2023年数据挖掘论文答辩数据挖掘论文(通用19篇)
总结是一种对过去经历的梳理和归纳。写作是一种表达思想的方式,它可以让我们更深入地思考问题。这是一份关于个人成长的总结,希望能给你一些启示;
数据挖掘论文答辩数据挖掘论文篇一
由于信息技术的迅速发展,现代的档案管理模式与过去相比,也有了很大的变化,也让如今的档案管理模式有了新的挑战。让人们对信息即时、大量地获取是目前档案管理工作和档案管理系统急切需要解决的问题。
(一)数据挖掘技术。数据挖掘是指从大量的、不规则、乱序的数据中,进行分析归纳,得到隐藏的,未知的,但同时又含有较大价值的信息和知识。它主要对确定目标的有关信息,使用自动化和统计学等方法对信息进行预测、偏差分析和关联分析等,从而得到合理的结论。在档案管理中使用数据挖掘技术,能够充分地发挥档案管理的作用,从而达到良好的档案管理工作效果。(二)数据挖掘技术分析。数据挖掘技术分析的方法是多种多样的,其主要方法有以下几种:1.关联分析。指从已经知道的信息数据中,找到多次展现的信息数据,由信息的说明特征,从而得到具有相同属性的事物特征。2.分类分析。利用信息数据的特征,归纳总结相关信息数据的数据库,建立所需要的数据模型,从而来识别一些未知的信息数据。3.聚类分析。通过在确定的数据中,找寻信息的价值联系,得到相应的管理方案。4.序列分析。通过分析信息的前后因果关系,从而判断信息之间可能出现的联系。
在进行现代档案信息处理时,传统的档案管理方法已经不能满足其管理的要求,数据挖掘技术在这方面确有着显著的优势。首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自然也就越高,所以其安全性就很难得到保障,在档案管理中运用数据挖掘技术,可以让档案的信息数据得到分析统计,归纳总结,不必次次实物查阅,这样就极大地提升了档案相关内容的安全性,降低档案的磨损率。并且可以对私密档案进行加密,进行授权查阅,进一步提高档案信息的安全性。其次,对档案进行鉴定与甄别,这也是档案工作中较困难的过程,过去做好这方面的工作主要依靠管理档案管理员自己的能力和水平,主观上的因素影响很大,但是数据挖掘技术可以及时对档案进行编码和收集,对档案进行数字化的管理和规划,解放人力资源,提升档案利用的服务水平。第三,数据挖掘技术可以减少档案的收集和保管成本,根据档案的特点和规律建立的数据模型能为之后的工作人员建立一种标准,提升了档案的鉴定效率。
(一)档案信息的收集。在实施档案管理工作时,首先需要对档案信息数据的收集。可以运用相关档案数据库的数据资料,进行科学的分析,制定科学的说明方案,对确定的数据集合类型和一些相关概念的模型进行科学说明,利用这些数据说明,建立准确的数据模型,并以此数据模型作为标准,为档案信息的快速分类以及整合奠定基础。例如,在体育局的相关网站上提供问卷,利用问卷来得到的所需要的信息数据,导入数据库中,让数据库模型中保有使用者的相关个人信息,通过对使用者的信息数据进行说明,从而判断使用者可能的类型,提升服务的准确性。因此,数据挖掘技术为档案信息的迅速有效收集,为档案分类以及后续工作的顺利展开,提供了有利条件,为个性化服务的实现提供了保证。(二)档案信息的分类。数据挖掘技术具有的属性分析能力,可以将数据库中的信息进行分门别类,将信息的对象通过不同的特征,规划为不同的分类。将数据挖掘技术运用到档案管理中时,可以简单快速地找到想要的档案数据,能根据数据中使用者的相关数据,找寻使用者在数据库中的信息,使用数据模型的分析能力,分析出使用者的相关特征。利如,在使用者上网使用网址时,数据挖掘技术可以充分利用使用者的搜索数据以及网站的访问记录,自动保存用户的搜索信息、搜索内容、下载次数、时间等,得到用户的偏好和特征,对用户可能存在的需求进行预测和分类,更加迅速和准确的,为用户提供个性化的服务。(三)档案信息的整合。数据挖掘技术可以对新旧档案的信息进行整合处理,可以较为简单地将“死档案”整合形成为“活档案”,提供良好的档案信息和有效的档案管理。例如,对于企事业单位而言,培训新员工的成本往往比聘请老员工的成本要高出很多。对老员工的档案信息情况进行全体整合,使档案资源充分发挥作用,将档案数据进行总结和规划,根据数据之间的联系确定老员工流失的原因,然后建立清晰、明白的数据库,这样可以防止人才流失,也能大大提高档案管理的效率。
综上所述,在这个信息技术迅速跳跃发展的时代,将数据挖掘技术运用到档案管理工作中是时代发展的需求与必然结果。利用数据挖掘技术,可以使档案管理工作的效率大大提升,不仅减少了搜索档案信息的时间,节省人力物力,避免资源的浪费,还能帮助用户在海量的信息数据中,快速找到所需的档案数据信息。数据挖掘技术的运用,使静态的档案信息变成了可以“主动”为企事业单位的发展,提供有效的个性化服务的档案管家,推动了社会的快速发展。
[2]宇然,数据挖掘技术研究以及在档案计算机管理系统中的应用[d].沈阳工业大学,20xx.
[3]吴秀霞,关于档案管理方面的数据挖掘分析及应用探讨[j].经营管理者,20xx:338.
数据挖掘论文答辩数据挖掘论文篇二
我国中央经济会议明确指出解决“三农”问题是现阶段工作中的重点内容,这进一步体现出我国对农村旅游发展的重视。基于时代背景给予农村旅游发展的支持,进一步促进了农村产业结构的调整与农村经济的良好发展。在时代的背景下,农业旅游这种新兴的旅游模式顺应市场的需求得以产生和发展。不仅能够切实的促进农民的收入取得相应的提高,还能够进一步促进农村地区的全面发展。农业资源作为农业旅游发展的主要资源,农村旅游的开发能够有效的保障农村土地的经济性质,进而对耕地数量的保护起着强有力的保障作用。
一、探讨农业旅游开发管理的模式。
1、农户分散经营模式。
目前,在我国农业旅游发展的基础阶段是由农户作为农业旅游开发的主体,农业旅游的经营模式主要是以分散式经营模式为主。以农户为主体进行经营直接具有一定的弊端,一是开发的规模相对较小并且分散,而一些农户为了追求短期的利益没有对农业旅游资源进行合理的开发,而相应附属农产品的开发也因为缺乏科学理论支持出现单一缺乏吸引力的情况。二是农户缺乏雄厚的经济实力,在农业旅游开发中没有足够的资金投入。这直接影响着产品的开发和宣传。除此之外,经营者缺乏统一的规划,对原有的田园风光进行过度的修建,从而导致环境污染更加严重[1]。
2、企业主导经营模式。
分散的农户经营模式为农业旅游开发和经营带来严重的外部问题。而通过引进有经济实力和市场经营能力的企业进行农业旅游的开发,能够在一定程度上解决这些外部问题。但引进的企业作为外来者很难考虑到乡村公共资源对后代具有的重要作用,因此仍然可能导致对农业资源进行过度的开发利用和破坏[2]。
3、村民自主开发模式。
以村民自主开发模式作为农业旅游经营模式中的主体,主要基于具有一定规模的社区内,村民自发联合形成的农业旅游开发组组织。一般情况下,会成立相应的管理委员会对农业旅游资源的占用、供应等活动进行组织和监督。并结合相应的规章制度对农业旅游资源和乡村整体文化环境进行合理的使用和维护。这一经营模式是目前比较符合我国农业旅游开发的模式[3]。
二、分析农业旅游开发管理现存问题及形成原因。
1、农业旅游开发管理现存的问题。
我国农业旅游发展相对较晚,大部分地区都处在基础发展阶段。对于现阶段农业旅游开发中普遍存在的问题主要有三种,一是农民的收入提高效果不明显。二是农村的乡土民俗和自然资源环境遭到严重的破坏,三是对于农业旅游资源很难实现可持续发展。
通过对现阶段我国农业旅游开发管理中存在问题的分析可以总结出,形成这些问题的原因主要有四个方面。一是经营者的思想观念没有跟随时代的发展进行及时的更新,这直接导致产品类型较少。二是对农业旅游开发和管理没有进行长期的规划,缺乏相应的品牌产品和足够的营销力度。三是人才和资金的短缺导致旅游市场淡季和旺季差距较大。四是相关的基础设施和配套设施不完善,并且缺乏相应的体制,导致市场形成严重的无序竞争。
三、探究农业旅游开发管理相关对策。
1、正确认识农业旅游。
农业旅游的开发和管理要以正确的思想观念作为前提指导,因此要想确保农业旅游能够保持正确的发展方向就要对其具有正确的认识。农业旅游的开发和管理一定要树立正确的旅游资源观念,打破传统观念的限制,对农业旅游资源存在的本质内涵和具有的重要价值进行充分的认识,改进和创新农业旅游开发和管理意识。相关部门和所涉及人员应该投入更多的精力对于农业旅游进行合理的开发和科学的管理,从而为农业旅游发展质量提供强有力的基础保障。
2、农业旅游规划开发。
农业旅游主要是向游客展示出农村生产生活的整体,让游客能够感受到传统的乡土民俗文化和农业资源。这也要求我们要通过有效的开发和管理形成一个综合的资源系统,必须要从整体上对农业旅游进行合理的规划和科学的开发。对于农业旅游的规划和开发不仅要保护地区生物多样性好农村生态系统,还要重视农业科学配置,保证农业旅游资源的完整性和合理性。
3、加强相应制度规范。
现阶段,我国农业旅游开发管理十分需要建立相关的制度规范。这不仅有利于农业旅游开发主体在使用公共资源时能够主动考虑社会成本,进而对公共资源的消费数量进行合理的限制。还能够在一定程度上保证农业旅游经营组织在进行科学健康的可持续发展。
4、加强旅游人才培养。
加强对农村旅游人才的培养可以从三个方面入手,一是组织相应的旅游知识培训。二是要与相应的旅游企业和高等院校建立紧密的合作,为农村旅游人才提供更多的培训机会。三是要充分结合现代化信息技术手段,一方面要利用现代化网络信息技术拓宽农村旅游人才的知识面,另一方面还要利用网络信息技术倡导农民不断加强自身的学习,从而使农民的整体素质取得提高。
四、结语。
农业旅游作为新农村建设和发展的重要内容,推动着人民生活水平的提高和国家经济的发展,要想更好的进行农业旅游的开发和管理,我们要明确目前我国农业旅游发展管理模式存在的不足,正确的认识农业旅游的重要性。要加强对其规划开发,并建立相应的制度规范对旅游人才的培养,从而促进农业旅游的可持续发展。
数据挖掘论文答辩数据挖掘论文篇三
随着互联网技术的迅速发展,尤其移动互联网的爆发性发展,越来越多的公司凭借其备受欢迎的系统和app如雨后春笋般发展起来,如滴滴打车、共享单车等。海量数据自此不再是google等大公司的专利,越来越多的中小型企业也可以拥有海量数据。如何从浩如烟海的数据中挖掘出令人感兴趣和有用的知识,成为越来越多的公司急需解决的问题。因此,他们对数据挖掘分析师求贤若渴。在这一社会需求下,培养出优秀的数据挖掘分析师,是各个高校目前急需完成的一项任务。
