同角三角函数教案(汇总14篇)
教案可以系统地规划课堂教学内容和步骤。如何编写一份高质量的教案是每个教师都需要面对的问题。小编整理了一些教案示范,为大家提供一个教学设计的参考。
同角三角函数教案篇一
一、弄清对邻斜。
锐角三角函数是定义在直角三角形中的研究边角之间的关系。而锐角三角函数值实质上就是边与边之间的'一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。不管角怎样变,斜边是固定的,直角边或是某一锐角的对边或是某一锐角的邻边。不要死记硬背a,b,c的比值。记清对邻斜两者之比。
三、应用公式变形解决实际问题。
同角三角函数教案篇二
本节课是锐角三角形这章的第一节课,是学生在学了直角三角形及勾股定理基础上再来研究直角三角形边与角的关系的内容,本章的知识通过解直角三角形与实际问题中的坡度、方向角方位角建立联系,解决问题。本章是中考必考的知识点,特别是特殊角的三角函数值,一定要熟记。本节课虽考虑到本班学生自从分班以后,学习氛围不浓,而基础又较差,因而必须将难度降低想办法调动学生的学习积极性;但在引入时,既用了直角三角形在数学中的重要地位,用:“黑夜给了我一个黑色的眼睛,我用它来寻找光明”类比数学中的“上帝给了我一双黑色的眼睛,我用它来寻找直角三角形”说明寻找直角三角形对解决数学问题的重要性;然后又引入用学生最近反应学习苦,学习累和不爱护公共财物的情况,从引入课桌要到了到其他贫困地区孩子午休谁桌子下的情况引入爱护公共财物,今儿从而引出本节课相关的知识。虽然大家都在说这节课的亮点就是将德育与数学知识结合起来,注重学科之间的联系。但我始终觉得这样的结合不免显得优点牵强,下来我将在思考如何让本节课的引入与内容结合得更好。
还有一个问题就是我在设计教学时,想到学生函数的基础不好,很怕函数,没有考虑到和函数的定义联系起来,而学生虽然会计算一个锐角的三角函数了,但对为什么把这些值成为这个锐角的三角函数并不清楚,在教学中我忽视了这一细节,也没有一个学生提出疑问,这说明学生只停留在定义的表面,并没有深入思考。因此,在下次教学时,我要设计这么一个问题:“为什么把它们成为函数值?”来启发学生。
同角三角函数教案篇三
本学期我上了一堂锐角三角函数的复习课,按照考纲锐角三角函数难度应该不是很大,自己在了解学生的学情情况下,从锐角三角比的定义、特殊角三角函数值、会解直角三角形等几个方面来着手复习;为了巩固学生对特殊角的三角函数值掌握,给出了一个表格让学生回答30°,45°,60°角的三角函数值,其实可能还有很多学生都没有巩固,集体回答也可能就是走了一下形式罢了,如果当时采用作业的`形式课前发给学生做练习,效果可能会截然不同。
上复习课时所取的题目还是过多,内容也太多,让复习课成为练习课,复习的时候没有注意到知识的综合运用,对于一个问题没有讲精讲透。如这堂复习课我准备了3题解直角三角形,又准备了3题构造直角三角形解决数学问题,最后还拿了一题生活应用题,感觉还是以做题目来达到复习的目的。
在分析题目时候还是以老师讲为主,没有给予学生足够的思考时间,拿到题目后,就帮助学生分析题目,让学生的思路朝自己预设的方向发展。而且对于这样的一个实际问题,拿出问题后就给学生画好图,这样降低了学生解题的难度,可是将一个实际问题转化为数学问题往往是学生的难点。此题应该让学生自己动手将题目中的已知条件转化为数学问题。
最后就是做为一个教初三的老师,上课时候总喜欢面面俱到,生怕自己讲得太少,讲得不够到位。拿到题目都是急着替学生分析,这样会使学生思路狭隘,甚至平时不愿意去自己分析。所以以后我会试着改变自己的教学方式,多让学生讲,让学生自己讲怎样把题目分解,找到突破口。教学中我也会注意不要为了完成自己的教学任务而忽略学生,我会更加注重分析学生学情,备好学生和教材,让每一节课都能让每个学生有收获,还要注重课堂的气氛,给学生营造一个舒适的学习环境,让学生喜欢数学,愿意认真投入的学。
同角三角函数教案篇四
教学反思:
锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。
在今后教学过程中,自己还要多注意以下两点:
(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的.注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。
(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。
同角三角函数教案篇五
