分式的教案(模板19篇)
教案是教学过程中用来指导教师开展教学活动的一种详细计划,它包含了教学目标、教学内容、教学方法和评价方式等内容,对于提高教学质量和效果起到了至关重要的作用。教案的编写应注重培养学生的学习兴趣和主动性,提高教育教学质量。想要写好一份教案,不妨参考一下小编为大家准备的教案范文。
分式的教案篇一
【知识技能】:
【过程与方法】:经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题,解决问题的能力,渗透数学的转化思想,培养学生的应用意识。
【情感态度与价值观】:培养学生努力寻找解决问题的进取心,体会数学的应用价值。
【教学重点】:解分式方程的基本思路和解法。
1.这个问题中给出了哪些信息,等量关系是什么?
【师生行为】:教师提出问题,学生思考回答,在活动中教师关注:(1)学生能否将实际问题转化为数学问题(2)不同层次学生对实际问题抽象出数学模型的掌握情况。
【设计意图】通过实际中的行程问题,引导学生从分析入手,列出含未知数的式子表示有关量,并列出方程,引发学生学习兴趣,提出问题引发思考,为探索分式方程及分式方程的解法作准备,自然引出学习课题。
1.问题:
(1)方程与以前所学的整式方程有何不同?
(2)满足什么特点的方程叫分式方程?
板书:像这样分母中含有未知数的方程,叫做分式方程。归纳:确定是不是分式方程,主要是看是否符合分式方程的概念,方程的分母中含有未知数,像这样的方程才属于分式方程。
2.练习。
【教师提出问题】:
1.这样的方程你以前解过吗?
2.你以前解过什么方程?
3.那你能不能把这个方程转化为你会解的方程即整式方程呢?
4.怎么转化呢?
【师生行为】:教师提出问题,学生思考,讨论后在全班交流探究结果。教师在活动中关注:学生能否观察出分式方程与整式方程的区别学生是否有利用“转化思想”解决问题的意识学生是否在参与合作交流的活动中获取知识,学生是否从多角度来研究分式方程的解法。
【设计意图】:主要让学生运用“转化思想”探讨解分式方程的方法,鼓励学生从多角度思考问题,解释所获得结果的合理性,培养学生的发散思维。
环节三。应用迁移,巩固提高问题:(1)解分式方程:上面两个方程中,为什么去分母后所得整式方程的解是它的解,而去分母所得整式方程的解却不是它的解呢?(3)探究:分式方程无解的原因是什么?(分式方程去分母后的整式方程的解代入原分式方程分母中,分母为0无意义,所以分式方程无解)(4)探究:如何检验分式方程的。解?1.直接代入原方程(计算量大,很少用)2.间接代入最简公分母(常用检验方法)。
【设计意图】:主要让学生通过自己探索实践,找出分式方程无解的原因及验根的必要性。学生在教学活动中通过积极参与和有效参与,来达到知识与能力、过程和方法、情感态度与价值观的全面落实。
环节四。总结反思,拓展升华探究:解分式方程基本思路是什么?有哪些步骤?每一步的目的是什么?解分式方程的基本思路是:分式方程通过去分母转化成整式方程。步骤:
口诀:一化二解三检验四作答。
【设计意图】:通过探究,引发学生的思考,让学生在自主探究合作交流中归纳总结解分式方程的基本思路和步骤,在合作交流中获得成功的快乐。
分式的教案篇二
理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。
(二)过程与方法。
通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的"转化"思想。
(三)情感、态度与价值观。
培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤。
教学难点:探索分式方程产生增根的原因。
一。创设情境,导入新课:
为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为2000元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。
根据以上信息你能分别求出两次捐款的人数吗?
若设第一次捐款人数为x人,第二次捐款人数为()人。
根据相等关系列方程为()。
这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)。
二。新课学习:
(一).分式方程的定义:
分母中含有未知数的方程叫做分式方程。
以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程。
反馈练习。
解方程(解上面练习中的第三题)。
师生共同回顾:解整式方程的步骤。
2.如何解分式方程呢?
(学生尝试完成,然后集体补充步骤)。
解方程:2000∕x=2150/x+15。
解:方程两边同时乘以x(x+15),得。
2000(x+15)=2150x。
解这个整式方程,得。
x=200。
则200+15=215。
检验:把x=200代入原方程,
因为左边=10右边=10。
所以左边=右边。
所以x=200是原方程的解。
一是去分母,二是解整式方程,三是检验。
4.例题解方程:
(生独立完成,师指导)。
分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根。
师:解分式方程必须进行检验!
[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?