目前,各大高等院校本科阶段争相开设数据挖掘课程。然而,该课程是一门相对较新的交叉学科,涵盖了概率统计、机器学习、数据库等学科的知识内容,难度较大。因此,大部分高校一般将此课程开设在研究生阶段,在本科生中开设此课程的学校相对较少。另外,不同的学校将其归入不同的专业中,如计算机专业、信息管理专业、统计学、医学等。可以说,这一课程基本上处于探索的过程中。我院灾害信息系于20xx年在信息管理与信息系统本科学生中首次开设了该课程。通过开设此课程,学生能够掌握数据挖掘的基本原理和各种挖掘算法等,掌握数据分析和处理、高级数据库编程等技能,达到数据聚类、分类、关联分析的目的。然而,通过前期教学过程,我们发现教学效果不理想,存在很多问题。
1、数据内驱力差。
以往数据挖掘课程重点讲授数据挖掘算法,对数据源的获取和处理极少获取。目前各大教材都在使用一些公共数据资源,这些数据资源有些已经非常陈旧了,比如20世纪80年代的加州房价数据。这些数据脱离现实,分析这些数据,学生没有任何兴趣和学习动力,也就无法发现价值。
大量具有难度的数据挖掘算法的学习,使学生丧失了学习兴趣,学完即忘,不知所用。
3、忽视对数据预处理过程的学习。
以往所使用的公共数据源或软件自带数据源,数据量小,需要的预处理工作比较少;这部分内容基本只安排一次理论课、一次实验课。而实际通过爬虫获取的数据源数据量大;这部分工作量比较大,需要占到整个数据挖掘工作量的一半以上。因此,一次理论课和一次实验课是无法让学生掌握数据预处理技能的。
4、算法编程实现难度较大。
要求学生学习一门新的编程语言,如r语言、python语言,对本科非计算机专业的学生来说难度是非常大的,尤其是课时安排只有48课时。
学生能够理解课堂案例,但在实际应用中,无法完成整个数据分析流程。
该课程的教学对象是信息管理与信息系统专业本科大四学生。因此,培养实际应用人才,使其完成整个实际数据挖掘分析流程是教师的教学目的。笔者对智联招聘、中华英才网、51job等几个大型招聘网站的几百个数据挖掘分析师相关职位进行分析,主要分析了相關职位的工作内容、职位要求以及需求企业。数据分析师主要利用数据挖掘工具对运营数据等多种数据源进行预处理、建模、挖掘、分析及优化。该职位是受业务驱动的,特点是将现有数据与业务相结合,最大程度地变现数据价值。该职位对计算机编程等相关技术不作要求,但是需要有深厚的数据挖掘理论基础,熟练使用主流的数据挖掘(或统计分析)工具。基于此,教师可以采取以下策略进行教学改革。
1、加强对业务数据的理解。
数据挖掘分析师是受业务驱动的,所以要理解实际业务,明确本次数据挖掘要解决什么问题。教师可以构建案例库,包括教师案例库、学生讨论案例库。教师案例库由教师构建,可用于课堂讲授。学生案例库由学生分组构建,并安排讨论课,由学生讲述、讨论并提交报告。
2、加强对数据的获取。
对学生感兴趣的数据源进行挖掘,这样才能更好地帮助学生理解吸收知识。因此,可以教授学生爬虫技术,编写爬虫程序,使其自主获取感兴趣的数据。
3、加强对数据的预处理工作。
在数据挖掘之前使用数据预处理技术,能够显著提高数据挖掘模式的质量,降低实际挖掘所需要的时间,应将其作为整门课程的重点进行学习。增加理论课程和实验课时,使学生掌握数据清理、数据集成、数据变换、数据归纳等数据预处理技术,并能够应对各种复杂数据源,最终利用爬虫程序获取的各种数据源进行预处理工作。
教师可以选择spssmodeler这款所见即所得的数据挖掘软件作为配套实验平台。该软件具有必需的数据预处理工具及预设的挖掘算法,学生可以把注意力放在要挖掘的数据及相关需求上,设定挖掘的主题,然后通过鼠标的点击拖拉即可完成相关主题的数据挖掘过程。学生最终可对自己获取并已处理过的数据进行挖掘分析。
5、加强教师外出培训学习。
数据挖掘技术以及大数据技术是近来比较新颖而且发展迅速的技术。教师长期身处三尺讲台之上,远离了新技术,脱离了实际。因此,需派遣教师到知名高校学习数据挖掘教学技术,到培训机构进行系统学习,到企业进行实战学习。
基于以上分析,形成了新的数据挖掘理论课程内容和实践课程内容,安排如表1和表2所示。共安排48学时,其中理论课24学时,实验课24学时。理论课重点讲授数据的获取、数据的理解、数据的预处理以及常用挖掘算法。实验课重点学习基于spssmodeler的数据挖掘,对理论课的内容进行实践。整个学习以工程项目为载体,该工程贯穿整个学习过程。学生通过爬虫程序获取自己感兴趣的数据源,根据课程进度,逐步完成后续数据的理解,再进行预处理,建模分析,评估整个过程。在课程结束时,完成整个项目,并提交报告。
在数字时代,越来越多的企业急需数据挖掘分析人才。教师应以培养实际应用人才为目的,充分培养学生对数据挖掘的学习兴趣,以工程项目为载体,贯穿整个课程周期。在教学中,打牢数据获取、理解预处理这一基石,加强建模挖掘分析,弱化对晦涩算法的编程学习,使学生真正掌握数据挖掘技术,满足社会需求。
数据挖掘论文答辩数据挖掘论文篇四
[1]刘莹。基于数据挖掘的商品销售预测分析[j].科技通报。2014(07)。
[2]姜晓娟,郭一娜。基于改进聚类的电信客户流失预测分析[j].太原理工大学学报。2014(04)。
[3]李欣海。随机森林模型在分类与回归分析中的应用[j].应用昆虫学报。2013(04)。
[4]朱志勇,徐长梅,刘志兵,胡晨刚。基于贝叶斯网络的客户流失分析研究[j].计算机工程与科学。2013(03)。
[5]翟健宏,李伟,葛瑞海,杨茹。基于聚类与贝叶斯分类器的网络节点分组算法及评价模型[j].电信科学。2013(02)。
[6]王曼,施念,花琳琳,杨永利。成组删除法和多重填补法对随机缺失的二分类变量资料处理效果的比较[j].郑州大学学报(医学版).2012(05)。
[7]黄杰晟,曹永锋。挖掘类改进决策树[j].现代计算机(专业版).2010(01)。
[8]李净,张范,张智江。数据挖掘技术与电信客户分析[j].信息通信技术。2009(05)。
[9]武晓岩,李康。基因表达数据判别分析的随机森林方法[j].中国卫生统计。2006(06)。
[10]张璐。论信息与企业竞争力[j].现代情报。2003(01)。
[13]俞驰。基于网络数据挖掘的客户获取系统研究[d].西安电子科技大学2009。
[14]冯军。数据挖掘在自动外呼系统中的应用[d].北京邮电大学2009。
[15]于宝华。基于数据挖掘的高考数据分析[d].天津大学2009。
[16]王仁彦。数据挖掘与网站运营管理[d].华东师范大学2010。
[19]贾治国。数据挖掘在高考填报志愿上的应用[d].内蒙古大学2005。
[22]阮伟玲。面向生鲜农产品溯源的基层数据库建设[d].成都理工大学2015。
[23]明慧。复合材料加工工艺数据库构建及数据集成[d].大连理工大学2014。
[25]岳雪。基于海量数据挖掘关联测度工具的设计[d].西安财经学院2014。
[28]张晓东。全序模块模式下范式分解问题研究[d].哈尔滨理工大学2015。
[30]王化楠。一种新的混合遗传的基因聚类方法[d].大连理工大学2014。
“大数据”到底有多大?根据研究机构统计,仅在2011年,全球数据增量就达到了1.8zb(即1.8万亿gb),相当于全世界每个人产生200gb以上的数据。这种增长趋势仍在加速,据保守预计,接下来几年中,数据将始终保持每年50%的增长速度。
纵观人类历史,每一次划时代的变革都是以新工具的出现和应用为标志的。蒸汽机把人们从农业时代带入了工业时代,计算机和互联网把人们从工业时代带入了信息时代,而如今大数据时代已经到来,它源自信息时代,又是信息时代全方位的深化应用与延伸。大数据时代的生产原材料是数据,生产工具则是大数据技术,是对信息时代所产生的海量数据的挖掘和分析,从而快速地获取有价值信息的技术和应用。
概括来讲,大数据有三个特征,可总结归纳为“3v”,即量(volume)、类(variety)、时(velocity)。量,数据容量大,现在数据单位已经跃升至zb级别。类,数据种类多,主要来自业务系统,例如社交网络、电子商务和物联网应用。时,处理速度快,时效性要求高,从传统的事务性数据到实时或准实时数据。
数据挖掘,又称为知识发现(knowledgediscovery),是通过分析每个数据,从大量数据中寻找其规律的技术。知识发现过程通常由数据准备、规律寻找和规律表示3个阶段组成。数据准备是从数据中心存储的数据中选取所需数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含规律找出来;规律表示则是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。
“数据海量、信息缺乏”是相当多企业在数据大集中之后面临的尴尬问题。目前,大多数事物型数据库仅实现了数据录入、查询和统计等较低层次的功能,无法发现数据中存在的有用信息,更无法进一步通过数据分析发现更高的价值。如果能够对这些数据进行分析,探寻其数据模式及特征,进而发现某个客户、群体或组织的兴趣和行为规律,专业人员就可以预测到未来可能发生的变化趋势。这样的数据挖掘过程,将极大拓展企业核心竞争力。例如,在网上购物时遇到的提示“浏览了该商品的人还浏览了如下商品”,就是在对大量的购买者“行为轨迹”数据进行记录和挖掘分析的基础上,捕捉总结购买者共性习惯行为,并针对性地利用每一次购买机会而推出的销售策略。
随着社会的进步和信息通信技术的发展,信息系统在各行业、各领域快速拓展。这些系统采集、处理、积累的数据越来越多,数据量增速越来越快,以至用“海量、爆炸性增长”等词汇已无法形容数据的增长速度。
2011年5月,全球知名咨询公司麦肯锡全球研究院发布了一份题为《大数据:创新、竞争和生产力的。下一个新领域》的报告。报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于大数据的运用预示着新一波生产率增长和消费者盈余浪潮的到来。2012年3月29日,美国政府在白宫网站上发布了《大数据研究和发展倡议》,表示将投资2亿美元启动“大数据研究和发展计划”,增强从大数据中分析萃取信息的能力。
在电力行业,坚强智能电网的迅速发展使信息通信技术正以前所未有的广度、深度与电网生产、企业管理快速融合,信息通信系统已经成为智能电网的“中枢神经”,支撑新一代电网生产和管理发展。目前,国家电网公司已初步建成了国内领先、国际一流的信息集成平台。随着三地集中式数据中心的陆续投运,一级部署业务应用范围的拓展,结构化和非结构化数据中心的上线运行,电网业务数据从总量和种类上都已初具规模。随着后续智能电表的逐步普及,电网业务数据将从时效性层面进一步丰富和拓展。大数据的“量类时”特性,已在海量、实时的电网业务数据中进一步凸显,电力大数据分析迫在眉睫。
