不规则物体的体积教学设计大全(19篇)
智者总结经验,愚者重复错误,我们应该如何总结自己的经历?总结的完美不仅仅是内容的丰富,还需要表达的方式得体得当。以下是一些专家观点和评论,希望能够为您提供一些深入的思考。
不规则物体的体积教学设计篇一
1、使学生进一步熟练掌握求长方体和正方体容积的计算方法。
3、通过学习,让学生体会数学与生活的紧密联系,培养学生在实践中的应变能力。
教学难点:灵活运用所学知识分析解决实际问题。
教法:利用已有的.经验,通过观察、操作等活动经历探索知识的过程,加强学生对所学知识的理解。
学法:通过观察、操作等活动,尝试用不同方法解决实际问题,体验“转化”的数学思想,探究求不规则物体的体积。
教学准备:橡皮泥、梨、量杯、多媒体课件。
教学过程。
学生读题独立完成,指名板演,集体订正。
1、师:我们已经学会了长方体、正方体的体积,可现实生活中还有许多像橡皮泥、梨、石头等形状不规则的物体。怎样求得它们的体积呢?今天,我们就一起来研究如何求不规则物体的体积。(板书课题)。
2、出示大屏幕。
橡皮泥??梨。
师:我们一起来看题目:要解决什么问题?这些物体有什么特点?
师:大家想怎么解决呢?同桌两人讨论一下,一会儿我找人说。
生:可以把橡皮泥捏成规则的长方体或正方体,量出它的长、宽、高求出体积。
师:把不规则的、可以变形的物品捏成规则的我们学过的立体图形,求出体积。很好,思路很清晰。
那梨呢,把梨也能削成长方体或正方体吗?显然不可能,那怎么办呢?
生:可以用排水法。
师:说一说你的思路。
生:先在杯子里放一些水,记住它的刻度,再把梨放入杯子里,也记下刻度,两次刻度的就是梨的体积。
师:他说的大家听明白了吗?
师:可以利用上面的方法测量乒乓球、冰块的体积吗?为什么?
师:所以我们一定要注意用排水法只能求出沉入水中的物体。
1、出示大屏幕。
珊瑚石的体积是多少?没有量杯,只有长方体容器,能求出珊瑚石的体积吗?
分析:题中告诉我们水的体积了吗?能求出来吗?
知道总体积吗?怎样求?你会解答吗?
2、练习九第8题。
读题,分析:这道题怎么做?
不规则物体的体积教学设计篇二
教学内容:教材第29~30页圆锥的体积计算、例1和“练一练”,练习八第1-3题。
教学目标:
知识目标通过学生动手操作实验发现等底等高的圆柱、圆锥体积之间的关系,从而得出圆锥体积的计算公式,并能运用所学知识解决实际问题。
能力目标培养学生的动手操作能力和探究意识;发展学生的空间观念和思维能力;
情感目标对学生进行辩证唯物主义观念教育,培养学生良好的思想品德。
教学重点:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。
教学难点:理解和掌握圆锥体积的计算公式。
教具准备:长方体、正方体、圆柱体和圆锥等;演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的1/3的教具。
预习作业:
1、预习课本第29~30页例5,理解并掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
2、在课本上完成第30页的试一试、练一练。
教学过程:
一、预习效果检测。
1、圆锥体积等于等底等高圆柱体积的;
2、圆锥的体积公式是();
3、一个圆锥的底面积是120平方分米,它的高是7分米,它的体积是多少立分方米?
4、一个圆锥的底面半径是6厘米,它的高是8厘米,它的体积是多少立分厘米?
二、合作探究。
1.通过预习检测可以看出同学们基本掌握了圆锥体积的计算公式,你们是怎样知道的呢?这节课就和同学们一起学习圆锥的体积。
2.实验操作、推导圆锥体积计算公式。
通过演示使学生知道什么叫等底等高?(第29页)。
让学生猜想:自己手中的圆锥和圆柱等底等高,能猜想积之间有怎样的关系?
(3)实验操作,发现规律。(将学生分成5组,合作学习)。
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆柱和圆锥有怎样的关系呢?(让学生操作)。
(5)圆锥和圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的1/3。
(6)启发引导推导出计算公式并用字母表示。
4、综合运用。
独立完成“试一试”。
(1)审题后可让学生根据圆锥体积计算公式自己试做。
(2)批改讲评。练习时要注意哪些什么问题。
2)做“练一练”第1题。
指名一人板演,其余学生做在练习本上。集体订正,让学生讨论得出要先根据已知条件算出圆锥的底面积,再利用公式求出圆锥的体积强调要乘以1/3。
3)做“练一练”第2题。学生做在课本上。小黑板出示,指名口答。
4)分别做练习八第1题、第2题和第3题。
学生独立完成、小组讨论、集体评讲。
5、课堂小结这节课你学习了什么内容?圆锥的体积怎样计算?为什么?