[生]最简单的检验方法是:把整式方程的根代入最简公分母。若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根。是增根,必舍去。
三。应用升华。
四。小结。
本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。
五。布置作业:
本小节课时作业。
2.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
分式的教案篇三
(1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的`数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。
二.教学重难点。
重点:分式的概念。
难点:识别分式有无意义;用分式描述数量关系。
三.教法与学法。
基于以上教材特点和学生情况的分析,我在本节课主要采用引导发现教学法,借助于计算机课件,通过问题情境建立模型解释、应用与拓展的模式展开教学。
四.教学过程。
《数学课程标准》明确指出:数学教学是数学活动的教学,学生是数学学习的主人。为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:发现新知再探新知应用新知深化拓展小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。
分式的教案篇四
一、教材分析:
1、本章与本节的地位与作用:本][章是在学生已掌握了整式的四则运算,多项式的因式分解的基础上,通过对比分数的知识来学习的,包括分式的概念、分式的基本性质、分式的四则运算,这一章的内容对于今后进一步学习函数和方程等知识有着重要的作用。可化为一元一次方程的分式方程是在学生已熟练地掌握了一元一次方程的解法、分式四则运算等有关知识的基础进行学习的。它既可看着是分式有关知识在解方程中的应用;也可看着是进一步学习研究其它分式方程的基础(可化为一元二次方程的分式方程)。同时学习了分式方程后也为解决实际问题拓宽了路子,打破了列方程解应用题时代数式必须是整式这一限制。解分式方程的基本思想是:“把分式方程转化为整式方程”,基本方法是:“去分母”。让学生进一步体会“转化”这一数学思想,对提高学生的数学素质是非常重要的。2、教学目标:根据学生已有的知识基础及本节在教材中的地位与作用,依据大纲的要求确定本课时的教学目标为:
(1)了解分式方程的概念,会识别分式方程与整式方程。
(2)理解分式方程的解法,会熟练地解分式方程。
(3)体会解分式方程的“转化”思想。
二、教学方法:
(一)学生分析:根据七年级学生的知识水平和年龄特征,考虑到素质教育的要求,结合本节课的特点,主要采用启导式教学法、讲练法,引导学生去观察、去思考、去探索,尽量让学生自己寻找、归纳出解分式方程的一般步骤。
(二)新课教学:
(1)分母里含有未知数的方程叫做分式方程。
(2)提问:前面学习过的一元一次方程的分母里含有未知数吗?前面学习过的方程都是整式方程,一元一次方程是最简单的整式方程。
)注意:区分整式方程与分式方程的关键是什么?分母中是否含有字母)。先学习分式方程的定义,再与已有知识进行对比,进一步强化学生对分式方程概念的本质的认识,紧接着利用几道识别题训练学生正确地区分分式方程与整式方程及分式的区别,这部分教学要求达到“了解”层次即可。)。
2、解方程:回忆解方程的一般步骤中的第一步?如何去掉分母?方程的两边都乘以一个什么样的式子?这是解分式方程的关键步骤,只有通过去分母才能实现我们的转化,而这个步骤由于涉及的知识多,学生容易出错。这里应是教学的重点之一。解这个整式方程。(由学生完成)。(学生已有这部分知识,由学生独立完成,新课的教学不能教师一讲到底,凡学生能做的应由学生做,因为学生才是学习的主体。)把解得的未知数的值代入原方程进行检验。必须强调原方程,因为有学生往往代入去了分母的整式方程中。应引导学生进行检验,得出未知数的值是否使方程两边相等,确定方程的解的正确性,得出原分式方程的解的结论。
(三)课堂练习:
通过练习强化学生对解分式方程的步骤的理解,使学生熟练地解分式方程,通过练习,及时掌握学生对所学知识的掌握情况,根据练习中反馈的信息进行教学的查缺补漏,纠正练习中出现的问题,在练习中形成解题的能力。
拓展题:
对这堂课的增根的进一步理解与巩固,说明增根是在解方程后,让公分母为零的未知数的值才叫方程的增根。
(四)课堂小结:
3、解分式方程应注意:(1)正确去分母,化分式方程为整式方程。(2)解分式方程必须检验。通过小结使学生学习的知识形成体系、网络。帮助学生全面地理解掌握所学知识。小结也应由学生试着完成,教师补充,有利于培养学生归纳整理知识的能力,也是学生参与学习的体现。
(五)、作业布置:练习册第52页10.51、2、3题。
课外作业的布置是必须的,它有利于学生巩固所学的知识,作业应精选,应适量。
1、观察以下两个题目:
(1)计算:2/(x-1)-1。
(2)解方程:2/(x-1)-1=0。
这两个题目分别要求我们做什么?解题的第一步有什么不同?
