分式的教案(专业16篇)
教案是教师和学生之间互动的桥梁,能够促进师生互动、学生参与和教学反馈。提前准备好教案编写所需的各种资料和参考书籍,为教学备课打下良好的基础。小编精心挑选了一些独具特色的教案,希望能够为教师们带来一些灵感和启示。
分式的教案篇一
【知识技能】:
【过程与方法】:经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题,解决问题的能力,渗透数学的转化思想,培养学生的应用意识。
【情感态度与价值观】:培养学生努力寻找解决问题的进取心,体会数学的应用价值。
【教学重点】:解分式方程的基本思路和解法。
1.这个问题中给出了哪些信息,等量关系是什么?
【师生行为】:教师提出问题,学生思考回答,在活动中教师关注:(1)学生能否将实际问题转化为数学问题(2)不同层次学生对实际问题抽象出数学模型的掌握情况。
【设计意图】通过实际中的行程问题,引导学生从分析入手,列出含未知数的式子表示有关量,并列出方程,引发学生学习兴趣,提出问题引发思考,为探索分式方程及分式方程的解法作准备,自然引出学习课题。
1.问题:
(1)方程与以前所学的整式方程有何不同?
(2)满足什么特点的方程叫分式方程?
板书:像这样分母中含有未知数的方程,叫做分式方程。归纳:确定是不是分式方程,主要是看是否符合分式方程的概念,方程的分母中含有未知数,像这样的方程才属于分式方程。
2.练习。
【教师提出问题】:
1.这样的方程你以前解过吗?
2.你以前解过什么方程?
3.那你能不能把这个方程转化为你会解的方程即整式方程呢?
4.怎么转化呢?
【师生行为】:教师提出问题,学生思考,讨论后在全班交流探究结果。教师在活动中关注:学生能否观察出分式方程与整式方程的区别学生是否有利用“转化思想”解决问题的意识学生是否在参与合作交流的活动中获取知识,学生是否从多角度来研究分式方程的解法。
【设计意图】:主要让学生运用“转化思想”探讨解分式方程的方法,鼓励学生从多角度思考问题,解释所获得结果的合理性,培养学生的发散思维。
环节三。应用迁移,巩固提高问题:(1)解分式方程:上面两个方程中,为什么去分母后所得整式方程的解是它的解,而去分母所得整式方程的解却不是它的解呢?(3)探究:分式方程无解的原因是什么?(分式方程去分母后的整式方程的解代入原分式方程分母中,分母为0无意义,所以分式方程无解)(4)探究:如何检验分式方程的。解?1.直接代入原方程(计算量大,很少用)2.间接代入最简公分母(常用检验方法)。
【设计意图】:主要让学生通过自己探索实践,找出分式方程无解的原因及验根的必要性。学生在教学活动中通过积极参与和有效参与,来达到知识与能力、过程和方法、情感态度与价值观的全面落实。
环节四。总结反思,拓展升华探究:解分式方程基本思路是什么?有哪些步骤?每一步的目的是什么?解分式方程的基本思路是:分式方程通过去分母转化成整式方程。步骤:
口诀:一化二解三检验四作答。
【设计意图】:通过探究,引发学生的思考,让学生在自主探究合作交流中归纳总结解分式方程的基本思路和步骤,在合作交流中获得成功的快乐。
分式的教案篇二
本节“分式方程”是人教版八年级下册第16章第3节的内容,是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。
在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路(使方程逐步化为x=a的形式)已经比较熟悉,而分式方程的未知数在分母中,它的解法比以前学过的方程复杂,需通过转化思想,化分式方程为整式方程。
1、明确什么是分式方程?会区分整式方程与分式方程。
3、知道分式方程产生增根的原因,并学会如何验根。
教学难点:理解分式方程可能产生增根的原因。
1、忆一忆。
(1)什么叫方程?什么叫方程的`解?
(2)什么叫分式?
(3)结合具体例子说出解一元一次方程的步骤。
设计意图:
让学生由旧知识的回忆自然引出新知识便于学生理解接受。
2x-(x-1)/3=63x/4+(2x+1)/3=0。
2、猜一猜。
板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点学生易得出:分母中含有未知数的方程叫分式方程。
设计意图:
采用这种形式引入今天的话题,让学生觉得不是在上数学,而象是在拉家常,让学生没有负担,另外,学生在前面的回忆的基础上很容易猜出来分式方程的概念。这样使学生感受到数学的简单,从而树立学好数学的信心。
3、辨一辨。
判断下列方程是不是分式方程,并说出为什么?