圆柱的体积怎样计算呢?你还有哪些困惑?
三、当堂达标检测。
1、《补充习题》相关练习;2、反馈纠正。
3、部分同学订正预习检测的相关习题。
教学反思:
不规则物体的体积教学设计篇三
教学目标:1.通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积。
2.培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3.渗透事物间相互联系的辩证唯物主义观点的启蒙教育。
教学重点:通过转化的思想理解和掌握圆锥体积的计算公式。
教学难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
设计理念:本课中首先联系已有的公式的推导,进一步强化学生的转化思想;然后通过在不同的圆柱体和圆锥体的选择培养学生的合理的判断和推理能力;三是通过实验,培养学生的观察、操作能力和初步的空间观念,为以后的几何知识的学习奠定良好的学习方法。
教学步骤教师活动学生活动。
一、复习铺垫、强化转化思想。1.圆柱体的体积是什么?我们是如何推导的?
圆柱------(转化)------长方体。
2.今天我们要学习圆锥体的体积,同学们觉得用什么方法比较好?
3.同学们觉得把圆锥体转化成什么比较好呢?
圆锥------(转化)------圆柱学生回忆所学的数学知识中有哪些地方用到了转化的思想。
二、正确选择、训练直觉思维。1、教师拿出许多大小不等的圆柱体和圆锥体容器展示给学生。提问:
(1)同学们打算如何转化圆柱体和圆锥体之间的关系?
(2)如果让你在这么多的圆柱体和圆锥体中选择两个来探究,你打算选择什么样的圆柱体和圆锥体,说说你选择的理由。
2、在学生讨论的基础上教师强调用等底等高的圆柱体和圆锥体进行讨论。
学生自由讨论应该选择什么样的圆柱体和圆锥体容器。
三、大胆猜想、培养想象能力。
同学之间互相交流并说明想法。
学生分组讨论。
四、实际操作、探究掌握新知。
1.学生分组,探究等第等高的圆柱体和圆锥体体积之间的倍数关系。
2.学生实验。
3.报实验结果。
学生的实验结果如下:
(1)用领取的底面积相等,高相等圆柱和圆锥,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
(2)用底面积相等,高不相等的圆柱和圆锥,圆锥体容器装满沙土往圆柱体容器里倒,不是三次正好装满。
(3)用底面积不相等,高相等的圆柱和圆锥,圆锥体容器装满沙土往圆柱体容器里倒,也不是三次正好装满。
4.引导学生发现。
(1)等底、等高的圆柱体和圆锥体的体积之间有什么样的倍数关系?
(2)圆锥体的体积可以怎么表示?
板书:圆锥的体积=圆柱的体积×。
圆锥的体积=底面积×高×。
用字母表示v=sh。
学生分组后推荐一个代表到老师处领取合适的圆柱体和圆锥体容器,并做好实验的准备。
学生先互相交流实验结果,总结出现的几种情况。推荐代表发言。
学生自己说出圆锥体积的公式。
五、运用公式,解决实际问题。1.运用公式完成试一试。
评讲时强调求圆锥体体积时要注意什么。
2.学生独立完成30页练一练。
3.口答练习八4。
学生口答后进一步强调等底等高的圆柱体和圆锥体体积之间的关系。
4.学生在作业本上完成练习八1、2、3。
5.同学们自己谈谈学习圆锥体积的收获。
学生独立练习。
练习后学生之间互相评价。
学生互相谈收获。
不规则物体的体积教学设计篇四
3.进一步感受数学与生活的密切联系,体会学习数学的重要性。
教学重点:理解和掌握几何体的体积计算公式及其推导过程。
教学难点:正确选用表面积和体积计算公式解决实际问题。
设计理念:本节课引导学生回忆体积计算公式的推导过程,经历知识的整理过程,完善认知结构,感受数学思想方法的奥妙;创设一系列的问题情境,引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,让学生了解数学在现实生活中的作用,体会学习数学的重要性。
教学步骤教师活动学生活动。
一、揭示课题。
这节课我们复习立体图形的体积计算。
二、回顾与整理1.提问:你能说一说各立体图形体积的计算公式吗?
(板书公式)。
2.请大家回忆一下各立体图形体积公式的推导过程,想一想它们之间的联系,与同学们进行交流。
3.提问:你认为这些计算公式哪一个是最基础的?为什么?