五、几点说明:1、板书设计:将黑板分成四个部分。(1)课题、引例1、引例2。(2)例1。(3)例2。(学生板书的课堂练习写在例1、例2的下面)(4)小结与作业布置。2、教学时间安排:复习引入约3分钟;新课教学约30分钟;课堂练习约5分钟;小结约2分钟;作业布置约1分钟。3、整堂课要体现的设计思想:根据学生已有的知识结构和年龄特征,结合教材的特点,选择启导式教学法、讲练法,培养学生的学习兴趣,让每个学生都达到大纲的要求。注重“学生是学习的主体”这一教学思想的体现,教学中通过富有启发性的提问让学生思考、让学生试着总结、让学生试着做一做等方式尽量让学生去参与,去发现,去尝试,去总结。使学生由被动地接受知识变为主动地去获得知识。
在讨论增根问题时,通过具体例子展现了解分式方程时可能出现增根的现象,并结合例子分析了什么情况下产生增根,然后归纳出验根的方法。
分式的教案篇五
本节“分式方程”是人教版八年级下册第16章第3节的内容,是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。
在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路(使方程逐步化为x=a的形式)已经比较熟悉,而分式方程的未知数在分母中,它的解法比以前学过的方程复杂,需通过转化思想,化分式方程为整式方程。
1、明确什么是分式方程?会区分整式方程与分式方程。
3、知道分式方程产生增根的原因,并学会如何验根。
教学难点:理解分式方程可能产生增根的原因。
1、忆一忆。
(1)什么叫方程?什么叫方程的`解?
(2)什么叫分式?
(3)结合具体例子说出解一元一次方程的步骤。
设计意图:
让学生由旧知识的回忆自然引出新知识便于学生理解接受。
2x-(x-1)/3=63x/4+(2x+1)/3=0。
2、猜一猜。
板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点学生易得出:分母中含有未知数的方程叫分式方程。
设计意图:
采用这种形式引入今天的话题,让学生觉得不是在上数学,而象是在拉家常,让学生没有负担,另外,学生在前面的回忆的基础上很容易猜出来分式方程的概念。这样使学生感受到数学的简单,从而树立学好数学的信心。
3、辨一辨。
判断下列方程是不是分式方程,并说出为什么?
1/(x-2)=3/xx(x-1)/x=-1(3-x)/=x/2。
2x+(x-1)/5=103/x=2/(x-3)(2x+1)/x+3x=1。
指出:
分式方程与整式方程的区别(分母中含不含未知数)。
设计意图:
学生说出来了分式方程的概念还远远不够,通过这道题使学生更进一步的巩固分式方程的概念。(x-1)/x=-1这个方程可能学生会有争议,让学生说出自己的意见后,老师可总结,在判断方是否为分式方程时,不能化简,以形式为准。
4、想一想。
提出该如何解方程呢?让学生讨论后得出:
通过去分母,方程两边同乘以各分母的最简公分母,回忆最简公分母的定义。
设计意图:
让学生自己去想该如何解,然后老师加以指导,这样会使学生感觉到自己真正是课堂的主人,从而全身心地投入学习。
5、试一试。
(1)80/(x+5)(2)1/(x-5)=10/x.x-25。
方程两边同乘以x(x+5)得:方程两边同乘以(x+5)(x-5)得:
80x=60(x+5)x+5=10。
80x=60x+300x=5。
20x=300。
x=15。
提醒学生检验,对比两个方程发现问题。
设计意图:
通过提醒学生检验,让学生自己发现问题。从而自然引出话题。
6、议一议。
分式方程为什么会产生增根?(两边都乘以了一个零因式,但这个根是整式方程的解)所以分式方程的检验代入最简公分母即可,提出,分式方程能不检验吗?通过讨论使学生得出分式方程必须检验,因为分式方程的检验是为了看是不是增根,而不是检验对错,所以必须检验。
7、说一说。
1、程两边都乘最简公分母,约去分母,化为整式方程。
3、把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,必须舍去。
可简单记作:
一化二解三检验。
设计意图:
让学生对所学知识上升到一个理论高度。
8、做一做。
解方程:
(1)2/(x-3)=3/x(2)x/(x-1)-1=3/(x-1)(x+2)。
分式的教案篇六
应用题教学是培养学生分析问题和解决问题的一个非常重要的手段。但应用题阅读量大、建模难度高,学生往往无从下手。在教学中,我发现教师教的吃力,学生学的也很吃力,很多学生看见应用题就有一种说不出的恐惧感。于是在列分式方程解应用题的教学中,我试着运用表格分析法来进行应用题的教学,让学生有章可循,并取得了很好的效果。
一、教学案例展示。
分析:题中涉及工作量、工作效率、工作时间三量关系,甲、乙两种状态。根据题意,设乙每分钟能输入x名学生的成绩,则甲每分钟能输入2x名学生的成绩,用表格分析问题。
步骤一:列出表格。
步骤二:依次填写表格信息。
分式的教案篇七
一教材的地位和作用:
本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。
跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。
二、教学目标。
1.使学生理解分式方程的意义.。
2.使学生掌握可化为一元一次方程的分式方程的一般解法.。
3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.。
5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。
三、重点分析:本节重点是可化为一元一次方程的分式方程求解中的转化。解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。
难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于八年级学生理解有一定的困难,可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。
四、教学方法:
本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。特别注重“精讲多练”,真正体现以学生为主体。上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。
五、教学过程。
(一)复习:
设计意图:主要让学生继续区分整式方程与分式方程的区别,为新授做铺垫,使学生能积极投入到下面环节的学习。
(二)新授:
(1)学生学习例题交流讨论,找两组同学到黑板上尝试解题。
设计意图:通过学生对例题的合作研究,使每个学生对分式方程的解法有一个初步的认识,在此环节,鼓励同学大胆交流、发表自己的见解,同时学会聆听。培养同学们的合作意识。教师在此时对学生的问题要做出适当的评价,给同学以鼓励和引导。
(2)、讲解例题:
解:方程两边同乘x(x-2),约去分母,得。
5(x-2)=7x解这个整式方程,得。
x=5.。
检验:把x=-5代入最简公分母。
x(x-2)=35≠0,
∴x=-5是原方程的解。
设计意图;在此环节,教师鼓励同学们亲自体验,激发学生的学习热情。在巩固解分式方程的基础上发展学生的归纳能力、张扬学生的个性。使教师真正成为学生学习的促进者。