当前,电网业务数据大致分为三类:一是电力企业生产数据,如发电量、电压稳定性等方面的数据;二是电力企业运营数据,如交易电价、售电量、用电客户等方面的数据;三是电力企业管理数据,如erp、一体化平台、协同办公等方面的数据。如能充分利用这些基于电网实际的数据,对其进行深入分析,便可以提供大量的高附加值服务。这些增值服务将有利于电网安全检测与控制(包括大灾难预警与处理、供电与电力调度决策支持和更准确的用电量预测),客户用电行为分析与客户细分,电力企业精细化运营管理等等,实现更科学的需求侧管理。
例如,在电力营销环节,针对“大营销”体系建设,以客户和市场为导向,省级集中的95598客户服务、计量检定配送业务属地化管理的营销管理体系和24小时面向客户的营销服务系统,可通过数据分析改善服务模式,提高营销能力和服务质量;以分析型数据为基础,优化现有营销组织模式,科学配置计量、收费和服务资源,构建营销稽查数据监控分析模型;建立各种针对营销的系统性算法模型库,发现数据中存在的隐藏关系,为各级决策者提供多维的、直观的、全面的、深入的分析预测性数据,进而主动把握市场动态,采取适当的营销策略,获得更大的企业效益,更好地服务于社会和经济发展。此外,还可以考虑在电力生产环节,利用数据挖掘技术,在线计算输送功率极限,并考虑电压等因素对功率极限的影响,从而合理设置系统输出功率,有效平衡系统的安全性和经济性。
公司具备非常好的从数据运维角度实现更大程度信息、知识发现的条件和基础,完全可以立足数据运维服务,创造数据增值价值,提供并衍生多种服务。以数据中心为纽带,新型数据运维的成果将有可能作为一种新的消费形态与交付方式,给客户带来全新的使用体验,打破传统业务系统间各自为阵的局面,进一步推动电网生产和企业管理,从数据运维角度对企业生产经营、管理以及坚强智能电网建设提供更有力、更长远、更深入的支撑。
这个问题太笼统,基本上算法和应用是两个人来做的,可能是数据挖掘职位。做算法的比较少,也比较高级。
其实所谓做算法大多数时候都不是设计新的算法(这个可以写论文了),更多的是技术选型,特征工程抽取,最多是实现一些已经有论文但是还没有开源模块的算法等,还是要求扎实的算法和数据结构功底,以及丰富的分布式计算的知识的,以及不错的英文阅读和写作能力。但即使是这样也是百里挑一的,很难找到。
绝大读书数据挖掘岗位都是做应用,数据清洗,用现成的库建模,如果你自己不往算法或者架构方面继续提升,和其他的开发岗位的性质基本没什么不同,只要会编程都是很容易入门的。
实际情况不太清楚,由于数据挖掘和大数据这个概念太火了,肯定到处都有人招聘响应的岗位,但是二线城市可能仅仅是停留在概念上,很多实际的工作并没有接触到足够大的数据,都是生搬硬套框架(从我面试的人的工作经验上看即使是在北上广深这种情况也比较多见)。
只是在北上广深,可能接触到大数据的机会多一些。而且做数据挖掘现在热点的技术比如python,spark,scala,r这些技术除了在一线城市之外基本上没有足够的市场(因为会的人太少了,二线城市的公司找不到掌握这些技术的人,不招也没人学)。
所以我推测二线城市最多的还是用java+hadoop,或者用java写一些spark程序。北上广深和二线城市程序员比待遇是欺负人,就不讨论了。
和传统的前后端程序员相比,最主要的去别就是对编程水平的要求。从我招聘的情况来看,做数据挖掘的人编程水平要求可以降低一个档次,甚至都不用掌握面向对象。
但是要求技术全面,编程、sql,linux,正则表达式,hadoop,spark,爬虫,机器学习模型等技术都要掌握一些。前后端可能是要求精深,数据挖掘更强调广博,有架构能力更好。
打基础是最重要的,学习一门数据挖掘常用的语言,比如python,scala,r;学习足够的linux经验,能够通过awk,grep等linux命令快速的处理文本文件。掌握sql,mysql或者postgresql都是比较常用的关系型数据库,搞数据的别跟我说不会用数据库。
补充的一些技能,比如nosql的使用,elasticsearch的使用,分词(jieba等模块的使用),算法的数据结构的知识。
我觉得应当学习,首先hadoop和hive很简单(如果你用aws的话你可以开一台emr,上面直接就有hadoop和hive,可以直接从使用学起)。
我觉得如果不折腾安装和部署,还有linux和mysql的经验,只要半天到一天就能熟悉hadoop和hive的使用(当然你得有linux和mysql的基础,如果没有就先老老实实的学linux和mysql,这两个都可以在自己的pc上安装,自己折腾)。
spark对很多人来说才是需要学习的,如果你有java经验大可以从java入门。如果没有那么还是建议从scala入门,但是实际上如果没有java经验,scala入门也会有一定难度,但是可以慢慢补。
所以总的来说spark才足够难,以至于需要学习。
如果上面任何一个问题的答案是no,我都不建议直接转行或者申请高级的数据挖掘职位(因为你很难找到一个正经的数据挖掘岗位,顶多是一些打擦边球的岗位,无论是实际干的工作还是未来的成长可能对你的帮助都不大)。
无论你现在是学生还是已经再做一些前段后端、运维之类的工作你都有足够的时间补齐这些基础知识。
补齐了这些知识之后,第一件事就是了解大数据生态,hadoop生态圈,spark生态圈,机器学习,深度学习(后两者需要高等数学和线性代数基础,如果你的大学专业学这些不要混)。
数据挖掘论文答辩数据挖掘论文篇五
随着我国的旅游业的迅猛发展,旅游产业正迈向国际化的轨道,传统旅游业积累的海量数据,没有被有效利用,资源被极大浪费。将数据挖掘引入到旅游产业是大势所趋。当前数据挖掘在旅游信息化建设中的应用与研究情况主要集中在高校理论界的研究,大多数研究仅仅是学术研究,真正运用到旅游行业的文章多是从某个具体的方面出发,针对个别应用进行数据挖掘的融合。笔者主要研究决策树方法在旅游信息化建设中的应用。目前,决策树算法有cls算法、id3算法、c4.5算法、cart算法、sliq算法、z统计算法、并行决策树算法和sprint算法等。不同算法在执行效率、输出结果、可扩容性、可理解性、预测的准确性等方面各不相同。总的来说,这么多决策树算法各有优缺点,真正将数据挖掘运用到整个旅游信息化建设中还有很多问题需要解决。
数据挖掘中常用的基本分类算法有决策树、贝叶斯、基于规则的算法等等。其中,决策树是目前主流的分类技术,己经成功的应用于更多行业的数据分析。在关联规则挖掘研究中,最重要的是apriori算法,这个算法后来成为绝大多数关联规则分类的基础。聚类算法也是数据挖掘技术中极为重要的组成部分。与分类技术不同的是,聚类不要求对数据进行事先标定,就数据挖掘功能而言,聚类能够可以针对数据的相异度来分析评估数据,可以作为其他对发现的簇运行的数据挖掘算法的预处理步骤。各种算法分类模型建立有所不同,但原理是大致相同的。笔者考虑决策树算法结构简单,便于理解,且很擅长处理非数值型数据,建模效率高,分类速度快,特别适合大规模的数据处理的优点,结合旅游产业数据特点,故作重点分析。
旅游业数据挖掘系统的基本特点如下:统计旅游兴趣;购物消费趋向;推荐其感兴趣的旅游景点;在后台管理中,通过决策树算法对游客数量、平均年龄、景点收费、游客来自地区等进行分析总结,为旅游消费者和旅游管理者提供服务:为消费者提供吃住行购娱乐天气各方面信息查询、机票、车船票、酒店、景区门票、餐饮等方面的预定与现金支付、第三方支付、消费者评价、在线咨询等方面的便利、快捷服务。为管理者提供推荐、游客管理、线路管理、景点管理、特色服务管理、机票管理、在线咨询管理、旅游客户关系管理等服务,提高整体服务效率和水平。
旅游业信息管理系统包括游客信息管理与游客信息分析两个子模块。根据系统日常运行出现的问题及时对系统进行维护,如添加或者删除某个模块功能,系统整体运行速度的更近等。系统运用数据库层、持久化层、业务逻辑层、表示层四层体系结构,主要利用id3算法达到旅游数据信息的快速、准确分类。考虑了游客与酒店之间的关系、游客与旅游路线之间的关系、游客与旅游景点之间的关系、游客与机票、车票之间的关系、管理员与游客之间的关系、逻辑结构设计。程序之间的独立性增加,易于扩展,规范化得到保证的同时提高了系统的安全性。详细功能设计包括:用户登录、用户查询、预定及支付、后台管理、旅游客户管理和数据分析等方面。本系统中主要运用java语言就行逻辑上的处理。系统主要使用struts2和hibernate这两个框架来进行整个系统的搭建。其中struts2主要处理业务逻辑,而hibernate主要是处理数据存储、查询等操作。系统采用tomcat服务器。系统模块需要实现酒店推荐实现、景点推荐实现、天气预报实现、旅游线路实现、特产推荐、数据分析展现功能、报表数据获取、景区客流量变化分析实现等。需要进行后台信息管理等功能测试以及时间测试、数据测试等性能测试。
在对数据挖掘的基本方法与技术进行总结的基础上,结合当今数据挖掘的发展方向和研究热点,可以发现旅游业数据挖掘算法系统有待进一步完善之处:订票系统尚待完善。界面美化需要进一步改进。数据表之间的结构关系需要优化,以提高数据处理能力和效率。数据挖掘工具及算法有待精细化改进。
作者:朱晖单位:河南职业技术学院。
数据挖掘论文答辩数据挖掘论文篇六
发现的是用户感兴趣的知识;发现的知识应当能够被接受、理解和运用。也就是发现全部相对的知识,是具有特定前提与条件,面向既定领域的,同时还容易被用户接受。数据挖掘属于一种新型的商业信息处理技术,其特点为抽取、转化、分析商业数据库中的大规模业务数据,从中获得有价值的商业数据。简单来说,其实数据挖掘是一种对数据进行深入分析的方法。因此,可以描述数据挖掘为:根据企业设定的工作目标,探索与分析企业大量数据,充分揭示隐藏的、未知的规律性,并且将其转变为科学的方法。数据挖掘发现的最常见知识包括:
1.1.1广义知识体现相同事物共同性质的知识,是指类别特点的概括描述知识。按照数据的微观特点对其表征的、具有普遍性的、极高概念层次的知识积极发现,是对数据的高度精炼与抽象。发现广义知识的方法与技术有很多,例如数据立方体和归约等。
1.1.2关联知识体现一个事件与其他事件之间形成的关联知识。假如两项或者更多项之间形成关联,则其中一项的属性数值就能够借助其他属性数值实行预测。
1.1.3分类知识体现相同事物共同特点的属性知识与不同事物之间差异特点知识。