回忆推导过程,
分组讨论。
汇报交流。
三、练习与实践1.求下面各立体图形的体积和表面积。
(1)棱长是6厘米的正方体。
(2)长方体的长是6分米,宽是5分米,高是1.2米。
(3)底面半径3分米、高5分米的圆柱。
(4)底面周长12.56厘米,高0.3分米。
2.学生解答后提问:
“第一个正方体的表面积和体积相等”这句话对吗?为什么?
你能说说表面积和体积的区别吗?(含义、计算方法、计量单位)。
学生独立解答。
判断说理。
进一步比较表面积和体积。
解题以后你还有什么体会?
(认真审题、正确选择方法、细心计算)。
3.填一填。
(1)小明用小正方体魔方搭一个大正方体,至少需要()个魔方。这个大正方体的表面积是原来小正方体的()倍。
(2)将1立方分米的大正方体切成体积是1立方厘米的小块,并将这些小块拼成一排,能摆()米长。
a、10b、100c、1000d、1。
(3)圆锥体的底面积缩小3倍,高扩大3倍,体积()。
a、缩小3倍b、不变c、缩小9倍d、无法确定。
(4)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米。
a、16b、48c、32d、24。
4.解决实际问题.
(2)学校有一个圆柱形状的储水箱,它的侧面由一块边长6.28分米的正方形铁皮围成。这个储水箱最多能储水多少升?(接缝略去不计)。
(3)一种计算机包装箱,标明的尺寸是380×266×530。它的体积是多少立方分米?做这个包装箱至少需要多少平方分米硬纸板?(用计算器计算,得数保留两位小数)。
解决这些问题,你认为要注意什么问题?
谈谈解题体会。
学生填空后说说想的过程。
学生独立解答后,
分组交流解题方法。
四、课堂总结。表面积和体积有什么区别?在复习过程中,你觉得还有哪些困难?
反馈思路及方法。
不规则物体的体积教学设计篇五
1、使学生进一步熟练掌握求长方体和正方体容积的计算方法。
3、通过学习,让学生体会数学与生活的紧密联系,培养学生在实践中的应变能力。
灵活运用所学知识分析解决实际问题。
教法:利用已有的经验,通过观察、操作等活动经历探索知识的过程,加强学生对所学知识的理解。
学法:通过观察、操作等活动,尝试用不同方法解决实际问题,体验“转化”的数学思想,探究求不规则物体的`体积。
橡皮泥、梨、量杯、多媒体课件。
一、复习旧知。
学生读题独立完成,指名板演,集体订正。
二、谈话导入。
1、师:我们已经学会了长方体、正方体的体积,可现实生活中还有许多像橡皮泥、梨、石头等形状不规则的物体。怎样求得它们的体积呢?今天,我们就一起来研究如何求不规则物体的体积。(板书课题)。
2、出示大屏幕。
橡皮泥梨。
师:我们一起来看题目:要解决什么问题?这些物体有什么特点?
师:大家想怎么解决呢?同桌两人讨论一下,一会儿我找人说。
生:可以把橡皮泥捏成规则的长方体或正方体,量出它的长、宽、高求出体积。
师:把不规则的、可以变形的物品捏成规则的我们学过的立体图形,求出体积。很好,思路很清晰。
那梨呢,把梨也能削成长方体或正方体吗?显然不可能,那怎么办呢?
生:可以用排水法。
师:说一说你的思路。
生:先在杯子里放一些水,记住它的刻度,再把梨放入杯子里,也记下刻度,两次刻度的就是梨的体积。
师:他说的大家听明白了吗?
师:可以利用上面的方法测量乒乓球、冰块的体积吗?为什么?
师:所以我们一定要注意用排水法只能求出沉入水中的物体。
三、巩固练习。
1、出示大屏幕。
珊瑚石的体积是多少?没有量杯,只有长方体容器,能求出珊瑚石的体积吗?
分析:题中告诉我们水的体积了吗?能求出来吗?
知道总体积吗?怎样求?你会解答吗?
2、练习九第8题。
读题,分析:这道题怎么做?
四、小结。
这节课我们学习了求不规则物体的体积,不管是用排水法还是捏成规则立体图形,本质上都是将不规则的转化成规则的,都是通过等积变形进行转化,转化的前提是体积不变。
不规则物体的体积教学设计篇六
教学内容:教材第28页的第7~题及思考题。
教学目标:
1、提高学生应用公式解决实际问题的能力,
2、帮助学生进一步感受所学知识的应用价值;进一步培养学。
生的空间想象能力和综合应用数学知识解决实际问题的能力。
教学过程:
预习作业检测。
一根圆柱形钢材的底面直径是4分米,高1分米,每立方。
分米钢重7.8千克,这根钢材一共重多少千克?