(3)议一议。
在解方程——=——-2时,小亮的解法如下:
方程两边都乘以x-2,得。
1-x=-1-2(x-2)。
解这个方程,得。
x=2。
你认为x=2是原方程的根吗?与同伴交流。
教师小结:
在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
验根的方法有:代入原方程检验法和代入最简公分母检验法。
(1)代入原方程检验,看方程左,右两边的值是否相等,如果值相等,则未知数的值是原方程的解,否则就是原方程的增根。
(2)代入最简公分母检验时,看最简公分母的值是否为零,若值为零,则未知数的值是原方程的增根,否则就是原方程的根。
前一种方法虽然计算量大,但能检查解方程的过程中有无计算错误,后一种方法,虽然计算简单,但不能检查解方程的过程中有无计算错误,所以在使用后一种检验方法时,应以解方程的过程没有错误为前提。
想一想:解分式方程一般需要经过哪几个步骤?由学生回答。
(4)教师归纳小结:
解分式方程的步骤:
1在方程的两边都乘以最简公分母,约去分母,化为整式方程。
2解这个整式方程。
3把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。
(5)轻松完成:课堂练习:82页1、2。
(6)归纳总结、整理反思。
学生自己总结本节课的收获。教师引导学生不但总结知识上的收获,也要总结合作交流上,反思整堂课的学习体验。
设计目的:引导学生从多角度对本节课归纳总结,感悟知识上的点滴收获,体验合作交流的快乐,反思自己。
分式的教案篇八
“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:
3、教材的处理。
学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用.最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:
1、知识技能:
2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的.思想方法。
3、解决问题:通过探索分数的基本性质,积累数学活动的经验。
4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。
1、教学方法。
数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
2、学法指导。
现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。
3、教学手段。
我所采用的教学手段是多媒体辅助教学法。
活动1创设情境,引入课题。
教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。在活动中教师要关注:(1)学生对学过的知识是否掌握得较好;(2)学生对新知识的探索是否有深厚的兴趣。
设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。
活动2类比联想,探究交流。
教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。
设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。
活动3例题分析运用新知。
教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。在活动中教师要关注:(1)学生能否紧扣“性质”进行分析思考;(2)学生能否逐步领会分式的恒等变形依据。(3)学生是否能认真听取他人的意见。
活动4练习巩固拓展训练。
教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注:(1)大部分学生能否准确、熟练完成任务;(2)学生能否用数学语言表述发现的规律;(3)学生在运算中表现出来的情感与态度是否积极。
设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。
分式的教案篇九
1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。
3、使学生能够利用最简公分母进行验根。
教学难点:解分式方程,学生不容易理解为什么必须进行检验。
在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望。
为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去。
一、新课引入:
1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?
2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
3、产生增根的原因是什么?.。
二、新课讲解:
通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同。
点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。
在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。
分式的教案篇十
下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。
一、说教材。
1、教材内容:
我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
2、教材地位:
分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的.混合运算作准备,为分式方程作铺垫。
3、教学目标。
知识目标:
能力目标:
(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)、能解决一些与分式有关的简单的实际问题。
情感目标:
(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
二、说教法。
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法。
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。
2、合作学习。
四、说教学程序。
1、类比学习,探索法则。(约3分钟)。
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)。
分式的教案篇十一
1.理解分式的基本性质。
2.会用分式的基本性质将分式变形。
二、重点、难点。
1.重点:理解分式的基本性质。
2.难点:灵活应用分式的基本性质将分式变形。
3.认知难点与突破方法。
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、例、习题的意图分析。
1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入。
1.请同学们考虑:与相等吗?与相等吗?为什么?