本节课是第一轮初三中考总复习有关锐角三角函数的复习课,根据现在的中考特点及考纲要求,进行相应的复习和巩固。现就本节课的课堂教学评价如下:
1、正确分析现在中考命题的方向、热点及考纲要求,得出有关锐角三角函数考点的知识要点及各种题型,通过课堂教学在锐角三角函数的基本概念及运算等基础知识和基本技能得到相应的发展。
2、本节课采用分阶段,分层次归类复习。
(1)基本概念领会阶段。学生对概念,公式,定义的理解与掌握。
(2)基本方法学习阶段。使学生对有关基本技能训练,掌握课本例题类型,能举一反三,触类旁通。
(3)针对练习阶段。检查学生对基本概念,基本技能的掌握情况。
3、本节课选题方面有以下几个特点。
(1)有针对性,突出重要的知识点和思想方法。
(2)具有一定的应用性,即能考察学生的数学基础知识,又能考察学生的数学应用能力。
(3)富有一定的思考性。有几个例题,有分类思想方法,能锻炼学生思维的灵活性。
(4)有计划地设置练习中的思维障碍,使练习具有合适的梯度,提高训练的效率。
4、本节课教师能够充分调动学生上课兴趣,从而使学生复习数学的积极性,主动性发挥出来,这样做到以学生为主,教师起主导作用。
同角三角函数教案篇六
2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期。
3会用代数方法求等函数的周期。
4理解周期性的几何意义。
周期函数的概念,周期的`求解。
1、是周期函数是指对定义域中所有都有。
即应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
例1、若钟摆的高度与时间之间的函数关系如图所示。
(2)求时钟摆的高度。
(1)(2)。
总结:(1)函数(其中均为常数,且。
的周期t=。
(2)函数(其中均为常数,且。
的周期t=。
例3、求证:的周期为。
例4、(1)研究和函数的图象,分析其周期性。
(2)求证:的周期为(其中均为常数,
且
总结:函数(其中均为常数,且。
的周期t=。
例5、(1)求的周期。
(2)已知满足,求证:是周期函数。
课后思考:能否利用单位圆作函数的图象。
六、作业:
七、自主体验与运用。
a、b、c、d、
a、b、c、d、
a、b、c、d、
a、b、c、d、
5、设是定义域为r,最小正周期为的函数,
若,则的值等于()。
a、1b、c、0d、
7、已知函数的最小正周期不大于2,则正整数。
的最小值是。
8、求函数的最小正周期为t,且,则正整数。
的最大值是。
9、已知函数是周期为6的奇函数,且则。
10、若函数,则。
11、用周期的定义分析的周期。
12、已知函数,如果使的周期在内,求。
正整数的值。
13、一机械振动中,某质子离开平衡位置的位移与时间之间的。
函数关系如图所示:
(2)求时,该质点离开平衡位置的位移。
14、已知是定义在r上的函数,且对任意有。
成立,
(1)证明:是周期函数;。
(2)若求的值。
同角三角函数教案篇七
教学目标:
1、抓住中心句,联系上下文,体悟其真正内涵。
2、运用课文语言练说,以内化语言,强化感受。
3、分角色朗读,读出体会和感悟。
4、联系自身情况,谈谈感受。
教学过程:
一、板书课题,点明中心句。
1、题目“军神”是从哪儿来的?
2、把沃克医生说的话读一读。
二、理解中心句。
1、齐读。
2、有几句话?
3、指导朗读:体会一下该怎样读?
三、联系上文内容,体会内涵。
1、沃克医生怎么知道刘伯承是一位军人的呢?哪一节写的?(生边默读边思考)。
2、分组朗读第一节。师读旁白,生体会镇定。
3、沃克为什么称刘伯承为“军神”呢?我们分别从手术前、手术中、手术后来体会朗读。
4、手术前,从哪儿看出刘伯承是“军神”?
生边默读边练说:手术前,刘伯承坚决______,坚定认为能_____,行为也很________!
追问:他为什么坚决不愿意使用麻醉剂?
5、分角色朗读第2节,体会坚决。
6、手术中,从哪儿看出刘伯承是位军神?生边默读边划重点词边练说:手术中,连一向镇定的沃克医生都_____,可刘伯承______,一条崭新的床单竟然被他______。
追问:一向镇定的沃克医生,这次为什么双手微微发抖?联系下文说说。
“一条崭新的床单竟然被他抓破了”,你可以从中体会到什么?
7、男女生分角色朗读:女生读出沃克医生担心、紧张的神态,男生读出刘伯承忍受剧痛的坚强。
8、过渡:沃克是在什么情况下称刘伯承为“军神”的?同学们轻声读第5节,然后回答。
练说:沃克问刘伯承_____,刘伯承笑着说___。在这种情况下,沃克称刘伯承为________。
9、想象一下,沃克这样喊时脸上会露出怎样的神情?哪个词语告诉我们这一点?