合作探究。
完成练习七第7题。
师引导学生审题。
小组讨论、交流。
指名汇报解题思路。
生独立完成。
展示、评价。
完成练习七第8题。
指导学生读题,明白抹水泥部分是哪几个面。
指名说出想的过程。
生独立完成后展示、交流评价。
完成练习七第9题。
指导学生读题,使学生明白这个大棚实际上就是半个圆柱。
小组讨论,交流解题思路。
生独立完成后全班交流评价。
完成思考题。
引导学生读题分析,要想求出圆钢的体积就必须先求出圆柱形储水桶的底面积。
当堂达标检测。
完成补充习题。
课后拓展。
教学反思:
不规则物体的体积教学设计篇七
教学目标:
1、在理解的基础上进一步掌握长方体和正方体的体积算法。
2、能根据实际情况,灵活地运用不同的方法求出不规则物体的体积,体验合作探究的乐趣,培养学生不怕困难,勤于思考的学习态度。
教学重、难点:
教学准备:
梨、苹果,橡皮泥、石块、直尺,长方体透明容器,一小桶水,红水一瓶,量筒等。
教学过程:
一、复习引入。
2、计算体积与容积有什么联系和区别?(计算体积和容积都可以用到计算公式:
v长=adh。
v正=3a。
v=sh。
但计算容积时需要从里面量出长,宽,高。)。
复习的意图:通过问答唤醒学生已有知识,知道容积和体积的测量方法不同,为后续教学作铺垫。
3、引入;对规则物体如长方体或正方体,我们有办法求出它们的体积。但对这些不规则物体如橡皮泥,苹果,梨等能求出它们的体积吗?今天我们就来尝试一下吧。
二、探究新知。
老师:有什么办法求出橡皮泥的体积吗?
学生:同桌讨论交流(将橡皮泥摔成长方体;将橡皮泥丢进水里使水上升;……..)。
老师:在这些方法中,哪一种方法最简单?
学生:可以将橡皮泥捏成长方体或正方体,再通过测量长,宽,高就可以求它的体积。
操作;学生同桌合作探究橡皮泥的体积。可捏成长方体,量出长,宽,高,算出它的体积是()。
可捏成正方体量出棱长,算出它的体积是()。
小结:对于软不规则物体,我们可以通过捏成规则的如长方体(或正方体,但难度要大)可求出它的体积。(变形法)。
那么对于硬的不易变形的不规则物体,有什么办法来求出它的体积呢?
出示一块石头,问:你有什么办法求出它的体积吗?教师提示“乌鸦喝水”一课学生相互交流,汇报:
老师演示,将一块石头放进盛水的量杯里,注意使石头完全沉没于水中,水会上升。
小结:像上面这种方法叫做“排水法”。
3、如果没有量杯,只有长方体玻璃容器,那我们又该怎样来测量不规则物体的体积呢?
做实验,并完成下表填空。
即:芒果的体积=长×宽×(水升后的高-水升前的高);
或芒果的体积=底面积×两次水位高的差。
课件出示:求不规则物体的体积可以将不规则物体沉入有水的长方体容器中,量出长方体水的长,宽,高,算出上升那部分水的体积,就可以求出不规则物体的体积。在测量时注意量出水上升前的高度和上升后的高度。利用“底面积×两次水位高的差”这个公式来计算。
三、巩固练习。
练习九第7题,第13题。
四、全课总结。
并对学生进行“节约用水”教育。
不规则物体的体积教学设计篇八
在学生完成实验结果汇报后,思考:“为什么上升的那部分水的体积就是物体的体积”?学生一时表述不清,只要给点时间让他们思考,他们就能意识到:水面上升的原因是投入了石块,水增加的体积就是石块的体积。还有一些学生,先是疑惑,停顿几秒后,就都豁然开朗了。数学学习是通过思考进行的,没有学生的思考就没有真正的数学学习,而思考问题是需要一定的时间的。因此学生在思考时,教师要做到耐心等待,给予了学生充足的思考时间,使学生真正经历了整个思考过程.