1.2.1明确业务对象对业务问题清楚定义,了解数据挖掘的第一步是数据挖掘目的。挖掘结果是无法预测的,但是研究的问题是可预见的,仅为了数据挖掘而数据挖掘一般会体现出盲目性,通常也不会获得成功。基于用户特征的电子商务数据挖掘研究刘芬(惠州商贸旅游高级职业技术学校,广东惠州516025)摘要:随着互联网的出现,全球范围内电子商务正在迅速普及与发展,在这样的环境下,电子商务数据挖掘技术应运而生。电子商务数据挖掘技术是近几年来数据挖掘领域中的研究热点,基于用户特征的电子商务数据挖掘技术研究将会解决大量现实问题,为企业确定目标市场、完善决策、获得最大竞争优势,其应用前景广阔,促使电子商务企业更具有竞争力。主要分析了电子商务内容、数据挖掘技术和过程、用户细分理论,以及基于用户特征的电子商务数据挖掘。
1.2.2数据准备第一选择数据:是按照用户的挖掘目标,对全部业务内外部数据信息积极搜索,从数据源中获取和挖掘有关数据。第二预处理数据:加工选取的数据,具体对数据的完整性和一致性积极检查,并且处理数据中的噪音,找出计算机丢失的数据,清除重复记录,转化数据类型等。假如数据仓库是数据挖掘的对象,则在产生数据库过程中已经形成了数据预处理。
1.2.3变换数据转换数据为一个分析模型。这一分析模型是相对于挖掘算法构建的。构建一个与挖掘算法适合的分析模型是数据挖掘获得成功的重点。可以利用投影数据库的相关操作对数据维度有效降低,进一步减少数据挖掘过程中数据量,提升挖掘算法效率。
1.2.4挖掘数据挖掘获得的经济转化的数据。除了对选择科学挖掘算法积极完善之外,其余全部工作都自行完成。整体挖掘过程都是相互的,也就是用户对某些挖掘参数能够积极控制。
1.2.5评价挖掘结果这个过程划分为两个步骤:表达结果和评价结果。第一表达结果:用户能够理解数据挖掘得到的模式,可以通过可视化数据促使用户对挖掘结果积极理解。第二评价结果:用户与机器对数据挖掘获得的模式有效评价,对冗余或者无关的模式及时删除。假如用户不满意挖掘模式,可以重新挑选数据和挖掘算法对挖掘过程科学执行,直到获得用户满意为止。
用户细分是指按照不同用户的属性划分用户集合。目前学术界和企业界一般接受的是基于用户价值的细分理论,其不仅包含了用户为企业贡献历史利润,还包含未来利润,也就是在未来用户为企业可能带来的利润总和。基于用户价值的细分理论选择客户当前价值与客户潜在价值两个因素评价用户。用户当前价值是指截止到目前用户对企业贡献的总体价值;用户潜在价值是指未来用户可能为企业创造的价值总和。每个因素还能够划分为两个高低档次,进一步产生一个二维的矩阵,把用户划分为4组,价值用户、次价值用户、潜在价值用户、低价值用户。企业在推广过程中根据不同用户应当形成对应的方法,投入不同的资源。很明显对于企业来说价值用户最重要,被认为是企业的玉质用户;其次是次价值用户,被认为是金质用户,虽然数量有限,却为企业创造了绝大部分的利润;其他则是低价值用户,对企业来说价值最小,成为铅质用户,另外一类则是潜在价值用户。虽然这两类用户拥有较多的数量,但是为企业创造的价值有限,甚至很小。需要我们注意的是潜在价值用户利用再造用户关系,将来极有可能变成价值用户。从长期分析,潜在价值用户可以是企业的隐形财富,是企业获得利润的基础。将采用数据挖掘方法对这4类用户特点有效挖掘。
3.1设计问卷。
研究的关键是电子商务用户特征的数据挖掘,具体包含了价值用户特征、次价值用户特征、潜在价值用户特征,对电子商务用户的认知度、用户的需求度分析。问卷内容包括3部分:其一是为被调查者介绍电子商务的概念与背景;其二是具体调查被调查对象的个人信息,包含了性别、年龄、学历、感情情况、职业、工作、生活地点、收入、上网购物经历;其三是问卷主要部分,是对用户对电子商务的了解、需求、使用情况的指标设计。
3.2调查方式。
本次调查的问卷主体是电脑上网的人群,采用随机抽象的方式进行网上访问。一方面采用大众聊天工具,利用电子邮件和留言的方式发放问卷,另一方面在大众论坛上邀请其填写问卷。
(1)选择数据挖掘的算法利用clementine数据挖掘软件,采用c5.o算法挖掘预处理之后数据。
(2)用户数据分析。
1)电子商务用户认知度分析按照调查问卷的问题“您知道电子商务吗?”得到对电子商务用户认知情况的统计,十分了解20.4%,了解30.1%,听过但不了解具体使用方法40.3%,从未听过8.9%。很多人仅听过电子商务,但是并不清楚具体的功能与应用方法,甚至有一小部分人没有听过电子商务。对调查问卷问题“您听过电子商务的渠道是什么?”,大部分用户是利用网了解电子商务的,占40.2%;仅有76人是利用纸质报刊杂志上知道电子商务的并且对其进行应用;这也表明相较于网络宣传纸质媒体推广电子商务的方法缺乏有效性。
2)电子商务用户需求用户希求具体是指使用产品服务人员对应用产品或服务形成的需求或者期望。按照问题“假如你曾经使用电子商务,你觉得其用途怎样,假如没有使用过,你觉得其对自己有用吗?”得到了认为需要和十分需要的数据,觉得电子商务有用的用户为40.7%,不清楚是否对自己有用的用户为56.7%,认为不需要的仅有2.4%。
3)电子商务用户应用意愿应用意愿是指消费者对某一产品服务进行应用或者购买的一种心理欲望。按照问题“假如可以满足你所关心的因素,未来你会继续应用电子商务吗?”获得的数据可知,在满足各种因素时,将来一年之内会应用电子商务的用户为78.2%,一定不会应用电子商务的用户为1.4%。表明用户形成了较为强烈的应用电子商务欲望,电子商务发展前景很好。基于用户特征的电子商务数据研究,电子商务企业通过这一结果能够更好地实行营销和推广,对潜在用户积极定位,提高用户体验,积极挖掘用户价值。分析为企业准确营销和推广企业提供了一个有效的借鉴。
互联网中数据是最宝贵的资源之一,大量数据中包含了很大的潜在价值,对这些数据深入挖掘对互联网商务、企业推广、传播信息发挥了巨大的作用。近些年来,数据挖掘技术获得了信息产业的极大重视,具体原因是出现了大量的数据,能够广泛应用,并且需要转化数据成为有价值的信息知识。通过基于用户特征的电子商务数据挖掘研究,促使电子商务获得巨大发展机会,发现潜在用户,促使电子商务企业精准营销。
数据挖掘论文答辩数据挖掘论文篇七
摘要:随着互联网的广泛使用,web的数据挖掘技术成为现阶段数据挖掘技术研究的重点,但由于其数据挖掘控制的复杂,对人们的数据挖掘和使用带来了困难。而xml数据挖掘的出现弥补了web数据挖掘的缺陷,为其带来了方便。
关键词:多层次技术;xml数据挖掘;web数据挖掘;研究。
0引言。
数据挖掘就是从大量的信息数据中发现潜在的规律性内容,进而对数据应用的质量问题进行解决,实现对数据的充分利用。在互联网发展支持下的数据挖掘技术得到了快速的发展,特别是以结构化数据为主的数据挖掘技术。数据挖掘技术被广泛地应用到各个领域,并获得了好的效果。但这种结构化的数据挖掘技术无法对web数据挖掘的特性进行处理,web上的html文档格式也不规范,导致没有充分挖掘和利用有价值的知识。由此,如何优化传统数据挖掘技术,实现其和web的结合成为数据挖掘技术研究领域关注的热点。而xml的出现,弥补了web的不足,成为现阶段互联网数据组织和交换的标准,并逐渐出现在web上。文章对基于多层次技术的xml数据挖掘进行研究。
第一,异构数据库的环境。因特网上的信息可以说就是一种数据路,具有大量的数据资源,每个站点的数据源都是异构的,因此,每个站点之间的信息和组织结构不一样,形成了一种异构数据库环境。想要获得和利用这些数据资源需要进行数据挖掘,这种数据挖掘需要对站点的异构数据集成进行研究,同时还要对因特网上的数据查询问题进行解决。第二,半结构化的数据结构。传统的数据库具有数据模型,能够通过这种模型来对特定的数据进行描述。但因特网上的数据较为复杂,没有统一的模型让人进行描述,且自身具有独立性、动态性的特点,存在自述层次,因而是一种半结构化数据。
2xml数据挖掘技术。
2.1xml技术概述。
xml是由万维网协会设计的一种中介标示性语言,主要被应用在web中。xml类似于html,主要被设计用来描述数据的语言,为数据挖掘提供了一种独立的运行程序,能够实现对数据的共享,并利用计算机通讯将信息传递到多个领域。
2.2xml和html的比较。
html是web的重要技术要素之一,简单易学,被很多计算机专业人员应用于创建自己的、具有超文本特定的多媒体主页,能够实现网络和普通人的联系,创造出丰富的网页。但其在因特网的应用存在以下几点缺陷:第一,只是对信息的显示方式进行描述,没有对信息内容本身进行描述;第二,需要因特网服务器帮其处理任务工作,加重了网络的负担,降低了网络运行的效率。根据上文对xml技术的概述,可以看出,xml不是一种单纯的标记语言,而是一种定义语言,能够根据需要设定不同的标记语言,突破了html固定标记的限制,能够更好地推动web的发展。
3.1设计的特点。
第一,具有自然、性能良好、个性化设计的系统用户界面;第二,主要应用元搜索引擎页面。这种页面设计的'主要思想是首先对用户的查询请求进行预处理,之后向各个搜索引擎发送查询的请求,最后,在经过处理之后向用户反馈检索结果。第三,web页面的设计充分应用了hits的算法。第四,利用xml技术对检索的数据进行预处理。主要表现为将数据库中的所有文档形式转化为xml文档形式,之后在数据仓库的应用下实现各种文档的集成。
3.2系统设计的结构。
xml数据挖掘系统的结构主要包含用户界面模块、数据预处理模块和数据挖掘模块。第一,用户界面模块主要作为用户和系统交接的端口存在,用户通过这个界面来实现对数据挖掘系统的使用。在这个模块中,用户能够在对数据挖掘之前设定挖掘的参数,之后提出请求、对挖掘成果分析,实现个性化的数据挖掘。第二,数据预处理模块主要是指在对数据检索之后,应用xml技术对检索的数据进行预处理。第三,数据挖掘模块主要是对数据预处理后的模块信息进行挖掘,并将成果展示给用户。
4基于xml技术的web数据挖掘。
基于xml技术的web数据挖掘主要分为内容上的挖掘和形式上的挖掘两种,其中,内容挖掘主要是针对文档标记的开始和结束之间的文本部分,即对标记值的一种挖掘。具体的内容挖掘方案主要有三种:第一,利用专门的xml数据、半结构数据开发查询的语言,充分开发其查询功能,并将这种语言渗透在应用程序中,从而实现对数据的有限挖掘。这种挖掘方案能够将xml技术和数据挖掘技术进行有效的结合,且具有操作简单的特点。第二,实现对xml文档数据的结构化处理。在处理之后将其映射到现有的关系对象模型中,从而实现对数据的挖掘。第三,将xml文档视为一种文本,采用传统的数据挖局处理技术对数据进行挖掘。