师点拨:失声喊道,不由自主地喊起来,人只有在惊讶到了极点的时候才会这样喊。
10、师述:是啊,手术中不用麻醉剂能忍受剧烈疼痛的病人沃克医生也许碰到过,但能一刀由一刀数清刀数的病人沃克医生在此之前绝对没有碰到过,所以他才会惊奇到极点。同学们想想看吧,一刀,一刀,又一刀,72刀啊,该要忍受多长时间的剧痛啊!沃克医生担心他会晕过去,可他数得清清楚楚。这需要多么坚强的意志啊!这种意志超乎寻常,不可思议!常人是绝对、绝对做不到的。
练说:刘伯承爷爷,你的意志_________!真不愧是_____!
11、分角色朗读第四节。
四、总结:最后,让我们再次感受一下刘伯承这位军神超乎寻常的顽强意志吧!
欣赏配乐朗读,激情跟读。
五、作业。
写写读后感。
[评析]。
语文教学是教师、学生、文本三者充满生命活力的对话过程。教师深入钻研教材,领会文章的思想、情感、内涵;深刻认识学生,把握学生的基础、态度、特征,在此基础上进行富有个性的教学设计。通过品词析句、表达训练、朗读指导,用教师的情感激发学生的情感,用文本的情境塑造教学的情境,展开动人心弦、情味浓郁的教学过程,不仅达成了知识与技能、过程与方法、情感态度与价值观的三维目标,提高了学生的语文素养,而且使“军神”的形象和教学的情景印到了学生心灵深处。这不正是我们语文教学所孜孜追求的目标吗?(万小强)。
将本文的word文档下载到电脑,方便收藏和打印。
同角三角函数教案篇八
1、先做简单题,后做难题。
2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。
3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。
一、整体把握、抓大放小。
拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的.题目,一定要拿到应得的分数。
二、确定每部分的答题时间。
1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。
2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。
三、碰到难题时。
1、你可以先用“直觉”最快的找到解题思路;。
2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;。
3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。
4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。
四、卷面整洁、字迹清楚、注意小节。
做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。
同角三角函数教案篇九
数学是一门培养人的思维在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求,为此本节内容在三角函数中占有非常重要的地位。
本节课的授课对象是本校高一(3)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
1、教学重点。
理解并掌握诱导公式。
2、教学难点。
正确运用诱导公式,求三角函数值,化简三角函数式。
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。
1、教法。
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。
2、学法。
在本节课的教学过程中,本人引导学生的学法为思考问题——共同探讨——解决问题——简单应用——重现探索过程——练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。
3、预期效果。
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。
(一)创设情景。
1、复习锐角300,450,600的三角函数值;
2、复习任意角的三角函数定义;
设计意图。
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。
(二)新知探究。
1、让学生发现300角的终边与2100角的终边之间有什么关系;
2、让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;
3、sin2100与sin300之间有什么关系。
设计意图。
由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与特殊角的三角函数值的关系做好铺垫。
(三)问题一般化。
探究。
1、探究发现任意角a的终边与—a的终边关于原点对称;
3、探究发现任意角a与角a+1800或a—1800的三角函数值的关系。
设计意图。
首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二。同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进。
(四)练习。
利用诱导公式(二),口答三角函数值。
(五)问题变形。
由sin3000=—sin600出发,用三角的定义引导学生求出sin(—3000),sin1500值,让学生联想若已知sin3000=—sin600,能否求出sin(—3000,sin1500)的值。
学生自主探究。
1、探究任意角a与角1800—a的三角函数又有什么关系;
2、探究任意角a与角900+a的三角函数之间又有什么关系。
设计意图。
遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题—观察发现—到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战。而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战。彼此相信,彼此信任,产生了师生的默契,师生共同进步。
展示学生自主探究的结果。
诱导公式(三)、(四)。
给出本节课的课题,三角函数的诱导公式。
设计意图。
标题的后给出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结。
(六)概括升华。
三角函数的诱导公式口诀:即“奇变偶不变,符号看象限”。
设计意图。
简便记忆公式。
(七)练习强化。
求下列三角函数的值:(1)sin(—1000);(2)cos(—20400)。
设计意图。
本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯。这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的。
学生练习。
化简:(例题)。
设计意图。
重点加强对三角函数的诱导公式的综合应用。
(八)小结。
1、小结使用诱导公式化简任意角的三角函数为锐角的步骤。
2、体会数形结合、对称、化归的思想。
3、“学会”学习的习惯。
(九)作业。
1、课本p—27,第1,2,3小题;
2、附加课外题略。
设计意图。
加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”。
(十)板书设计:(略)。
同角三角函数教案篇十
1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强。
(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;
(4)与周期有关的问题。
3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化。解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解。
4.立足课本、抓好基础。从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础。在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度。
同角三角函数教案篇十一
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.