1/(x-2)=3/xx(x-1)/x=-1(3-x)/=x/2。
2x+(x-1)/5=103/x=2/(x-3)(2x+1)/x+3x=1。
指出:
分式方程与整式方程的区别(分母中含不含未知数)。
设计意图:
学生说出来了分式方程的概念还远远不够,通过这道题使学生更进一步的巩固分式方程的概念。(x-1)/x=-1这个方程可能学生会有争议,让学生说出自己的意见后,老师可总结,在判断方是否为分式方程时,不能化简,以形式为准。
4、想一想。
提出该如何解方程呢?让学生讨论后得出:
通过去分母,方程两边同乘以各分母的最简公分母,回忆最简公分母的定义。
设计意图:
让学生自己去想该如何解,然后老师加以指导,这样会使学生感觉到自己真正是课堂的主人,从而全身心地投入学习。
5、试一试。
(1)80/(x+5)(2)1/(x-5)=10/x.x-25。
方程两边同乘以x(x+5)得:方程两边同乘以(x+5)(x-5)得:
80x=60(x+5)x+5=10。
80x=60x+300x=5。
20x=300。
x=15。
提醒学生检验,对比两个方程发现问题。
设计意图:
通过提醒学生检验,让学生自己发现问题。从而自然引出话题。
6、议一议。
分式方程为什么会产生增根?(两边都乘以了一个零因式,但这个根是整式方程的解)所以分式方程的检验代入最简公分母即可,提出,分式方程能不检验吗?通过讨论使学生得出分式方程必须检验,因为分式方程的检验是为了看是不是增根,而不是检验对错,所以必须检验。
7、说一说。
1、程两边都乘最简公分母,约去分母,化为整式方程。
3、把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,必须舍去。
可简单记作:
一化二解三检验。
设计意图:
让学生对所学知识上升到一个理论高度。
8、做一做。
解方程:
(1)2/(x-3)=3/x(2)x/(x-1)-1=3/(x-1)(x+2)。
分式的教案篇三
理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。
(二)过程与方法。
通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的"转化"思想。
(三)情感、态度与价值观。
培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤。
教学难点:探索分式方程产生增根的原因。
一。创设情境,导入新课:
为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为2000元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。
根据以上信息你能分别求出两次捐款的人数吗?
若设第一次捐款人数为x人,第二次捐款人数为()人。
根据相等关系列方程为()。
这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)。
二。新课学习:
(一).分式方程的定义:
分母中含有未知数的方程叫做分式方程。
以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程。
反馈练习。
解方程(解上面练习中的第三题)。
师生共同回顾:解整式方程的步骤。
2.如何解分式方程呢?
(学生尝试完成,然后集体补充步骤)。
解方程:2000∕x=2150/x+15。
解:方程两边同时乘以x(x+15),得。
2000(x+15)=2150x。
解这个整式方程,得。
x=200。
则200+15=215。
检验:把x=200代入原方程,
因为左边=10右边=10。
所以左边=右边。
所以x=200是原方程的解。
一是去分母,二是解整式方程,三是检验。
4.例题解方程:
(生独立完成,师指导)。
分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根。
师:解分式方程必须进行检验!
[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?
[生]最简单的检验方法是:把整式方程的根代入最简公分母。若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根。是增根,必舍去。
三。应用升华。
四。小结。
本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。
五。布置作业:
本小节课时作业。
2.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
分式的教案篇四
教学内容:用字母代表未知数,列出符合题中条件的等式,解方程(例3,课本第159―160页,练习二十四)。
教学目的:通过复习使学生能教熟练地用字母代表未知数,列出符合题中条件的等式;列方程解应用题。从而培养学生抽象思维的能力和分析问题、解决问题的能力。
分式的教案篇五
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。下面是列方程解应用题大全,请参考!
类型一(简单的一步方程)。
4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)。
类型二(几倍多多少/少多少):
1、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?
类型三(买东西和卖东西):
1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?
类型四(和倍问题/差倍问题):
1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?