2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解。
p7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
p11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
p11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变。
解:=,=,=,=,=。
六、随堂练习。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.约分:
(1)(2)(3)(4)。
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改变分式的值,使下列分式的分子和分母都不含“-”号。
(1)(2)(3)(4)。
七、课后练习。
1.判断下列约分是否正确:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号。
(1)(2)。
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
4.(1)(2)(3)(4)。
分式的教案篇十二
1.知识与技能。
能掌握解分式方程的步骤,会如何解分式方程。
2.过程与方法。
通过一步步引导,使学生掌握解分式方程其实是转化为整式方程求解后验证解是否成立个一个过程。
3.情感、态度与价值观。
探求新知是一个将新知与旧知如何建模链接的过程,边探索,边完成这个过程。
二、重点与难点。
1.重点。
2、难点。
分式方程转化整式方程时的理论依据及具体步骤。
三、学情分析及课前反思。
本节课的学习前,学生已经熟练掌握解整式方程的求解,等式的基本性质,分式的运算。因此只需要点一下,应该就可以顺利过渡。教师的任务是如何能恰当地点一下,并让学生知其所以然。
四、重难点突破。
1、前面复习时复习分式的性质要详尽并板书。
2、不按照传统的顺序,给出题目后马上给出整式方程,引起学生的学习兴趣。
五、课前反思。
此引入部分不宜太长,也不能忽视等式基本性质的复习。最终需要达到的目的就是在课堂前10分钟内学生要掌握解分式方程是转化成一个整式方程求解的过程。经过多年实践,在环节三中,很多学生会理解成所谓的交叉相乘,必须予以及时纠正,否则出现有常数项时会产生混乱。二是在环节四后直接板书完整过程,学生容易漏掉检验这一步骤。所以等到学生在做题后,试误后予以引导,强化效果更好。
六、教学过程。
教学环节。
教学活动。
教师活动。
学生活动。
设计意图。
环节一:复习引入。
提问:1、方程的定义2、等式的基本性质。
提问并板书的方程定义,既然加上补充成分式方程的定义;板书等式的基本性质1,等式两边同时加或减同一个数或式子,等式仍然成立,等式的性质2,等式左右两边同时乘或除不等于0的数或式子,等式仍然成立。
1、全体口答。
环节二:
以旧带新;触类旁通。
板书90/(30+x)=60/(30-x)。
提问能解吗?
隔行后板书:
90(30-x)=60(30+x)并提问:能接吗?
问题1有点迟疑,部分有提前学的同学回答能解;问题2异口同声回答能解。
环节三:
明确依据;强化新知。
提示:注意观察两个方程,发现他们的联系吗?再引导学生看刚才复习过的`等式基本性质。
稍作思考后回答:交叉相乘。引导后知道应该是运用等式的性质二。
引导学生将未知转化为已知,分式方程可以通过转化成我们已经很熟练的整式方程求解。
环节四:
板书步骤;规范格式。
按照书本的规范格式作为示范板书,给学生一个规范。
补上刚才留空的一行:方程左右两边同时乘以两个分式的最简公分母(30-x)(30+x),去分母得。强调这一步就是去分母,是将分式方程化为整式方程的关键一步。
看老师板书。
环节五:
留白过程,满下伏笔。
后面整式方程的解题过程已经检验过程都留空,为一下强调检验过程铺垫。
提问:以下过程大家都懂了吧,那我就不详细下了。
认真听课。
环节六:
先做后教,加深印象。
板书另外四道解分式方程的题目作练习,根据完成情况再评讲。
板书四道题目:
(1)5/x=7/(x-2)。
(2)2/(x+3)=1/(x-1)。
(3)1/(x-5)=10/(x2-25)。
(4)x/(x-1)-1=3/(x-1)(x+2)。
堂上练习本完成练习。
学生解题后,引导学生回顾等式的性质中除为什么要强调不为0,是否这5道题的值都符合原方程。(4)(5)两个方程是无解的,因为解代入分母中为0。这时再强调分式方程接完后必须要检验。
七、板书设计。
等式的性质。
课题。
例题(1)练习(2)~(5)。
八、课后反思。
效果还是不错的,学生基本能掌握分式方程求解过程关键是运用等式的基本性质去分母。需要后面多一个课时才能达到熟练程度。
分式的教案篇十三
1、经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程(方程中分式不超过两个),会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系与区别。
2、通过探究,领会“类比”和“转化”这两种重要的数学思想,培养思维的严密性和条理性。
3、通过小组合作探究,增强团队意识,感受成果共享受愉快。
分式方程如何转化为一元一次方程来求解和验根。
分组准备:
1、回顾什么是最简公分母?