4.2xml技术数据挖掘实现。
xml技术的挖掘实现主要利用xquery实现关联挖掘来进行数据挖掘,且不需要对其文档进行预处理和挖掘后处理,具有操作简单的优势。主要采用两种方式来执行xquery。第一,使用xhivenodeif对象的executexquery进行语句的执行,使得集合的每个元素都是对应的对象,并将对象转换成dom的节点来进行数据的挖掘。第二,利用xhivexqueryqueryif对象调用execute进行语句的执行。在这个过程中会涉及对外部参数的使用。
5结语。
xml数据挖掘能够有效解决因特网数据挖掘难的问题,实现数据挖掘的简单化操作。xml数据挖掘将不同结构、不容易兼容的数据进行结合,并利用自身的灵活性和延展性将各种应用软件中的数据进行不同描述,从而方便因特网中数据的收集和记录。同时,基于xml数据是自我描述性的,不需要内部的描述处理就能实现数据的交换,为其对数据的处理和应用提供了便利的支持。因此,技术xml技术的数据挖掘成为当今因特网数据挖掘的研究重点,需要有关人员引起足够的重视,进而不断促进该技术对数据挖掘的应用。
参考文献:
数据挖掘论文答辩数据挖掘论文篇八
摘要:大数据和智游都是当下的热点,没有大数据的智游无从谈“智慧”,数据挖掘是大数据应用于智游的核心,文章探究了在智游应用中,目前大数据挖掘存在的几个问题。
随着人民生活水平的进一步提高,旅游消费的需求进一步上升,在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下,智游应运而生。大数据作为当下的热点已经成了智游发展的有力支撑,没有大数据提供的有利信息,智游无法变得“智慧”。
旅游业是信息密、综合性强、信息依存度高的产业[1],这让其与大数据自然产生了交汇。2010年,江苏省镇江市首先提出“智游”的概念,虽然至今国内外对于智游还没有一个统一的学术定义,但在与大数据相关的描述中,有学者从大数据挖掘在智游中的作用出发,把智游描述为:通过充分收集和管理所有类型和来源的旅游数据,并深入挖掘这些数据的潜在重要价值信息,然后利用这些信息为相关部门或对象提供服务[2]。这一定义充分肯定了在发展智游中,大数据挖掘所起的至关重要的作用,指出了在智游的过程中,数据的收集、储存、管理都是为数据挖掘服务,智游最终所需要的是利用挖掘所得的有用信息。
2011年,我国提出用十年时间基本实现智游的目标[3],过去几年,国家旅游局的相关动作均为了实现这一目标。但是,在借助大数据推动智游的可持续性发展中,大数据所产生的价值却亟待提高,原因之一就是在收集、储存了大量数据后,对它们深入挖掘不够,没有发掘出数据更多的价值。
智游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现wi-fi覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。通过这些平台,已基本能掌握跟游客和景点相关的数据,可以实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及大量部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。
大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景非常广阔,但是面对大量的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,通过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法通过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
2017年,数据安全事件屡见不鲜,伴着大数据而来的数据安全问题日益凸显出来。在大数据时代,无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹,如何保证这些信息被合法合理使用,让数据“可用不可见”[4],这是亟待解决的问题。同时,在大数据资源的开放性和共享性下,个人隐私和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外,经过大数据技术的分析、挖掘,个人隐私更易被发现和暴露,从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。
大数据背景下的智游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智游的构建还缺乏大量人才。
在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘应该被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智游大数据人才。
参考文献。
数据挖掘论文答辩数据挖掘论文篇九
摘要:在本科高年级学生中开设符合学术研究和工业应用热点的进阶课程是十分必要的。以数据挖掘课程为例,本科高年级学生了解并掌握数据挖掘的相关技术,对于其今后的工作、学习不无裨益。着重阐述数据挖掘等进阶课程在本科高年级学生中的教学方法,基于本科高年级学生的实际情况,以及进阶课程的知识体系特点,提出有针对性的教学方法参考,从而提高进阶课程的教学效果。
关键词:数据挖掘;进阶课程;教学方法研究;本科高年级。
学生在本科高年级学生中开设数据挖掘等进阶课程是十分必要的,以大数据、数据挖掘为例,其相关技术不仅是当前学术界的研究热点,也是各家企事业单位招聘中重要岗位的要求之一。对于即将攻读硕士或博士学位的学生,对于即将走上工作岗位的学生,了解并掌握一些大数据相关技术,尤其是数据挖掘技术,都是不无裨益的。在目前本科教学中,对于数据挖掘等课程的教学,由于前序课程的要求,往往是放在本科四年级进行。如何激发本科四年级学生在考研,找工作等繁杂事务中的学习兴趣,从而更好地掌握数据挖掘的相关技术是本课程面临的主要挑战,也是所有本科进阶课程所面临的难题之一。
1数据挖掘等进阶课程所面临的问题。
1.1进阶课程知识体系的综合性。
进阶课程由于其理论与技术的先进性,往往是学术研究的前沿,工业应用的热点,是综合多方面知识的课程。以数据挖掘课程为例,其中包括数据库、机器学习、模式识别、统计、可视化、高性能技术,算法等多方面的知识内容。虽然学生在前期的本科学习中已经掌握了部分相关内容,如数据库、统计、算法等,但对于其他内容如机器学习、人工智能、模式识别、可视化等,有的是与数据挖掘课程同时开设的进阶课程,有的已经是研究生的教学内容。对于进阶课程繁杂的知识体系,应该如何把握广度和深度的关系尤为重要。
1.2进阶课程的教学的目的要求。
进阶课程的知识体系的综合性体现在知识点过多、技术特征复杂。从教学效益的角度出发,进阶课程的教学目的是在有限的课时内最大化学生的知识收获。从教学结果的可测度出发,进阶课程的教学需要能够有效验证学生掌握重点知识的.学习成果。1.3本科高年级学生的实际情况本科高年级学生需要处理考研复习,找工作等繁杂事务,往往对于剩余本科阶段的学习不重视,存在得过且过的心态。进阶课程往往是专业选修课程,部分学分已经修满的学生往往放弃这部分课程的学习,一来没有时间,二来怕拖累学分。
2数据挖掘等进阶课程的具体教学方法。
进阶课程的教学理念是在有限的课时内,尽可能地提高课程的广度,增加介绍性内容,在授课中着重讲解1~2个关键技术,如在数据挖掘课程中,着重讲解分类中的决策树算法,聚类中的k-means算法等复杂度一般,应用广泛的重要知识点,并利用实践来检验学习成果。
2.1进阶课程的课堂教学。
数据挖掘等进阶课程所涉及的知识点众多,在课堂上则采用演示和讲授相结合的方法,对大部分知识点做广度介绍,而对需要重点掌握知识点具体讲授,结合实践案例及板书。在介绍工业实践案例的过程中,对于具体数据挖掘任务的来龙去脉解释清楚,尤其是对于问题的归纳,数据的处理,算法的选择等步骤,并在不同的知识点的教学中重复介绍和总结数据挖掘的一般性流程,可以加深学生对于数据挖掘的深入理解。对于一些需要记忆的知识点,在课堂上采用随机问答的方式,必要的时候可以在每堂课的开始重复提问,提高学习的效果。
2.2进阶课程的课后教学。
对于由于时间限制无法在课上深入讨论的知识点,只能依靠学生在课后自学掌握。本科高年级学生的课后自学的动力不像低年级学生那么充足,可以布置需要动手实践并涵盖相关知识点的课后实践,但尽量降低作业的工程量。鼓励学生利用开源软件和框架,基于提供的数据集,实际解决一些简单的数据挖掘任务,让学生掌握相关算法技术的使用,并对算法有一定的了解。利用学院与大数据相关企业建立的合作关系,在课后通过参观,了解大数据技术在当前企业实践中是如何应用的,激发学生的学习兴趣。
2.3进阶课程的教学效果考察进阶课程的考察不宜采取考试的形式,可以采用大作业的形式。从具体的数据挖掘实践中检验教学的成果,力求是学生在上完本课程后可以解决一些简单的数据挖掘任务,将较复杂的数据挖掘技术的学习留给学生自己。
3结语。
数据挖掘是来源于实践的科学,学习完本课程的学生需要真正理解,掌握相关的数据挖掘技术,并能够在实际数据挖掘任务中应用相关算法解决问题。这也对教师的教学水平提出了挑战,并直接与教师的科研水平相关。在具体的教学过程中,发现往往是在讲授实际科研中遇到的问题时,学生的兴趣较大,对于书本上的例子则反映一般。进阶课程在注重教学方法的基础上,对于教师的科研水平提出了新的要求,这也是对于教师科研的反哺,使教学过程变成了教学相长的过程。
参考文献:
[1]孙宇,梁俊斌,钟淑瑛.面向工程的《数据挖掘》课程教学方法探讨[j].现代计算机,2014(13).
[2]蒋盛益,李霞,郑琪.研究性学习和研究性教学的实证研究———以数据挖掘课程为例[j].计算机教育,2014(24).
[3]张晓芳,王芬,黄晓.国内外大数据课程体系与专业建设调查研究[c].2ndinternationalconferenceoneducation,managementandsocialscience(icemss2014),2014.
[4]郝洁.《无线传感器网络》课程特点、挑战和解决方案[j].现代计算机,2016(35).
[5]王永红.计算机类专业剖析中课程分析探讨[j].现代计算机,2011(04).