2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?
类型五(相遇问题、追及问题、鸡兔同笼)。
类型六(和差问题):
1、甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?
2、两个相邻自然数的和是97,这两个自然分别是多少?
3、两个连续自然数的和是153,这两个数分别是多少?
分式的教案篇六
1.理解分式的基本性质。
2.会用分式的基本性质将分式变形。
二、重点、难点。
1.重点:理解分式的基本性质。
2.难点:灵活应用分式的基本性质将分式变形。
3.认知难点与突破方法。
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、例、习题的意图分析。
1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入。
1.请同学们考虑:与相等吗?与相等吗?为什么?
2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解。
p7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
p11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
p11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变。
解:=,=,=,=,=。
六、随堂练习。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.约分:
(1)(2)(3)(4)。
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改变分式的值,使下列分式的分子和分母都不含“-”号。
(1)(2)(3)(4)。
七、课后练习。
1.判断下列约分是否正确:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号。
(1)(2)。
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
4.(1)(2)(3)(4)。
分式的教案篇七
p5例1. 当x为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母x的取值范围.
设计意图:该例题是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.
(补充)例2. 当m为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
分式的教案篇八
1、经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程(方程中分式不超过两个),会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系与区别。
2、通过探究,领会“类比”和“转化”这两种重要的数学思想,培养思维的严密性和条理性。
3、通过小组合作探究,增强团队意识,感受成果共享受愉快。
分式方程如何转化为一元一次方程来求解和验根。
分组准备:
1、回顾什么是最简公分母?
2、解一元一次方程的一般步骤,解方程:2(x-1)/3=5/6。
4、分式的基本性质,等式的基本性质。
4.解方程。
1、解一元一次方程2(x-1)/3=5/6。
3、例1……。
4、例2……。
活动1提出问题,激发兴趣。
1、教师出示问题:
你还记得怎样解一元一次方程吗?试一试。2(x-1)/3=5/6。
2、指名解题,师生点评,共同回忆解一元一次方程的步骤及每一步的方法和依据。
3、教师出示上一节课中所列的分式方程9000/x=15000/(x+3000),并提出问题:
这是我们上节课所列的方程,有什么特点?你能解吗?试一试(复习分式方程的概念)。
从而导出新课,板书课题。
活动2合作探究,解决问题。
1、学生分小组尝试解上面的方程,并了解学生解题情况,看有无学生发现先将分式方程转化为整式方程,再求解,若有则因势利导,若无,则通过后面的例题慢慢渗透。同时肯定利用比例的知识解题的方法。
2、教师出示例1。
前面我们每位同学都尝试了解分式方程,有的同学很有办法,将它解出来,并且有理有据,但也有的同学一时还解不出来,下面让我们一起再来探讨如何解分式方程。
3、教师引导学生解方程,注意分式方程如何转化为一元一次方程,渗透转化思想,注意展示解题的步骤和格式,注意告诉学生检验转化后方程的解是不是原分式的解。
4、教师出示例2,并指名上讲台演练。
学生自主练习,看看自己能不能解分式方程,并把过程简要地写下来。
5、师生共同点评。
通过学生的讨论,补充,教师告诉学生“增根”这一概念,并简要介绍产生增根的原因。(x=2不是原方程的根,因为它使得原分式方程的分母为零,我们称它为原方程的增根,产生增根的原因是,我们在方程的两边同乘了一个可能使分母为零的整式)从而要求学生解分式方程时必须验根,同时探讨检验的方法。
活动3小结归纳,巩固提高。
1、通过本节课的学习,请你想一想解分式方程一般需要经过哪几个步骤?
2、完成“随堂练习”:(1)3/(x-1)=4/x;(2)x/(2x-3)+5/(3-2x)=4(及时点评,纠错)。
活动4师生互动,疑难探讨。
1、学生把在学习中的疑难问题提出来,师生共同探讨。
2、在解分式方程的过程中,我们应注意些什么问题?