在教学时,我通过引导,让学生发现,不规则的物体的体积必须要转化成规则物体的体积,水可以充当这一转化过程中的中介,解决问题的关键是怎样在水中体现不规则物体的体积,学生思考后交流:将不规则物体放入盛有一定量水的长方体容器里,上涨的水的体积就是石块的体积;将不规则物体放入盛满水的长方体容器里,溢出的水的体积就是不规则物体的体积。对于溢出的水,学生也想出了很好的处理方法。所以学生能掌握求不规则物体的体积。
不规则物体的体积教学设计篇九
教学内容:教材第37页测量物体的体积。
教学目标:
1.通过学习,使学生所有的物体都有一定的体积,并学会求同一种物体的体积。
2.通过学习,使学生了解不规则物体的计算方法,并提高灵活应用计算方法解决一些实际问题的能力。
教学难点:进一步掌握同一种物体的体积计算方法。
预习作业:
1、回家找一块土豆,并计算它的体积。
2、回家找同一种铁块大小不同的3块,并算一算它的体积。
教学过程:
-、预习效果检测。
1、计算下面物体的体积。
圆柱:底面直径5厘米,高7厘米。
圆柱:底面直径15厘米,高7厘米。
圆柱:底面直径5厘米,高14厘米。
圆柱:底面直径5厘米,高21厘米。
圆锥:底面直径5厘米,高7厘米。
圆锥:底面直径5厘米,高21厘米。
圆锥:底面直径5厘米,高14厘米。
通过计算,你发现了什么?
二、合作探究。
1、出示准备好的圆柱形容器1个,土豆1个,小组合作,用下面的方法测量物体的体积,并填写表格。
实际操作时应注意什么?
2、出示准备好的2块铁块,并用天平称出它们的质量,并填写下表。
比较测量和计算的结果,你有什么发现?
三、教师小结。
同学们,同一种材料,质量与体积比的比值时一定的。应用这一知识,我们就能算出另一块铁块的体积。
四、课堂小结。
通过这节课复习,你进一步明确了哪些知识?
不规则物体的体积教学设计篇十
”她笑着说:“很聪明,你知道测了吗?”
我恍然大悟,课余,我在实验室做起了实验。
1、我拿了50毫升的量筒,水平实验桌上。
2、往量筒里加30毫升的水,方便取放岩石,用线把岩石栓。
3、把栓好的岩石放进去,水面上升到哪个刻度,水上升的体积岩石的体积。
记录如下:(单位:毫升)。
水面高度。
放岩石后水面高度。
次
30。
33。
3
次
30。
33。
3
次
30。
32.7。
2.7。
岩石的平均体积=(3+3+2.7)/3=2.9毫升=2.9立方厘米。这种方法,我很容易地测出了岩石的体积。不光是岩石,只要是不规则的物体(这种物体又不溶解在水中的)的体积,都可以用这种方法测量。
生活中处处有科学,只要多动脑,多动手,解决!
科学小实验作文:冰糖融化了
不规则物体的体积教学设计篇十一
不规则物体的体积是在学生学习了长方体、正方体的体积,容积等有关知识的基础上进行教学的,对于学生灵活运用知识解决问题是一个非常大的挑战。
一、亮点。
1、注重指导学生观察、实验,理解排水法的解题思路。在教学中,邸老师通过让学生观察瓶子中的水,思考哪些是喝掉的水,让学生想一想根据之前学习的知识能否解决问题,从而想办法怎样把不规则的物体转换为规则物体,进而解决不规则物体的体积。接着,邸老师通过倒置瓶子,让学生继续观察对比,发现什么不变,什么变化了。学生通过观察发现瓶子没有变化,所以体积也没有变化,空白部分的体积也没有变化。那么到底是什么发生变化了呢?高度变了,形状也变化了。通过这样认真细致地观察,学生会想到把不规则物体的体积转换为规则物体的体积,也就是圆柱的体积进行计算,这也就揭示了排水法的解题思路。
2、注重习题的多样性、层次性。邸老师在新知的学习过程中,通过精心的'教学设计,学生的细致思考,得出求不规则物体的体积的解题思路。在练习中,邸老师注重练习的层次性,由简单到复杂,由单一到多样,循序渐进,教学效果较好,练习的时间充分,关注了不同学生的学习。
二、建议。
1、在教学过程中,可以对解决问题的步骤进行提炼总结,回顾与反思,利于学生清晰解题思路,能够依据数学模型解决不规则物体的体积问题。
2、在教学过程中,还需要留给学生充分的思考时间和空间,让学生在思维碰撞中理解所学的知识,能够应用所学知识解决问题。
不规则物体的体积教学设计篇十二