数据挖掘论文答辩数据挖掘论文篇十
摘要:大数据和智游都是当下的热点,没有大数据的智游无从谈“智慧”,数据挖掘是大数据应用于智游的核心,文章探究了在智游应用中,目前大数据挖掘存在的几个问题。
关键词:大数据;智游;数据挖掘;
1引言。
随着人民生活水平的进一步提高,旅游消费的需求进一步上升,在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下,智游应运而生。大数据作为当下的热点已经成了智游发展的有力支撑,没有大数据提供的有利信息,智游无法变得“智慧”。
2大数据与智游。
旅游业是信息密、综合性强、信息依存度高的产业[1],这让其与大数据自然产生了交汇。,江苏省镇江市首先提出“智游”的概念,虽然至今国内外对于智游还没有一个统一的学术定义,但在与大数据相关的描述中,有学者从大数据挖掘在智游中的作用出发,把智游描述为:通过充分收集和管理所有类型和来源的旅游数据,并深入挖掘这些数据的潜在重要价值信息,然后利用这些信息为相关部门或对象提供服务[2]。这一定义充分肯定了在发展智游中,大数据挖掘所起的至关重要的作用,指出了在智游的过程中,数据的收集、储存、管理都是为数据挖掘服务,智游最终所需要的是利用挖掘所得的有用信息。
3大数据挖掘在智游中存在的问题。
我国提出用十年时间基本实现智游的目标[3]过去几年国家旅游局的相关动作均为了实现这一目标。但是在借助大数据推动智游的可持续性发展中大数据所产生的价值却亟待提高原因之一就是在收集、储存了大量数据后对它们深入挖掘不够没有发掘出数据更多的价值。
3.1信息化建设。
智游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现wi—fi覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。通过这些平台,已基本能掌握跟游客和景点相关的数据,可以实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及大量部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。
大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景非常广阔,但是面对大量的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,通过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法通过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
3.3数据安全。
数据安全事件屡见不鲜伴着大数据而来的数据安全问题日益凸显出来。在大数据时代无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹如何保证这些信息被合法合理使用让数据“可用不可见”[4]这是亟待解决的问题。同时在大数据资源的开放性和共享性下个人隐私和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外经过大数据技术的分析、挖掘个人隐私更易被发现和暴露从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。
3.4大数据人才。
大数据背景下的智游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智游的构建还缺乏大量人才。
4解决思路。
在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘应该被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智游大数据人才。
参考文献。
数据挖掘论文答辩数据挖掘论文篇十一
网络的发展带动了电子商务市场的繁华,大量的商品、信息在现有的网络平台上患上以交易,大大简化了传统的交易方式,节俭了时间,提高了效力,但电子市场繁华违后暗藏的问题,同样成为人们关注的焦点,凸起表现在海量信息的有效应用上,如何更为有效的管理应用潜伏信息,使他们的最大功效患上以施展,成为人们现在钻研的重点,数据发掘技术的发生,在必定程度上解决了这个问题,但它也存在着问题,需要不断改善。
数据发掘(datamining)就是从大量的、不完整的、有噪声的、隐约的、随机的原始数据中,提取隐含在其中的、人们事前不知道的、但又是潜伏有用的信息以及知识的进程。或者者说是从数据库中发现有用的知识(kdd),并进行数据分析、数据融会(datafusion)和决策支撑的进程。数据发掘是1门广义的交叉学科,它汇聚了不同领域的钻研者,特别是数据库、人工智能、数理统计、可视化、并行计算等方面的学者以及工程技术人员。
数据发掘技术在电子商务的利用。
在对于web的客户走访信息的发掘中,应用分类技术可以在internet上找到未来的潜伏客户。使用者可以先对于已经经存在的走访者依据其行动进行分类,并依此分析老客户的1些公共属性,抉择他们分类的症结属性及互相间瓜葛。对于于1个新的走访者,通过在web上的分类发现,辨认出这个客户与已经经分类的老客户的1些公共的描写,从而对于这个新客户进行正确的分类。然后从它的分类判断这个新客户是有益可图的客户群仍是无利可图的客户群,抉择是不是要把这个新客户作为潜伏的客户来对于待。客户的类型肯定后,可以对于客户动态地展现web页面,页面的内容取决于客户与销售商提供的产品以及服务之间的关联。若为潜伏客户,就能够向这个客户展现1些特殊的、个性化的页面内容。
在电子商务中,传统客户与销售商之间的空间距离已经经不存在,在internet上,每一1个销售商对于于客户来讲都是1样的,那末使客户在自己的销售站点上驻留更长的时间,对于销售商来讲则是1个挑战。为了使客户在自己的网站上驻留更长的时间,就应当全面掌握客户的阅读行动,知道客户的兴致及需求所在,并依据需求动态地向客户做页面举荐,调剂web页面,提供独有的1些商品信息以及广告,以使客户满意,从而延长客户在自己的网站上的驻留的时间。
数据发掘技术可提高站点的效力,web设计者再也不完整依托专家的定性指点来设计网站,而是依据走访者的信息特征来修改以及设计网站结构以及外观。站点上页面内容的支配以及连接就如超级市场中物品的货架左右1样,把拥有必定支撑度以及信任度的相干联的物品摆放在1起有助于销售。网站尽量做到让客户等闲地走访到想走访的页面,给客户留下好的印象,增添下次走访的机率。
通过web数据发掘,企业可以分析顾客的将来行动,容易评测市场投资回报率,患上到可靠的市场反馈信息。不但大大降低公司的运营本钱,而且便于经营决策的制订。
数据发掘在利用中面临的问题。
一数据发掘分析变量的选择。
数据发掘的基本问题就在于数据的数量以及维数,数据结构显的无比繁杂,数据分析变量即是在数据发掘中技术利用中发生的,选择适合的分析变量,将提高数据发掘的效力,尤其合用于电子商务中大量商品和用户信息的处理。
针对于这1问题,咱们完整可以用分类的法子,分析出不同信息的属性和呈现频率进而抽象出变量,运用到所选模型中,进行分析。
二数据抽取的法子的选择。
数据抽取的目的是对于数据进行浓缩,给出它的紧凑描写,如乞降值、平均值、方差值、等统计值、或者者用直方图、饼状图等图形方式表示,更主要的是他从数据泛化的角度来讨论数据总结。数据泛化是1种把最原始、最基本的信息数据从低层次抽象到高层次上的进程。可采取多维数据分析法子以及面向属性的归纳法子。
三数据趋势的。预测。
数据是海量的,那末数据中就会隐含必定的变化趋势,在电子商务中对于数据趋势的预测尤为首要,尤其是对于客户信息和商品信息公道的预测,有益于企业有效的决策,取得更多地利润。但如何对于这1趋势做出公道的预测,现在尚无统1标准可寻,而且在进行数据发掘进程中大量数据构成文本后格式的非标准化,也给数据的有效发掘带来了难题。
针对于这1问题的发生,咱们在电子商务中可以利用聚类分析的法子,把拥有类似阅读模式的用户集中起来,对于其进行详细的分析,从而提供更合适、更令用户满意的服务。聚类分析法子的优势在于便于用户在查看日志时对于商品及客户信息有全面及清晰的把握,便于开发以及执行未来的市场战略,包含自动给1个特定的顾客聚类发送销售邮件,为1个顾客聚类动态地扭转1个特殊的站点等,这不管对于客户以及销售商来讲都是成心义。
四数据模型的可靠性。
数据模型包含概念数据模型、逻辑数据模型、物理模型。数据发掘的模型目前也有多种,包含采集模型、处理模型及其他模型,但不管哪一种模型都不是很成熟存在缺点,对于数据模型不同采取不同的方式利用。可能发生不同的结果,乃至差异很大,因而这就触及到数据可靠性的问题。数据的可靠性对于于电子商务来讲尤为首要作用。
针对于这1问题,咱们要保障数据在发掘进程中的可靠性,保证它的准确性与实时性,进而使其在最后的结果中的准确度到达最高,同时在利用模型进程中要尽可能全面的分析问题,防止片面,而且分析结果要由多人进行评价,从而最大限度的保证数据的可靠性。
五数据发掘触及到数据的私有性以及安全性。
大量的数据存在着私有性与安全性的问题,尤其是电子商务中的各种信息,这就给数据发掘造成为了必定的阻碍,如何解决这1问题成了技术在利用中的症结。
为此相干人员在进行数据发掘进程中必定要遵照职业道德,保障信息的秘要性。
六数据发掘结果的不肯定性。
数据发掘结果拥有不肯定性的特征,由于发掘的目的不同所以最后发掘的结果自然也会千差万别,以因而这就需要咱们与所要发掘的目的相结合,做出公道判断,患上出企业所需要的信息,便于企业的决策选择。进而到达提高企业经济效益,取得更多利润的目的。
数据发掘可以发现1些潜伏的用户,对于于电子商务来讲是1个不可或者缺的技术支撑,数据发掘的胜利请求使用者对于指望解决问题的领域有深入的了解,数据发掘技术在必定程度上解决了电子商务信息不能有效应用的问题,但它在运用进程中呈现的问题也亟待人们去解决。相信数据发掘技术的改良将推动电子商务的深刻发展。
数据挖掘论文答辩数据挖掘论文篇十二
在电子商务中运用数据挖掘技术,对服务器上的日志数据、用户信息和访问链接信息进行数据挖掘,有效了解客户的购买欲望,从而调整电子商务平台,最终实现利益更大化。本文旨在了解电子商务中的数据源有哪些,发掘数据挖掘在电子商务中的具体作用,从而为数据挖掘的具体设计奠定基础。
一、电子商务中数据挖掘的数据源。
1.服务器日志数据客户在访问网站时,就会在服务器上产生相应的服务器数据,这些文件主要是日志文件。而日志文件又可分为ser-vicelogs、errorlogs、cookielogs。其中servicelogs文件格式是最常用的标准公用日志文件格式,也是标准组合日志文件格式。标准公用日志文件的格式存储关于客户连接的物理信息。标准组合日志文件格式主要包含关于日志文件元信息的指令,如版本号,会话监控开始和结束的日期等。在日志文件中,cookielogs日志文件是很重要的日志文件,是服务器为了自动追踪网站访问者,为单个客户浏览器生成日志[1]。