2、解一元一次方程的一般步骤,解方程:2(x-1)/3=5/6。
4、分式的基本性质,等式的基本性质。
4.解方程。
1、解一元一次方程2(x-1)/3=5/6。
3、例1……。
4、例2……。
活动1提出问题,激发兴趣。
1、教师出示问题:
你还记得怎样解一元一次方程吗?试一试。2(x-1)/3=5/6。
2、指名解题,师生点评,共同回忆解一元一次方程的步骤及每一步的方法和依据。
3、教师出示上一节课中所列的分式方程9000/x=15000/(x+3000),并提出问题:
这是我们上节课所列的方程,有什么特点?你能解吗?试一试(复习分式方程的概念)。
从而导出新课,板书课题。
活动2合作探究,解决问题。
1、学生分小组尝试解上面的方程,并了解学生解题情况,看有无学生发现先将分式方程转化为整式方程,再求解,若有则因势利导,若无,则通过后面的例题慢慢渗透。同时肯定利用比例的知识解题的方法。
2、教师出示例1。
前面我们每位同学都尝试了解分式方程,有的同学很有办法,将它解出来,并且有理有据,但也有的同学一时还解不出来,下面让我们一起再来探讨如何解分式方程。
3、教师引导学生解方程,注意分式方程如何转化为一元一次方程,渗透转化思想,注意展示解题的步骤和格式,注意告诉学生检验转化后方程的解是不是原分式的解。
4、教师出示例2,并指名上讲台演练。
学生自主练习,看看自己能不能解分式方程,并把过程简要地写下来。
5、师生共同点评。
通过学生的讨论,补充,教师告诉学生“增根”这一概念,并简要介绍产生增根的原因。(x=2不是原方程的根,因为它使得原分式方程的分母为零,我们称它为原方程的增根,产生增根的原因是,我们在方程的两边同乘了一个可能使分母为零的整式)从而要求学生解分式方程时必须验根,同时探讨检验的方法。
活动3小结归纳,巩固提高。
1、通过本节课的学习,请你想一想解分式方程一般需要经过哪几个步骤?
2、完成“随堂练习”:(1)3/(x-1)=4/x;(2)x/(2x-3)+5/(3-2x)=4(及时点评,纠错)。
活动4师生互动,疑难探讨。
1、学生把在学习中的疑难问题提出来,师生共同探讨。
2、在解分式方程的过程中,我们应注意些什么问题?
活动5目标小结,提高能力。
1、指名谈谈本节课有什么收获。
2、布置作业:p82第1题练习本上,第2、3题小组讨论后完成在草稿本上。
分式的教案篇十四
一、新课引入:
1.解分式方程的基本思路是什么?解分式方程常用的两种方法是什么?
2.在匀速运动过程中,路程s、速度v、时间t三者之间的关系是什么?
3.以前所学过的列方程解应用题的步骤有哪些?
二、新课讲解:
分析:
(1)题目中已表明此题是行程问题,实质上是速度、路程、时间三者关系在题中的隐含.
(2)题目中所隐含的等量关系是:甲从张庄到李庄的时间比乙
分式的教案篇十五
分式的基本性质是一章非常重要的知识,对于学生今后的数学学习有着很大的影响。
教学目标。
1、认知目标:通过类比分数的基本性质,使学生理解和掌握分式的基本性质;掌握约分的方法和最简分式的化简方法。
2、能力目标:使学生学习类比的思想方法,培养类比转化的思维能力;使学生掌握分式的基本性质,培养正确进行分式变形的运算能力。
3、情感目标:通过与分数的类比,导出分式的基本性质,渗透事物是联系及变化发展的辨证关系。即类比——联系——归纳——发展。
教学重点及难点。
重点是理解并掌握分式的基本性质。
难点是灵活运用分式的基本性质进行分式的恒等变形及最简分式的化简方法。
教学用具准备教学流程设计教学过程设计。
一、情景引入。
3.思考。
问题(1):还记得分数的基本性质吗?问题(2):分式是否也有这样的性质?