《不规则物体的体积》这节课是人教版小学数学五年级下册第三单元的内容。本节课是在学生学习了物体的体积、物体的容积等有关知识后进行学习的,这部分知识着重考察学生对知识的迁移转化能力及综合应用能力,所以这部分知识是本单元的教学中的一大难点。
因此在设计教学时我避开了学生的认知冲突,采用《乌鸦喝水》的故事直接导入不规则物体体积的计算方法为排水法,然后通过学生实验演示、观察、讨论直至得出结论,整个教学过程看似有声有色。但是,课后经过丁老师和李蕊坊主及各位坊员对这节课教学过程设计提出的见解及指正,我意识到自己由于胆小怕出问题的思想禁锢了学生的思维,没有让学生的思维得到进一步的提高,数学教育的根本不是教会学生怎样算题,而是让学生掌握解决问题的方法,本节课的教学我偏离了这一主题。
由于我刚开始对学生思维的限制,学生对不规则物体的体积计算方法没有进行大胆猜测验证,学生们的`创造性没有得到发展,整个课堂便失去了灵动。虽然整个课堂经过我一步一步引导完成教学任务,但是没有做到让学生对数学课堂“心动”的教学效果。
通过这节课的缺憾,我意识到教学时对每一节课的教学设计都不要越俎代庖,应该遵循儿童的认知发展规律,通过他们的认知冲突去引导学生积极思考、分析问题并解决问题。这样的数学课堂才是孩子们的数学课堂,才是他们心目中理想的数学课堂,只有符合学生认知规律的数学课堂,才能调动学生的学习兴趣,对数学课堂“动心”。
很庆幸有机会加入李蕊老师工作坊,并且加入《小学数学课堂“生动之动心”教学策略的实践探究》这个课题的研究团队,使我在教学工作中不断发现自己的不足之处。经过各位老师的帮助和提点,在今后的工作中克服不足、继续努力,力争成为一名优秀的人民教师。
不规则物体的体积教学设计篇十三
一天,我刚上完奥数课,看到妈妈,便兴奋地说:“妈妈,我学会了求长方体和正方体体积的方法了。”妈妈笑着说:“真的?那我要考考你了。”“好,随便你怎么出吧。”体、长方体,这样试试看?”我一听,点了点头,似乎顿时茅塞顿开,便急忙拿起小刀,按照妈妈提示的方法,用小刀切呀切,再用尺子量呀量,再算啊算,直搞得满地是演算纸,一分钟过去了,两分钟过去了,三分钟过去了……也不知过了多久,才终于算出了土豆的大约体积。唉,我想到这种方法太复杂了,计算还不准确,要是有更简便的方法就好了!这时,妈妈又走过来指点迷津:“妈妈给你讲一个物理学家阿基米德的故事……”原来阿基米德利用等积代换算出了金皇冠的真假。我灵机一动,想道:我不是也可以用等积代换来求土豆的体积吗?于是,我拿来一个长方体的.玻璃容器,量出它底面长是6厘米,宽是4厘米,我往容器中倒了10厘米的水,然后把土豆完全浸没在水中,这时,容器中的水上升了。我又量了一下,现在的水是15厘米,也就是说,容器中的水上升了5厘米(15-10),按照等积代换,上升水的体积就是土豆的体积,由此,可以算出土豆的体积是:6×4×5=120(立方厘米)。嗯,这种方法简单多了。当我把体积告诉妈妈时,妈妈对我竖起了大拇指。
晚上我也如愿以偿的吃到了我最喜欢的土豆丝。通过这件事我明白了在生活中,换种方法,换个角度,能有意想不到的结果。
不规则物体的体积教学设计篇十四
带着疑问,我问了老师,老师没有直接我,而是给我讲了乌鸦喝水的故事!她问我:“你知道留在瓶底的水为会溢吗?”我点点头:“乌鸦把石头放进了瓶子里,石头是有体积的,石头占据了水的体积,所以瓶底的水才会溢,乌鸦地喝到水。”她笑着说:“很聪明,你知道测了吗?”
我恍然大悟,课余,我在实验室做起了实验。
1、我拿了50毫升的量筒,水平实验桌上。
2、往量筒里加30毫升的水,方便取放岩石,用线把岩石栓。
3、把栓好的岩石放进去,水面上升到哪个刻度,水上升的.体积岩石的体积。
记录如下:(单位:毫升)。
水面高度。
放岩石后水面高度。
次
30。
33。
3
次
30。
33。
3
次
30。
32.7。
2.7。
岩石的平均体积=(3+3+2.7)/3=2.9毫升=2.9立方厘米。这种方法,我很容易地测出了岩石的体积。不光是岩石,只要是不规则的物体(这种物体又不溶解在水中的)的体积,都可以用这种方法测量。
生活中处处有科学,只要多动脑,多动手,解决!