2.客户登记信息。
客户登记信息是指客户通过web页输入的、并提交给服务器的相关用户信息,这些信息通常是关于用户的常用特征。
在web的数据挖掘中,客户登记信息需要和访问日志集成,以提高数据挖掘的准确度,使之能更进一步的了解客户。
页面的超级链接。
辅之以监视所有到达服务器的数据,提取其中的http请求信息。此部分数据主要来自浏览者的点击流,用于考察用户的行为表现。网络底层信息监听过滤指监听整个网络的所有信息流量,并根据信息源主机、目标主机、服务协议端口等信息过滤掉垃圾数据,然后进行进一步的处理,如关键字的搜索等,最终将用户感兴趣的数据发送到给定的数据接受程序存储到数据库中进行分析统计。
二、web数据挖掘在电子商务中的应用通过对数据源的原始积累、仔细分析,再利用数据发掘技术,最终达到为企业为用户服务的目的,而这些服务主要有以下几种。
1.改进站点设计,提高客户访问的兴趣对客户来说,传统客户与销售商之间的空间距离在电子商务中已经不存在了,在internet上,每一个销售商对于客户来说都是一样的,那么如何使客户在自己的销售站点上驻留更长的时间,对销售商来说将是一个挑战。为了使客户在自己的网站上驻留更长的时间,就应该对客户的访问信息进行挖掘,通过挖掘就能知道客户的浏览行为,从而了解客户的兴趣及需求所在,并根据需求动态地调整页面,向客户展示一个特殊的页面,提供特有的一些商品信息和广告,以使客户能继续保持对访问站点的兴趣。
2.发现潜在客户。
在对web的客户访问信息的挖掘中,利用分类技术可以在internet上找到未来的潜在客户。获得这些潜在的客户通常的市场策略是:先对已经存在的访问者进行分类。对于一个新的访问者,通过在web上的分类发现,识别出这个客户与已经分类的老客户的一些公共的描述,从而对这个新客户进行正确的归类。然后从它所属类判断这个新客户是否为潜在的购买者,决定是否要把这个新客户作为潜在的客户来对待。
客户的类型确定后,就可以对客户动态地展示web页面,页面的内容取决于客户与销售商提供的产品和服务之间的关联。
对于一个新的客户,如果花了一段时间浏览市场站点,就可以把此客户作为潜在的客户并向这个客户展示一些特殊的页面内容。
3.个性化服务。
根据网站用户的访问情况,为用户提供个性化信息服务,这是许多互联网应用,尤其是互联网信息服务或电子商务(网站)所追求的目标。根据用户的访问行为和档案向使用者进行动态的推荐,对许多应用都有很大的吸引力。web日志挖掘是一个能够出色地完成这个目标的方式。通过web数据挖掘,可以理解访问者的动态行为,据此优化电子商务网站的经营模式。通过把所掌握的大量客户分成不同的类,对不同类的客户提供个性化服务来提高客户的满意度,从而保住老客户;通过对具有相似浏览行为的客户进行分组,提取组中客户的共同特征,从而实现客户的聚类,这可以帮助电子商务企业更好地了解客户的兴趣、消费习惯和消费倾向,预测他们的需求,有针对性地向他们推荐特定的商品并实现交叉销售,可以提高交易成功率和交易量,提高营销效果。
例如全球最大中文购物网站淘宝网。当你购买一件商品后,淘宝网会自动提示你“购买过此商品的人也购买过……”类似的信息,这就是个性化服务的代表。
4.交易评价。
现在几乎每一个电子商务网站都增加了交易评价功能,交易评价功能主要就是为了降低交易中的信息不对称问题。
电子商务交易平台设计了在线信誉评价系统,对买卖双方的交易历史及其评价进行记录。在声誉效应的影响下,卖家也更加重视买家的交易满意度,并且也形成了为获取好评减少差评而提高服务质量的良好风气。交易中的不满意(或者成为纠纷)是产生非好评(包括中评和差评)的直接原因。那么,交易中一般会产生哪些交易纠纷,这些交易纠纷的存在会如何影响交易评价结果,这些问题的解决对卖家的经营具有重要的指导价值。
总结。
数据挖掘是当今世界研究的热门领域,其研究具有广阔的应用前景和巨大的现实意义。借助数据挖掘可以改进企业的电子商务平台,增加企业的经营业绩,拓宽企业的经营思路,最终提高企业的竞争力。
参考文献:
数据挖掘论文答辩数据挖掘论文篇十三
古典文学中常见论文这个词,当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称为论文。以下就是由编为您提供的。
阿里巴巴成功上市,使马云一时间家喻户晓,同时让更多人看到了电商发展的无限潜力和广阔空间。电子商务是一门交叉性概念,其涉及理论知识和领域极为丰富,譬如:管理学、法学、经济学以及互联网技术等多种领域,是一系列综合性极强的活动。信息技术的进步和社会商业的发展使得经济数字化、竞争全球化、贸易自由化的趋势不断加强。有关电子商务各类的研究如雨后春笋层出不穷,其中物联网技术作为其发展的重要支撑不可忽视。为进一步了解近年来我国基于物联网的电商发展研究热点,笔者通过对cnki收录的相关文献的进行计量分析就此展开研究。
物联网作为一种新兴技术,自20世纪90年代由美国麻省理工学院首次提出以来,其技术实现及应用引起国内外学术界学者广泛关注。物联网起初是基于物流系统提出的,以射频识别技术作为条码识别的替代品,实现对物流系统进行智能化管理。
在研究物联网技术在电子商务应用中,rfid功不可没。rfid(radiofrequencyidentification)技术作为物联网的重要技术,又称电子标签、无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。电子商务利用物联网技术通过把人、财、物、商店等实体联结起来并在网络环境下进行交互。在实现交互时,一个关键技术就是利用rfid技术给各个实体标注独一无二的标签从而将不同实体加以区分。物联网技术不仅承担着标注实体角色而且在记录生产过程、跟踪物流以及防伪查询等方面发挥着重要作用。
随着互联网技术的发展和经济全球化浪潮的推动,电子商务问题及物联网技术成为国内外学术界普遍研究热点。国内学者就电子商务发展进程中涉及到的主要环节并结合物联网技术作出相关研究,并在其研究的基础之上根据我国电子商务发展状况提出了针对性建议,这些环节主要包括基础设施建设、支付环境、信用环境以及发展环境的改善等等。
国内对电子商务的研究热度颇高,然而对物联网技术下电子商务的研究相对匮乏。2017年4月,我们在cnki上以“主题=电子商务”为检索式进行检索,查得相关记录83605条;以“主题=‘物联网’+‘电子商务’”为检索式得到609条记录,通过筛选共112篇文献与本文研究相关。在112篇文章中,98篇为非基金文献,基金文献仅占1/8。据调查,近年来我国基于物联网技术对电子商务研究集中在物联网技术在各行业电子商务中的应用、物联网对电商的影响以及基于物联网技术新型模式的研讨等方面。因此,围绕物联网环境下电子商务发展动向及趋势并进行相关比较分析对把握电子商务发展中关键问题具有极强的现实意义和指导意义。
数据挖掘论文答辩数据挖掘论文篇十四
[1]刘莹。基于数据挖掘的商品销售预测分析[j].科技通报。20xx(07)。
[2]姜晓娟,郭一娜。基于改进聚类的电信客户流失预测分析[j].太原理工大学学报。20xx(04)。
[3]李欣海。随机森林模型在分类与回归分析中的应用[j].应用昆虫学报。20xx(04)。
[4]朱志勇,徐长梅,刘志兵,胡晨刚。基于贝叶斯网络的客户流失分析研究[j].计算机工程与科学。20xx(03)。
[5]翟健宏,李伟,葛瑞海,杨茹。基于聚类与贝叶斯分类器的网络节点分组算法及评价模型[j].电信科学。20xx(02)。
[6]王曼,施念,花琳琳,杨永利。成组删除法和多重填补法对随机缺失的二分类变量资料处理效果的比较[j].郑州大学学报(医学版).20xx(05)。
[7]黄杰晟,曹永锋。挖掘类改进决策树[j].现代计算机(专业版).20xx(01)。
[8]李净,张范,张智江。数据挖掘技术与电信客户分析[j].信息通信技术。20xx(05)。
[9]武晓岩,李康。基因表达数据判别分析的随机森林方法[j].中国卫生统计。20xx(06)。
[10]张璐。论信息与企业竞争力[j].现代情报。20xx(01)。
[13]俞驰。基于网络数据挖掘的客户获取系统研究[d].西安电子科技大学20xx。
[14]冯军。数据挖掘在自动外呼系统中的应用[d].北京邮电大学20xx。
[15]于宝华。基于数据挖掘的高考数据分析[d].天津大学20xx。
[16]王仁彦。数据挖掘与网站运营管理[d].华东师范大学20xx。
[19]贾治国。数据挖掘在高考填报志愿上的应用[d].内蒙古大学20xx。
[22]阮伟玲。面向生鲜农产品溯源的基层数据库建设[d].成都理工大学20xx。
[23]明慧。复合材料加工工艺数据库构建及数据集成[d].大连理工大学20xx。
[25]岳雪。基于海量数据挖掘关联测度工具的设计[d].西安财经学院20xx。
[28]张晓东。全序模块模式下范式分解问题研究[d].哈尔滨理工大学20xx。
[30]王化楠。一种新的混合遗传的基因聚类方法[d].大连理工大学20xx。
[33]俞驰。基于网络数据挖掘的客户获取系统研究[d].西安电子科技大学20xx。
[34]冯军。数据挖掘在自动外呼系统中的应用[d].北京邮电大学20xx。
[35]于宝华。基于数据挖掘的高考数据分析[d].天津大学20xx。
[36]王仁彦。数据挖掘与网站运营管理[d].华东师范大学20xx。
[39]贾治国。数据挖掘在高考填报志愿上的应用[d].内蒙古大学20xx。
数据挖掘论文答辩数据挖掘论文篇十五
数据挖掘的概念和应用已经渗透到社会生活和工业生产的各个领域。作为数据挖掘的实践者,本人在读数学专业的同时,也兴趣盎然地涉足了数据科学和机器学习领域。在一次数据挖掘课程中,我完成了一篇论文,能让我对数据挖掘这个领域有更深入的认识和体验。这篇论文让我深入了解了数据挖掘的思路,技术和应用,并且让我体会到写论文不仅仅是理论知识,更需要实践的动手能力,思维的掌握能力,和成果演示的表达能力。在这篇心得体会中,我想分享我的经验,和大家一起探究数据挖掘的独特之处。
数据挖掘作为一个复杂的技术领域,它的研究对象可以是已有的数据集合,经修正的数据对象或者真实的数据。要想在这个领域获得成功,首先需要有学习数据挖掘的信念。学习数据挖掘,不仅需要具有信息学、数学、统计、计算机等领域的基本素养,还要具备探索、创新、思维、推理能力等本质要素。当我们深入学习数据挖掘技术时,我们不仅需要明``确各项技术特征,还需要全面了解不同类型的数据分析流程。
一般来说,学习数据挖掘的方法包括:学习关于数据挖掘的各种知识点、探索分享“开源”资源、通过训练理论模型以及掌握不同实际应用场景下的数据挖掘流程等。这些方法都非常必要,同时也大大丰富了我们的数据挖掘知识储备。
第三段:论文的核心内容。