(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;。
(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.
1.教学重点。
理解并掌握诱导公式.
2.教学难点。
正确运用诱导公式,求三角函数值,化简三角函数式.
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.
1.教法。
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.
2.学法。
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.
在本节课的教学过程中,本人引导学生的学法为思考问题共同探讨解决问题简单应用重现探索过程练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.
3.预期效果。
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.
(一)创设情景。
1.复习锐角300,450,600的三角函数值;。
3.问题:由,你能否知道sin2100的值吗?引如新课.
设计意图。
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.
(二)新知探究。
1.让学生发现300角的终边与2100角的终边之间有什么关系;。
2100与sin300之间有什么关系.
设计意图。
由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的'三角函数值的关系做好铺垫.
(三)问题一般化。
探究一。
1.探究发现任意角的终边与的终边关于原点对称;。
2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;。
3.探究发现任意角与的三角函数值的关系.
设计意图。
(四)练习。
利用诱导公式(二),口答下列三角函数值.
(1).;(2).;(3)..
喜悦之后让我们重新启航,接受新的挑战,引入新的问题.
(五)问题变形。
由sin300=出发,用三角的定义引导学生求出sin(-300),sin1500值,让学生联想若已知sin=,能否求出sin(),sin()的值.
学生自主探究。
1.探究任意角与的三角函数又有什么关系;。
2.探究任意角与的三角函数之间又有什么关系.
设计意图。
遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.
展示学生自主探究的结果。
给出本节课的课题。
设计意图。
标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.
(六)概括升华。
的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)。
设计意图。
简便记忆公式.
(七)练习强化。
求下列三角函数的值:(1).sin();(2).co.
设计意图。
学生练习。
化简:.
设计意图。
重点加强对三角函数的诱导公式的综合应用.
(八)小结。
1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.
2.体会数形结合、对称、化归的思想.
3.“学会”学习的习惯.
(九)作业。
1.课本p-27,第1,2,3小题;。
2.附加课外题略.
设计意图。
加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.
(十)板书设计:(略)。
同角三角函数教案篇十二
1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。
2、教学目标的确定及依据。
a、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:1)已知一个角的一个三角函数值能求这个角的其他三角函数值;2)证明简单的三角恒等式。
b、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
c、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点。
同角三角函数教案篇十三
数学的大题是由小题堆积起来的,只是增加了逻辑过程;难题是由易题延伸出来的,只是将定义与概念以及原理隐藏的更深而已。所以,三角函数的学习,更加注重对定义域概念的学习和深刻的理解。在平时的学习中,更应立足教材,学好用好教材,深入地钻研定义与概念,切忌眼高手低,偏重难题,搞题海战术!比如,弧度制下角的概念,六种三角函数的定义,所有的公式来源,三角函数图像的平移与放缩,等等。说句狠话:弄不懂概念,你就别做题!你做了题,就要弄明白你是在使用什么概念什么定义什么公式!不要追求方法与技巧,因为方法与技巧来源于概念与定义。
2、记住公式不是靠背。
任何一种学习活动,都是先有理解,再有记忆,而后是灵变与应用。面对众多的三角公式,很多同学采用错误的做法:死记硬背!其结果是仍然会用错,仍然记不住。与其花费大量的时间稀里糊涂做题,不如花点时间先从最原始的定义与概念推到公式!我曾经有过一种比较极端然而却非常有效的做法,让一位一想到三角函数公式就晕就错的学生先不做题,先整理理论,用定义与概念相互说明,用公式与公式相互推导。理论系统明白了,解题的思路和方法技巧也就顺理成章了。
3、学会反思与整合。
建构主义学习观认为知识并不是简单的由教师或者其他人传授给学生的,而只能由学生依据自身已有的知识、经验,主动地加以建构。建构一词包含有两重含义,一是悟,二是创造。一个批判、选择、和存疑的过程,一个充满想象、探索和体验的过程。你不想学,老师强行的逼迫是不容易的或者说是作用不大,俗话说“强扭的瓜不甜”嘛!数学学习不但要对概念、结论和技能进行记忆,积累和模仿,而且还要动手实践,自主探索,并且在获得知识的基础上进行反思与整合。所以我们在平时学习中要注意反思,只有这样才能使内容得到巩固,知识的得到拓展,能力得到提高,思维得到优化,创新能力得到真正的发展,希望大能够让数学反思与整合成为我们的自然的习惯!
同角三角函数教案篇十四
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境――提出数学问题――尝试解决问题――验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。