想。
其中分式概念是《分式》这一章学习的起点和基础,因此我把分式的概念确定为本节课的教学重点。又由于初中学生不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分母中整式的值何时不为零、用分式描述数量关系自然就成了本节课的教学难点。
二、教法学法:基于以上教材特点和学生情况,为能更好地达成教学目标,我在本节课主要采用引导发现教学法,并借助于多媒体课件,通过问题情境建立模型应用与拓展的模式展开教学。
三、教学过程:《数学课程标准》明确指出:数学教学是数学活动的教学,学生是数学学习的主人。为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下四个环节:
(一)创设情景发现新知:我创设了这样的情境: 代数式庄园的果树上挂满了整式的果子:t,300,s,n,a-x,0,请你任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。其中有不同于整式的 式子吗?请说一说。 通过学生对自己所构造的代数式进行观察,创设发现情境,使学生学会把自己的活动作为思考的对象,从而更好地进行分式概念的建构活动。 针对学生的发现,采用议一议:你们所发现的这一类新代数式:它们有什么共 同特征?它们与整式有什么不同?的方式引导学生继续观察新式子的特征,类比分数,概括出分式的概念及一般表示形 式。然后通过小组内互举例子,在活动过程中强化分式概念,并注意辨析整式与分式的区别,强调分式的分母中必须含有 字母。
(二)合作交流再探新知:到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,我创设了以下活动供学生自主探究分式有意义的条件:首先是组织学生独立填写表格并交流:分式的值与字母取值有关,分式并不都有意义。自主得出分式有意义的条件:表达式里的分母b不等于0。
为了能让学生对刚获得的新知识进行最基本的应用,紧接着我安排了例题与练习。比较简单,可由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生都能达到基本的学习目标,获得成功感。
(三)应用新知巩固提高:分式来源于生活,又服务于生活。为使学生有所体会, 课本中的引例:土地沙化、固沙造林问题,我保留了前两问原计划完成一期工程需要( )个月,实际完成一期工程用了( )个月,使题目难度更适合学生的思维水平;同时向学生介绍中国土地沙化问题渗透环保意识。