科学小实验作文:冰糖融化了
不规则物体的体积教学设计篇十五
本节课的内容是在学生已经学习了容积和容积单位、长方体和正方体体积的基础上进行教学的。
1.利用学生的生活经验进行教学,体会转化思想。在教学例6中,教师首先提出如何求橡皮泥的体积时,学生由于在学习长方体和正方体的体积概念时,已经知道把一块橡皮泥捏成一个长方体或一个正方体,体积不变的特点,因此在教学中学生能够轻松解决这个问题,利用转化法把橡皮泥捏成规则的形状,就可以求出橡皮泥的体积。在求梨的体积时学生也能想到把梨放进有水的容器里,通过观察水上升,发现上升部分水的体积等于梨的体积,即梨的体积=总体积-水的体积。通过例题的教学,学生认识到解决不规则物体的体积就是把它转化为规则物体的体积进行计算。
2.变化习题,深入体会不规则物体体积的计算方法。在教学求不规则物体的体积后,我出示了一组练习题:
(1)一个正方体鱼缸,从里面量棱长是2分米,向鱼缸内倒入5.5升水,再把几条金鱼放入水中,这时量得水深15厘米,求这几天金鱼的体积。
(2)课本练习九第7题:求珊瑚石的体积。
第(1)题:主要让学生根据不规则物体的体积=总体积-水的体积计算公式解决问题。而在第(2)题中,学生既可以根据上面的公式解决问题,也可以根据上升部分水的体积是一个长方体,即珊瑚石的体积=长×宽×高,强调这个高是水面上升部分的高度(总高度-水的`高度),并把这两种方法联系起来对比,学生可以发现这两种方法的基点就是乘法分配律,从而沟通两种方法的联系对比,进一步体会求不规则物体体积的计算方法。
学生在解决练习九第9题中,对于水池溢出的水的体积的理解有误,理解成了水池溢出的水的体积等于两根石柱的体积。为什么会出现这种情况,这与我在教学乒乓球和冰块不能用排水法有关系,没有给学生强调必须把物体完全沉入水中,才能得到水面上升部分的体积=物体的体积。
在教学中还是要注意强调水面上升部分的体积=沉入水中物体的体积这一核心特点。
将本文的word文档下载到电脑,方便收藏和打印。
不规则物体的体积教学设计篇十六
不规则的物体在我们的日常生活中随处可见,发现、验证并运用排水法测量不规则物体的体积是本节课教学的重点。目的在于通过本节课使学生明白任何一个想法都应当通过亲身的实践去验证才能够得到结论再加以应用,这是一种很严密的思维过程,也是现在孩子缺少的一种思想。并在理解“上升的水的体积就是浸入水中物体的体积”的基础上,感悟“转化”的数学思想,是本节课的难点。
本节课的教学,要依托学生的认知基础和已有知识,通过让学生经历观察、猜想、实验操作等数学活动过程,尝试用多种方法解决实际问题,体验等量替换的数学思想,探究求不规则物体体积的方法。培养学生积极探索,小组合作,勇于创新的精神。
通过以解决问题为目的的实践活动,培养孩子实践能力和用数学方法分析、解决现实生活中实际问题的能力。在本节课中,有很多环节的处理都不是很到位,主要从以下几点谈谈自己的一点体会:
1、保证数学思考的时间,提高数学思考的有效性在学生完成实验结果汇报后,思考:“为什么上升的那部分水的体积就是物体的体积”?学生一时表述不清,老师由于心急就赶紧插嘴,引导学生思考、表述。
其实,只要给点时间让他们思考,他们就能意识到:水面上升的原因是投入了西红柿,水增加的体积就是西红柿的体积。还有一些学生,先是疑惑,停顿几秒后,就都豁然开朗了。数学学习是通过思考进行的,没有学生的`思考就没有真正的数学学习,而思考问题是需要一定的时间的。因此学生在思考时,教师要做到耐心等待,给予了学生充足的思考时间,使学生真正经历了整个思考过程,有效地培养了学生的思考能力。保证了学生思考的实际效果。
2、注重思维方法的引导,从“授人以鱼”到“授人以渔”在教学时,我通过引导,让学生发现,不规则的物体的体积必须要转化成规则物体的体积,水可以充当这一转化过程中的中介,解决问题的关键是怎样在水中体现不规则物体的体积,学生思考后交流:将不规则物体放入盛有一定量水的长方体容器里,上涨的水的体积就是石块的体积;将不规则物体放入盛满水的长方体容器里,溢出的水的体积就是不规则物体的体积。对于溢出的水,学生也想出了很好的处理方法。
在此,我就为学生创设了自主学习的空间,先让学生独立思考,每个人有自己的想法后,在交流中造成冲突,又在观察、讨论、思考中相互接纳,满足了学生的不同需要,尽显了学生的潜在能力,发挥了课堂教学中的多种交互作用,使师生的生命力在课堂中得到充分的发挥。由此我也深该地认识到,教师只有不断学习,提升教学水平,增强自信,才能驾驭课堂,顺利完成教学任务。