二、学习新课1.概念辨析。
3.巩固练习课后练习。
三、问题拓展。
(1)对于分式的基本性质的应用学生较容易出错的情况辨析:(2)对于利用分式的基本性质将分式的分子、分母化成整系数形式的习题,如不改变分式的值,把分式中分子、分母的多项式各项系数化成整数,并使最高次项的系数为正.(3)对于可将分式先化简再求值的题目的练习。
[以上这些问题可在学生学有余力的前提下,加深对分式的基本性质的理解和掌握。]。
四、课堂小结。
1、分式的基本性质?分式的基本性质是分式变形和运算的理论依据。
2、约分的方法?约分是实现化简分式的一种手段.通过约分将分式化成最简才是目的.而最简分式为分式间的进一步运算提供了便利条件。
五、作业布置。
分式的教案篇十六
总体说明:本节共三个课时,它分为分式方程的认知,分式方程的解答,以及分式方程在实际问题中的应用。彼此之间由浅入深。是“实际问题——&sh&sh分式方程建模&sh&sh&sh——求解——解释解的合理性”过程。本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础。同时应注意对学生进行过程性评价,要延迟评价学生运算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算理的理解上。
学生的知识技能基础:学生在小学以及七年级学过解应用题,以及在本章第三节所讲述的分式加减时所引入的问题的提出及问题的解答。对实际问题进行建模有初步地了解,具备分析问题,处理问题的能力。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些问题建模活动,解决了一些简单的现实问题,感受到找出问题等量关系的作用。获得了解决实际问题所必须的一些数学活动经验基础。同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力。
教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,解释所获得结果的合理性。对于常用的数量关系,虽然学生以前大都接触过,但在本节的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。为此,本课时的教学目标是:
知识与技能:
(1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。
(2)通过观察,归纳分式方程的概念。
(3)体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义。
过程与方法:采用的是尝试——归纳相结合的方法,根据开始提出的多个实际问题。教师鼓励学生进行尝试,利用具体情境中的等量关系列出分式方程,归纳出分式方程的定义。
情感与态度:在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力。
本节课设计了6教学环节:小麦实验田问题——高速公路问题——电脑网络培训问题——捐款问题——管理问题——课时小节。
如果设第一块实验田每公顷的产量为 ,那么第二块试验田每公顷的产量是___________g.
根据题意,可得方程:
活动目的:为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:在第一问中,同学们七嘴八舌,得到了许多等量关系。1、第一块实验田的
面积=第二块实验田的面积。2、每公顷的产量 。3、第一块实验田每公顷的产量 第二块试验田每公顷的产量。感觉到每人都能想一点,但都不全。第三问得到也有多种方案。例1、 ,2、 这时教师就应适时引导 , , 每步的实际意义是什么?这样帮学生排除了第二种形式。
活动内容:从甲地到乙地有两条长路:一条是全长600 的普通公路,另一条是全长480 的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45 ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?
活动目的:再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:这次讨论的声音比第一次要少些,可能感觉比上一题容易。找出的等量关系有(1)600=客车在普通公路上行驶的平均速度 客车由普通公路从甲地到乙地的时间。
(2)480 =客车在高速公路上行驶的平均速度 客车由高速公路从甲地到乙地的时间。
(3)客车在高速公路上行驶的平均速度减去客车在普通公路上行驶的平均速度
(4)由高速公路从甲地到乙地的时间 由普通公路从甲地到乙地的时间。
同样注意引导学生每一步的实际意义。
如果设原定是 人,那么每人平均分摊______________元。
人数增加到原定人数的2倍后,每人平均分摊_________________元。
根据题意,可得方程_______________________________________________-.
活动目的: 由浅入深,出了一道比上题难度大一点的问题。还是为了训练学生找出问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:这次学生讨论的声音又大了点,找出了如下的等量关系
(1) 实际参加活动的人数=原定人数 。
(2) 原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元。
根据题意:
活动目的:这次让学生独立思考,不再借助别人的力量。根据前面几题的练习,看同学们对找等量关系到底掌握了多少。特别关注那些后进生。以便及时调整教学进度。
教学效果:
这次不允许讨论,学生花的时间比上二题多些。当然有的学生还是反应很快,还有一部分学生则花了有5分钟的时间。在这个班,说明学生之间的差异还是很大的。
活动目的 :这个例题还是采取独立思考的原则,主要是针对刚才教师发现上一题做慢,做错的同学。努力引导他们找到问题中的等量关系。
教学效果:再次提醒刚才做错的和做的很慢的同学。让他们找到等量关系。由于我的提醒和同学们的注意力高度集中,从检查的效果来看,比上一次大有进步。
活动内容 : 对于一个现实问题 找到它的等量关系 建立分式方程 分母中含有未知数的方程叫做分式方程 同时注意每一步的实际意义。
活动目的:让学生感受到在实际问题中,一定要找到它的等量关系,最好是越多越好。根据等量关系来列方程,这个方程不是唯一的,今天的分式方程就是以前没有接触过的。同时培养学生有条理的思考及其语言表达能力。
教学效果:小节最好由同学们讨论,再派代表来叙述。而不是让老师说。教师只是顺势把学生的话进行一个归纳。关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中数量关系,并用分式方程表示,能否表达自己解决问题的过程。大家基本都知道核心是找到等量关系,从而找到它的方程。
布置作业:p87——随堂练习第一题p88——习题3.6——1,2,3
1、教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。这些问题的提出要根据本班学生的实际情况,学生能力强的,就要找一些难度大的。学生能力弱的,就要找一些难度小的。还可以因势利导的编一些与同学们生活息息相关的例子。当然,这些问题的提出都必须以现实生活为背景。不要出一些与实际生活不符的纯理论问题。
2、课堂上要把激发学生学习的积极性放在首位,多让学生说,帮助学生培养发展有条理的思考及其语言表达能力。同时要多注意困难学生的疑问。不要让一些思维活跃的学生的回答代替了其他同学的思考。使小组学习更有实效性。
3、列分式方程解决应用问题要比列一次方程(组)稍复杂一些。教学是要引导学生抓住寻找等量关系,恰当选设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量等关键环节,细心分析问题中的数量关系。一定要在这方面多花时间,要让你“会”转化为学生“会”。只要学生脑子里有分析这种问题的“意识”这节课才有收获。
分式的教案篇十七
1、让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。
2、使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算
3、引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力。
【重点难点】:
重点:分式的乘除法、乘方运算
难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。
一、复习提问:
(1)什么叫做分式的约分?约分的根据是什么?