活动5目标小结,提高能力。
1、指名谈谈本节课有什么收获。
2、布置作业:p82第1题练习本上,第2、3题小组讨论后完成在草稿本上。
分式的教案篇九
总体说明:本节共三个课时,它分为分式方程的认知,分式方程的解答,以及分式方程在实际问题中的应用。彼此之间由浅入深。是“实际问题——&sh&sh分式方程建模&sh&sh&sh——求解——解释解的合理性”过程。本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础。同时应注意对学生进行过程性评价,要延迟评价学生运算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算理的理解上。
学生的知识技能基础:学生在小学以及七年级学过解应用题,以及在本章第三节所讲述的分式加减时所引入的问题的提出及问题的解答。对实际问题进行建模有初步地了解,具备分析问题,处理问题的能力。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些问题建模活动,解决了一些简单的现实问题,感受到找出问题等量关系的作用。获得了解决实际问题所必须的一些数学活动经验基础。同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力。
教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,解释所获得结果的合理性。对于常用的数量关系,虽然学生以前大都接触过,但在本节的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。为此,本课时的教学目标是:
知识与技能:
(1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。
(2)通过观察,归纳分式方程的概念。
(3)体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义。
过程与方法:采用的是尝试——归纳相结合的方法,根据开始提出的多个实际问题。教师鼓励学生进行尝试,利用具体情境中的等量关系列出分式方程,归纳出分式方程的定义。
情感与态度:在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力。
本节课设计了6教学环节:小麦实验田问题——高速公路问题——电脑网络培训问题——捐款问题——管理问题——课时小节。
如果设第一块实验田每公顷的产量为 ,那么第二块试验田每公顷的产量是___________g.
根据题意,可得方程:
活动目的:为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:在第一问中,同学们七嘴八舌,得到了许多等量关系。1、第一块实验田的
面积=第二块实验田的面积。2、每公顷的产量 。3、第一块实验田每公顷的产量 第二块试验田每公顷的产量。感觉到每人都能想一点,但都不全。第三问得到也有多种方案。例1、 ,2、 这时教师就应适时引导 , , 每步的实际意义是什么?这样帮学生排除了第二种形式。
活动内容:从甲地到乙地有两条长路:一条是全长600 的普通公路,另一条是全长480 的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45 ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?
活动目的:再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:这次讨论的声音比第一次要少些,可能感觉比上一题容易。找出的等量关系有(1)600=客车在普通公路上行驶的平均速度 客车由普通公路从甲地到乙地的时间。
(2)480 =客车在高速公路上行驶的平均速度 客车由高速公路从甲地到乙地的时间。
(3)客车在高速公路上行驶的平均速度减去客车在普通公路上行驶的平均速度
(4)由高速公路从甲地到乙地的时间 由普通公路从甲地到乙地的时间。
同样注意引导学生每一步的实际意义。
如果设原定是 人,那么每人平均分摊______________元。
人数增加到原定人数的2倍后,每人平均分摊_________________元。
根据题意,可得方程_______________________________________________-.
活动目的: 由浅入深,出了一道比上题难度大一点的问题。还是为了训练学生找出问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:这次学生讨论的声音又大了点,找出了如下的等量关系
(1) 实际参加活动的人数=原定人数 。
(2) 原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元。
根据题意:
活动目的:这次让学生独立思考,不再借助别人的力量。根据前面几题的练习,看同学们对找等量关系到底掌握了多少。特别关注那些后进生。以便及时调整教学进度。