不规则物体的体积教学设计篇十七
在我们日常生活中,有很多时候需要知道一个物体的体积。生活中有些规则图形,如正方体、长方体、球体。这些物体的体积可以用一些已经得以证明的公式求的。但我们周围的物体大部分都是形状不规则的物体,如土豆、橡皮泥等等。那么这些物体我们应该怎么求体积呢。我决定做个试验来试试。
回到家中,我准备了各种需要的工具:土豆、有刻度的量杯、水等等。我先把了两百毫升的水倒进了量杯中,然后把土豆放了进去,我发现两百毫升的水上升到了四百五十毫升,那么这就说明了土豆占据了水一定的容积,所以水的刻度才会上升。之后我又把现在的水深四百五十毫升和之前的二百毫升水的差距计算出来。所得的这个结果就是土豆占据水的体积。最后换算下单位,这个土豆的.体积就算出来了。我们一般叫这个方法为排水法。所谓排水法就是把形状不规则物体放入水中,水就有可能上升,那么前后的差距,就是这个物体的体积。
另外我还发现了比较两个形状不规则物体体积的方法,同样用的也是排水法。把这两个要比较的物体放入两个容水量相同的容器里,看哪一个容器水面上升的高,哪个同物体的体积就是大的。
不规则物体的体积教学设计篇十八
教学目标:
情感、态度、价值观:培养学生在实践中的应变能力,感受数学在生活中的应用。
教学内容:课本39页。
教学准备:课件、量杯、石块、橡皮泥。
教学过程:
一、谈话导入。
1、什么是体积?什么是容积?(提问学生)。
2、给你一个箱子,你会求箱子的体积吗?
箱子的体积可以通过测量出长、宽、高计算得到。
二、设疑自探。
看到课题,你想知道什么?
有公式吗?
三、出示自探提示,小组讨论交流(时间8分钟)。
同学们提的问题都很好,都是我们本节课应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示。
1、如何求橡皮泥的体积?说一说你的方法。
4、能用上面的方法测量乒乓球、冰块的体积吗?为什么?
四、解疑合探。
学生汇报结果(学困生回答,中等生补充)。
分析:橡皮泥可以改变形状。
方法一:把它捏成长方体,测量出长、宽、高计算出体积。
方法二:把它捏成正方体,测量出棱长计算出体积。
方法:排水法求石块的体积(注意:石块是完全浸没在水中)。
(1)量杯中装有水水的体积为200ml。
(2)把石块放入水中,因为石块占有一定的空间,水面会上升,体积为450ml。
(3)那么,石块的体积=上升部分水的体积。
石块的体积:450—200=250(ml)。
一般带体积单位250ml=250cm3。
答:石块的体积是250cm3。
排水法。
4、能用上面的方法求乒乓球、冰块的体积吗?
不能因为乒乓球到水里面会浮上来,这样就不能测量体积了;冰块会融化在水里,冰块会浮在水面上,体积测量也不准确。
五、运用拓展。
老师给大家设计了一些习题,检测一下大家对本节课知识的掌握与运用情况。
1、长方体容器装有水,长8cm,宽8cm,水面高6cm,把珊瑚石完全放入水中,此时水面高为7cm,求珊瑚石的体积是多少?(有没有其他方法)。
水面上升的高度:7-6=1(cm)。
珊瑚石的体积:8×8×1=64(cm3)。
方法二:
水面上升的高度=放入不规则物体后水的高度-原有水的高度。
=长×宽×水面上升的高度。
六、质疑再探。
对于本节的学习,谁还有什么问题或不明白的地方?大胆的提出来,我们一起解决。
七、小结。
通过本节课的学习,你有哪些收获?说一说与大家一起分享一下。
八、布置作业。
练习九7、8、9。
将本文的word文档下载到电脑,方便收藏和打印。
不规则物体的体积教学设计篇十九
(1)在合作中提高自主学习能力。本节活动课注重求不规则物体的方法,设计求土豆(或其他不规则物体)的体积,让学生以小组合作学习的形式探究,先确定实验目的及分工,然后小组展开讨论,确定测量方案,研究试验操作的步骤,实际测量并计算。这种让学生真正地、实实在在的进行观察和操作,不仅重视学生知识的获得,更重视数学思想和方法的形成,提高学生的自主学习能力。
(2)感受数学方法在学习新知中的重要性。学生在探索中掌握了学习数学的思想与方法,而这又将成为学生探索的“导航灯”。
大部分学生已经掌握了用“排水法”求不规则物体的体积,但还有个别学生空间思维能力不强,还需加强练习和个别辅导。