(2)下列各式是否正确?为什么?
二、探索分式的乘除法的法则
1.回忆:
计算:×(-9)
2.例1计算:
(1); (2).
由学生先试着做,教师巡视。
3.概括:分式的乘除法用式子表示即是:
分式的教案篇十八
《分式》是北师大版八年级下册第3章第一节内容。本节课的主要内容是分式概念、意义和用分式表示数量关系。分式是小学所学分数的延伸和扩展,也是今后继续学习分式的性质、运算以及解分式方程的前提。
学生在七年级已经学习了整式,也初步养成了自主探究的数学学习意识。分式学习的方法与整式相类似可以通过类比进行分式的学习。依据课程标准,教材特点和学生认知水平,将本节课的教学目标确定为以下3个方面: (1)知识:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。
(2)能力:学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3 情感:通过数学活动,体验数学活动充满着探索和创造,体会分式的模型思想。
其中分式概念是《分式》这一章学习的起点和基础,因此我把分式的概念确定为本节课的教学重点。又由于初中学生不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分母中整式的值何时不为零、用分式描述数量关系自然就成了本节课的教学难点。
二、教法学法:基于以上教材特点和学生情况,为能更好地达成教学目标,我在本节课主要采用引导发现教学法,并借助于多媒体课件,通过问题情境建立模型应用与拓展的模式展开教学。
三、教学过程:《数学课程标准》明确指出:数学教学是数学活动的教学,学生是数学学习的主人。为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下四个环节:
(一)创设情景发现新知:我创设了这样的情境: 代数式庄园的果树上挂满了整式的果子:t,300,s,n,a-x,0,请你任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。其中有不同于整式的 式子吗?请说一说。 通过学生对自己所构造的代数式进行观察,创设发现情境,使学生学会把自己的活动作为思考的对象,从而更好地进行分式概念的建构活动。 针对学生的发现,采用议一议:你们所发现的这一类新代数式:它们有什么共 同特征?它们与整式有什么不同?的方式引导学生继续观察新式子的特征,类比分数,概括出分式的概念及一般表示形 式。然后通过小组内互举例子,在活动过程中强化分式概念,并注意辨析整式与分式的区别,强调分式的分母中必须含有 字母。
(二)合作交流再探新知:到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,我创设了以下活动供学生自主探究分式有意义的条件:首先是组织学生独立填写表格并交流:分式的值与字母取值有关,分式并不都有意义。自主得出分式有意义的条件:表达式里的分母b不等于0。
为了能让学生对刚获得的新知识进行最基本的应用,紧接着我安排了例题与练习。比较简单,可由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生都能达到基本的学习目标,获得成功感。
(三)应用新知巩固提高:分式来源于生活,又服务于生活。为使学生有所体会, 课本中的引例:土地沙化、固沙造林问题,我保留了前两问原计划完成一期工程需要( )个月,实际完成一期工程用了( )个月,使题目难度更适合学生的思维水平;同时向学生介绍中国土地沙化问题渗透环保意识。
分式的教案篇十九
1、掌握同分母分式加减法则。
2、会进行同分母分式的加减运算。
同分母分式的加减运算。
有的题目中涉及到分式的分母做适当的转化能运用同分母分式的加减法则,过程较为复杂。
学习过程设计教学过程设计
同分母分式相加减法则:
同分母的分式相加减,
分母不变,分子相加减.
1.填空:
则两者的概率之和=_____+_______=________.
3.计算,
正确的结果是()
4.计算:
5.先化简再求值:,
其中x=2.
你还有哪些地方不是很懂?请写出来。
下列运算对吗?如不对,请改正.
1.(口算)计算:
2.计算:
教后反思分式的加减,学生最容易错的是异分母分式进行加减,需要同分才可以进行计算。在同分的过程中要找到最简公分母。