教学效果:
这次不允许讨论,学生花的时间比上二题多些。当然有的学生还是反应很快,还有一部分学生则花了有5分钟的时间。在这个班,说明学生之间的差异还是很大的。
活动目的 :这个例题还是采取独立思考的原则,主要是针对刚才教师发现上一题做慢,做错的同学。努力引导他们找到问题中的等量关系。
教学效果:再次提醒刚才做错的和做的很慢的同学。让他们找到等量关系。由于我的提醒和同学们的注意力高度集中,从检查的效果来看,比上一次大有进步。
活动内容 : 对于一个现实问题 找到它的等量关系 建立分式方程 分母中含有未知数的方程叫做分式方程 同时注意每一步的实际意义。
活动目的:让学生感受到在实际问题中,一定要找到它的等量关系,最好是越多越好。根据等量关系来列方程,这个方程不是唯一的,今天的分式方程就是以前没有接触过的。同时培养学生有条理的思考及其语言表达能力。
教学效果:小节最好由同学们讨论,再派代表来叙述。而不是让老师说。教师只是顺势把学生的话进行一个归纳。关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中数量关系,并用分式方程表示,能否表达自己解决问题的过程。大家基本都知道核心是找到等量关系,从而找到它的方程。
布置作业:p87——随堂练习第一题p88——习题3.6——1,2,3
1、教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。这些问题的提出要根据本班学生的实际情况,学生能力强的,就要找一些难度大的。学生能力弱的,就要找一些难度小的。还可以因势利导的编一些与同学们生活息息相关的例子。当然,这些问题的提出都必须以现实生活为背景。不要出一些与实际生活不符的纯理论问题。
2、课堂上要把激发学生学习的积极性放在首位,多让学生说,帮助学生培养发展有条理的思考及其语言表达能力。同时要多注意困难学生的疑问。不要让一些思维活跃的学生的回答代替了其他同学的思考。使小组学习更有实效性。
3、列分式方程解决应用问题要比列一次方程(组)稍复杂一些。教学是要引导学生抓住寻找等量关系,恰当选设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量等关键环节,细心分析问题中的数量关系。一定要在这方面多花时间,要让你“会”转化为学生“会”。只要学生脑子里有分析这种问题的“意识”这节课才有收获。
分式的教案篇十
1、让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。
2、使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算
3、引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力。
【重点难点】:
重点:分式的乘除法、乘方运算
难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。
一、复习提问:
(1)什么叫做分式的约分?约分的根据是什么?
(2)下列各式是否正确?为什么?
二、探索分式的乘除法的法则
1.回忆:
计算:×(-9)
2.例1计算:
(1); (2).
由学生先试着做,教师巡视。
3.概括:分式的乘除法用式子表示即是:
分式的教案篇十一
3、某项工程在工程招标时,接到甲、乙两个工程队投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲乙两的投标书预算,有如下方案:。
(1)甲队单独完成这项工程刚好如期成完成;。
(2)乙队单独完成这项工程要比规定的日期多用6天;
(3)若甲乙两合做3天,余下的的工程由乙队单独做也正好如期完成.
那么在不耽误工期的前提下,你觉得那一种施工方案最节省工程款?请说明理由.
4、据林业专家分析,树叶在光合作用下产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用,已知一片银杏树叶一年的平均滞尘量比一片国槐叶一年的平均滞尘量的2倍少4毫克,若每年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年平均滞尘量。
5、八(1)班同学周末乘汽车到游览区游览,游览区距学校120千米,一部分学生乘慢车先行,出发后1小时后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是快车的速度的1.5倍,求快车的速度.
6、小明7:20分离家上学去,走到距离家500米的商店时,买学习用品用了5分钟从商店出来,小明发现按原来的速度还要30分钟才能到学校,为了8:00之前赶到学校,小明加快了速度每分钟比原来多走25米,求小明从商店到学校的速度。
7、甲、乙两车从a、b两地相向而行,甲车比乙车早开出15分钟,甲、乙两车的速度之比为2:3,相遇时,甲比乙少走6千米,已知乙走这条路要1.5小时,求甲乙两车的速度及a、b的距离。
(1)求第一批购进书包的单价是多少元?
(1)今年三月份甲种电脑每台售价为多少元?
分式的教案篇十二
《分式》是北师大版八年级下册第3章第一节内容。本节课的主要内容是分式概念、意义和用分式表示数量关系。分式是小学所学分数的延伸和扩展,也是今后继续学习分式的性质、运算以及解分式方程的前提。
学生在七年级已经学习了整式,也初步养成了自主探究的数学学习意识。分式学习的方法与整式相类似可以通过类比进行分式的学习。依据课程标准,教材特点和学生认知水平,将本节课的教学目标确定为以下3个方面: (1)知识:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。
(2)能力:学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3 情感:通过数学活动,体验数学活动充满着探索和创造,体会分式的模型思想。
其中分式概念是《分式》这一章学习的起点和基础,因此我把分式的概念确定为本节课的教学重点。又由于初中学生不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分母中整式的值何时不为零、用分式描述数量关系自然就成了本节课的教学难点。
二、教法学法:基于以上教材特点和学生情况,为能更好地达成教学目标,我在本节课主要采用引导发现教学法,并借助于多媒体课件,通过问题情境建立模型应用与拓展的模式展开教学。
三、教学过程:《数学课程标准》明确指出:数学教学是数学活动的教学,学生是数学学习的主人。为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下四个环节:
(一)创设情景发现新知:我创设了这样的情境: 代数式庄园的果树上挂满了整式的果子:t,300,s,n,a-x,0,请你任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。其中有不同于整式的 式子吗?请说一说。 通过学生对自己所构造的代数式进行观察,创设发现情境,使学生学会把自己的活动作为思考的对象,从而更好地进行分式概念的建构活动。 针对学生的发现,采用议一议:你们所发现的这一类新代数式:它们有什么共 同特征?它们与整式有什么不同?的方式引导学生继续观察新式子的特征,类比分数,概括出分式的概念及一般表示形 式。然后通过小组内互举例子,在活动过程中强化分式概念,并注意辨析整式与分式的区别,强调分式的分母中必须含有 字母。
(二)合作交流再探新知:到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,我创设了以下活动供学生自主探究分式有意义的条件:首先是组织学生独立填写表格并交流:分式的值与字母取值有关,分式并不都有意义。自主得出分式有意义的条件:表达式里的分母b不等于0。
为了能让学生对刚获得的新知识进行最基本的应用,紧接着我安排了例题与练习。比较简单,可由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生都能达到基本的学习目标,获得成功感。
(三)应用新知巩固提高:分式来源于生活,又服务于生活。为使学生有所体会, 课本中的引例:土地沙化、固沙造林问题,我保留了前两问原计划完成一期工程需要( )个月,实际完成一期工程用了( )个月,使题目难度更适合学生的思维水平;同时向学生介绍中国土地沙化问题渗透环保意识。
分式的教案篇十三
分式的基本性质是一章非常重要的知识,对于学生今后的数学学习有着很大的影响。
教学目标。
1、认知目标:通过类比分数的基本性质,使学生理解和掌握分式的基本性质;掌握约分的方法和最简分式的化简方法。
2、能力目标:使学生学习类比的思想方法,培养类比转化的思维能力;使学生掌握分式的基本性质,培养正确进行分式变形的运算能力。
3、情感目标:通过与分数的类比,导出分式的基本性质,渗透事物是联系及变化发展的辨证关系。即类比——联系——归纳——发展。
教学重点及难点。
重点是理解并掌握分式的基本性质。
难点是灵活运用分式的基本性质进行分式的恒等变形及最简分式的化简方法。
教学用具准备教学流程设计教学过程设计。
一、情景引入。
3.思考。
问题(1):还记得分数的基本性质吗?问题(2):分式是否也有这样的性质?
二、学习新课1.概念辨析。
3.巩固练习课后练习。
三、问题拓展。
(1)对于分式的基本性质的应用学生较容易出错的情况辨析:(2)对于利用分式的基本性质将分式的分子、分母化成整系数形式的习题,如不改变分式的值,把分式中分子、分母的多项式各项系数化成整数,并使最高次项的系数为正.(3)对于可将分式先化简再求值的题目的练习。
[以上这些问题可在学生学有余力的前提下,加深对分式的基本性质的理解和掌握。]。
四、课堂小结。
1、分式的基本性质?分式的基本性质是分式变形和运算的理论依据。
2、约分的方法?约分是实现化简分式的一种手段.通过约分将分式化成最简才是目的.而最简分式为分式间的进一步运算提供了便利条件。
五、作业布置。
分式的教案篇十四
1、掌握同分母分式加减法则。
2、会进行同分母分式的加减运算。
同分母分式的加减运算。
有的题目中涉及到分式的分母做适当的转化能运用同分母分式的加减法则,过程较为复杂。
学习过程设计教学过程设计
同分母分式相加减法则:
同分母的分式相加减,
分母不变,分子相加减.
1.填空:
则两者的概率之和=_____+_______=________.
3.计算,
正确的结果是()
4.计算:
5.先化简再求值:,
其中x=2.
你还有哪些地方不是很懂?请写出来。
下列运算对吗?如不对,请改正.
1.(口算)计算:
2.计算:
教后反思分式的加减,学生最容易错的是异分母分式进行加减,需要同分才可以进行计算。在同分的过程中要找到最简公分母。
分式的教案篇十五
一、新课引入:
1.解分式方程的基本思路是什么?解分式方程常用的两种方法是什么?
2.在匀速运动过程中,路程s、速度v、时间t三者之间的关系是什么?
3.以前所学过的列方程解应用题的步骤有哪些?
二、新课讲解:
分析:
(1)题目中已表明此题是行程问题,实质上是速度、路程、时间三者关系在题中的隐含.
(2)题目中所隐含的等量关系是:甲从张庄到李庄的时间比乙
分式的教案篇十六
1.知识与技能。
能掌握解分式方程的步骤,会如何解分式方程。
2.过程与方法。
通过一步步引导,使学生掌握解分式方程其实是转化为整式方程求解后验证解是否成立个一个过程。
3.情感、态度与价值观。
探求新知是一个将新知与旧知如何建模链接的过程,边探索,边完成这个过程。
二、重点与难点。
1.重点。
2、难点。
分式方程转化整式方程时的理论依据及具体步骤。
三、学情分析及课前反思。
本节课的学习前,学生已经熟练掌握解整式方程的求解,等式的基本性质,分式的运算。因此只需要点一下,应该就可以顺利过渡。教师的任务是如何能恰当地点一下,并让学生知其所以然。
四、重难点突破。
1、前面复习时复习分式的性质要详尽并板书。
2、不按照传统的顺序,给出题目后马上给出整式方程,引起学生的学习兴趣。
五、课前反思。
此引入部分不宜太长,也不能忽视等式基本性质的复习。最终需要达到的目的就是在课堂前10分钟内学生要掌握解分式方程是转化成一个整式方程求解的过程。经过多年实践,在环节三中,很多学生会理解成所谓的交叉相乘,必须予以及时纠正,否则出现有常数项时会产生混乱。二是在环节四后直接板书完整过程,学生容易漏掉检验这一步骤。所以等到学生在做题后,试误后予以引导,强化效果更好。
六、教学过程。
教学环节。
教学活动。
教师活动。
学生活动。
设计意图。
环节一:复习引入。
提问:1、方程的定义2、等式的基本性质。
提问并板书的方程定义,既然加上补充成分式方程的定义;板书等式的基本性质1,等式两边同时加或减同一个数或式子,等式仍然成立,等式的性质2,等式左右两边同时乘或除不等于0的数或式子,等式仍然成立。
1、全体口答。
环节二:
以旧带新;触类旁通。
板书90/(30+x)=60/(30-x)。
提问能解吗?
隔行后板书:
90(30-x)=60(30+x)并提问:能接吗?
问题1有点迟疑,部分有提前学的同学回答能解;问题2异口同声回答能解。
环节三:
明确依据;强化新知。
提示:注意观察两个方程,发现他们的联系吗?再引导学生看刚才复习过的`等式基本性质。
稍作思考后回答:交叉相乘。引导后知道应该是运用等式的性质二。
引导学生将未知转化为已知,分式方程可以通过转化成我们已经很熟练的整式方程求解。
环节四:
板书步骤;规范格式。
按照书本的规范格式作为示范板书,给学生一个规范。
补上刚才留空的一行:方程左右两边同时乘以两个分式的最简公分母(30-x)(30+x),去分母得。强调这一步就是去分母,是将分式方程化为整式方程的关键一步。
看老师板书。
环节五:
留白过程,满下伏笔。
后面整式方程的解题过程已经检验过程都留空,为一下强调检验过程铺垫。
提问:以下过程大家都懂了吧,那我就不详细下了。
认真听课。
环节六:
先做后教,加深印象。
板书另外四道解分式方程的题目作练习,根据完成情况再评讲。
板书四道题目:
(1)5/x=7/(x-2)。
(2)2/(x+3)=1/(x-1)。
(3)1/(x-5)=10/(x2-25)。
(4)x/(x-1)-1=3/(x-1)(x+2)。
堂上练习本完成练习。
学生解题后,引导学生回顾等式的性质中除为什么要强调不为0,是否这5道题的值都符合原方程。(4)(5)两个方程是无解的,因为解代入分母中为0。这时再强调分式方程接完后必须要检验。
七、板书设计。
等式的性质。
课题。
例题(1)练习(2)~(5)。
八、课后反思。
效果还是不错的,学生基本能掌握分式方程求解过程关键是运用等式的基本性质去分母。需要后面多一个课时才能达到熟练程度。