在毕业论文写作之中,我写了一篇关于“基于树模型的数据挖掘方法研究与应用”的论文。本文利用树形神经网络模型,并通过对数据源进行预处理和特征选择,把语音呼叫数据与样本数据进行匹配,并提出了树形神经网络模型的性能检验。同时,本文探讨了该模型的实际应用场景以及对未来语音识别的发展具有重要的参考价值。该论文的相关资料、数据等都经过了极为详尽的研究和讨论。通过数据挖掘的方法,该论文配备有附录和数据模型的详细数据分析。
第四段:论文的收获。
通过这篇论文的写作,我除了掌握数据挖掘的基本技能,如预处理、分析等,更重要的是锻炼了自己的学习能力、团队沟通协作能力和美术设计等多方面的能力。通过论文的撰写和演示,我更加深入地认识了数据挖掘应用的深度、挑战和前景。
第五段:未来展望。
在未来的学习和工作中,我希望能够不断强化自己数据挖掘领域方面的知识储备,加速自身的魅力和资质提升,成为引领行业的新一代人才,并在日后的实践中不断总结经验,挖掘新的理论问题,依托技术优势和网络平台,推动数据挖掘与科技创新的合理发展,并为行业的创新与发展做出重要的贡献。
数据挖掘论文答辩数据挖掘论文篇十六
随着会计现代化的发展,会计越来越多的运用计算机技术的拓展。
数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜存有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。
常用的数据挖掘方法主要有决策树(decisiontree)、遗传算法(geneticalgorithms)、关联分析(associationanalysis).聚类分析(c~smranalysis)、序列模式分析(sequentialpattern)以及神经网络(neuralnetworks)等。
由于数据挖掘市场还处于起步的阶段,但是发展很快。在国外有一些著名的大公司对数据挖掘系统进行了开发。
igentminer这是ibm公司的数据挖掘产品,它提供了很多数据挖掘算法,包括关联、分类、回归、预测模型、偏离检测、序列模式分析和聚类。有2个特点:一是它的数据挖掘算法的可伸缩性;二是它与ibm/db/2关系数据库系统紧密地结合在一起。
t是由sgi公司开发的,它也提供了多种数据挖掘方法,包括关联分析和分类以及高级统计和可视化工具。特色是它具有的强大的图形工具,包括规则可视化工具、树可视化工具、地图可视化工具和多维数据分散可视化工具,它们用于实现数据和数据挖掘结果的可视化。
tine是由isl公司开发的,它为终端用户和开发者提供提供了一个集成的数据挖掘开发环境。
面对日益激烈的竞争环境,企业管理者对决策信息的需求也越来越高。管理会计作为企业决策支持系统的重要组成部分,提供更多、更有效的有用信息责无旁贷。因此,从海量数据中挖掘和寻求知识和信息,为决策提供有力支持成为管理会计师使用数据挖掘的强大动力。例如,数据挖掘可以帮助企业加强成本管理,改进产品和服务质量,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。
实践证明数据挖掘不仅能明显改善企业内部流程,而且能够从战略的高度对企业的竞争环境、市场、顾客和供应商进行分析,以获得有价值的商业情报,保持和提高企业持续竞争优势。如,对顾客价值分析能够将为企业创造80%价值的20%的顾客区分出来,对其提供更优质的服务,以保持这部分顾客。
险
利用数据挖掘技术可以建立企业财务风险预警模型。企业财务风险的发生并非一蹴而就,而是一个积累的、渐进的过程,通过建立财务风险预警模型,可以随时监控企业财务状况,防范财务危机的发生。另外,也可以利用数据挖掘技术,对企业筹资和投资过程中的行为进行监控,防止恶意的商业欺诈行为,维护企业利益。尤其是在金融企业,通过数据挖掘,可以解决银行业面临的如信用卡的恶意透支及可疑的信用卡交易等欺诈行为。根据sec的报告,美国银行、美国第一银行、联邦住房贷款抵押公司等数家银行已采用了数据挖掘技术。
作业成本法以其对成本的精确计算和对资源的充分利用引起了人们的极大兴趣,但其复杂的操作使得很多管理者望而却步。利用数据挖掘中的回归分析、分类分析等方法能帮助管理会计师确定成本动因,更加准确计算成本。同时,也可以通过分析作业与价值之间的关系,确定增值作业和非增值作业,持续改进和优化企业价值链。在thomasg,johnj和il-woonkim的调查中,数据挖掘被用在作业成本管理中仅占3%。
管理会计师在很多情况下需要对未来进行预测,而预测是建立在大量的历史数据和适当的模型基础上的。数据挖掘自动在大型数据库中寻找预测性信息,利用趋势分析、时间序列分析等方法,建立对如销售、成本、资金等的预测模型,科学准确的预测企业各项指标,作为决策的依据。例如对市场调查数据的分析可以帮助预测销售;根据历史资料建立销售预测模型等。
投资决策分析本身就是一个非常复杂的过程,往往要借助一些工具和模型。数据挖掘技术提供了有效的工具。从公司的财务报告、宏观的经济环境以及行业基本状况等大量的数据资料中挖掘出与决策相关的实质性的信息,保证投资决策的正确性和有效性。如利用时间序列分析模型预测股票价格进行投资;用联机分析处理技术分析公司的信用等级,以预防投资风险等。
品种优化是选择适当的产品组合以实现最大的利益的过程,这些利益可以是短期利润,也可以是长期市场占有率,还可以是构建长期客户群及其综合体。为了达到这些目标,管理会计师不仅仅需要价格和成本数据有时还需要知道替代品的情况,以及在某一市场段位上它们与原产品竞争的状况。另外企业也需要了解一个产品是如何刺激另一些产品的销量的等等。例如,非盈利性产品本身是没有利润可言的,但是,如果它带来了可观的客户流量,并刺激了高利润产品的销售,那么,这种产品就非常有利可图,就应该包括在产品清单中。这些信息可根据实际数据,通过关联分析等技术来得到。
管理会计师可以利用数据挖掘工具来评价企业的财务风险,建立企业财务危机预警模型,进行破产预测。破产预测或称财务危机预警模型能够帮助管理者及时了解企业的财务风险,提前采取风险防范措施,避免破产。另外,破产预测模型还能帮助分析破产原因,对企业管理者意义重大。,数据挖掘技术包括多维判别式分析、逻辑回归分析、遗传算法、神经网络以及决策树等方法在管理会计中得到了广泛的应用。
数据挖掘是个崭新的领域,对于数字和信息的处理是非常科学和方便的,也是非常高效率和合理分析的非常好的工具,对于会计管理领域的应用在国际上只是刚刚开始,相信随着会计的国际化的接轨和计算机科学的进步,在我国的会计领域中的数据挖掘理论会得到不断的提升,在管理会计实际应用中的数据挖掘也越来越多样化和普及化。
数据挖掘论文答辩数据挖掘论文篇十七
数据挖掘是用于发现隐藏于大量数据中的有用信息的过程。在现代商业中,数据挖掘已经成为了决策制定中不可或缺的工具。对于学习数据挖掘的人来说,写论文是一个很好的锻炼机会。本文将介绍我在撰写数据挖掘论文过程中得到的心得和体会。
一、数据收集和准备。
在进行数据挖掘和撰写论文之前,首先需要进行数据收集和准备。这个过程非常费时间和精力。它需要你花费大量的时间研究和了解你想要分析的数据,并且要确保其质量和可靠性。当你收集到充足的数据后,你需要对其进行清洗和加工,以确保它符合你的研究和分析要求。
二、寻找合适的算法。
对于不同的数据类型和研究目的,使用不同的算法是非常必要的。在进行数据分析前,我们需要先研究和了解有哪些算法可以使用,并确定哪个算法最适合你的数据和问题。此外,认真阅读一些经典的数据挖掘论文,了解如何使用不同类型的算法来处理和分析数据,对于指导你的研究和撰写论文有很大的帮助。
三、数据可视化。
数据可视化是通过图表、示意图和图像等方式将数据表达出来。它可以使得复杂的数据变得更加容易理解和使用。当你分析完你的数据后,你需要进行可视化操作,以帮助你更好地理解和展示数据。此外,数据可视化还能使你的论文更加引人注目,视觉效果更加优美。
四、语言表达。
语言表达能力在论文写作中是至关重要的。你需要清晰而有条理地表达你的研究思路和分析结果,并将其用通俗易懂的语言表现出来。此外,精确的描述和清晰的句子结构有助于阅读者理解你的思考过程。
五、多次修改和校对。
写作是一个不断完善和改进的过程。你需要对论文进行多次修改和校对,以确保你的研究思路和结果清晰明了,没有错别字和语法错误。此外,还需要注意引用来源的正确性和格式的一致性。
数据挖掘论文撰写是一个需要良好耐心和细心的工作。在整个过程中,我们需要持续学习和完善自己,才能写出高质量、有科学价值的论文。对于近期对数据挖掘领域有深入接触的读者来说,我们要虚心学习,勤奋钻研,不断提高自己的写作技巧。
数据挖掘论文答辩数据挖掘论文篇十八
:随着科学技术的不断发展,数据挖掘技术也应运而生。为了高效有序的医疗信息管理,需要加强数据挖掘技术在医疗信息管理中的实际应用,从而提升医院的管理水平,为医院的管理工作及资源的合理配置提供多样化发展的可能性。笔者将针对数据挖掘技术在医疗信息管理中的应用这一课题进行相应的探究,从而提出合理的改进建议。
:挖掘技术;医疗信息管理;应用方式。
数据挖掘作为一种数据信息再利用的有效技术,能够有效地为医院的管理决策提供重要信息。它以数据库、人工智能以及数理统计为主要技术支柱进行技术管理与决策。而在医疗信息管理过程之中应用数据挖掘技术能够较好地针对医疗卫生信息进行整理与归类来建立管理模型,形成有效的总结数据的同时能够为医疗工作的高效进行提供有价值的信息。所以笔者将以数据挖掘技术在医疗信息管理中的应用为着手点,从而针对其应用现状进行探究,以此提出加强数据挖掘技术在医疗信息管理中应用的具体措施,希望能够在理论层面上推动医疗信息管理工作的飞跃。
数据挖掘是结合信息收集技术、人工智能处理技术以及分析检测技术等所形成的功能强大的技术。它能够实现对于数据的收集、问题的定义与处理,并且能够较好地对于结果进行解释与评估。在医疗信息管理工作进行的过程之中,应用数据挖掘技术可以较好地加强医疗信息数据模型的建立,同时以多种形式出现,例如文字信息、基本信号信息、图像收集等,也能够用来进行医疗信息的科普与宣传。并且,数据挖掘技术在医疗信息中所体现出的应用方式有所不同,在数据挖掘技术应用过程之中,既可以针对同一类的实物反应出共同性质的基本特征,同时也能够根据具有一定关联性的事物信息来探究差异。这些功能不仅仅能够在医疗信息的管理层面上给予医疗人员较大的信息管理指导,同时在实际的医疗诊断过程之中,也可以向医生提供患者的患病信息,并且辅助治疗的进行[1]。所以,在医疗信息管理中应用数据挖掘技术不仅仅能够推动医疗信息管理水平的提升,也是医院实现现代化、信息化建设的重要体现,需要从根本上明确医疗信息管理应用数据挖掘技术的必要性与基本内涵,从而针对医院的管理现状实现其管理方式与技术应用的转变与优化。
2.1实现建模环节以及数据收集环节的优化。
在应用数据挖掘技术的过程之中,必须基于数据库信息的基础之上,其数据挖掘技术才能够进行相应的规律探究与信息分析,所以需要在源头处加强数据收集环节以及建模环节的优化。以医院中医部门为例,在对于中医处方经验的挖掘方法使用过程之中,需要针对不同的药物进行关联性建模,比如数据库中有基础性药物,针对药物进行频数和次数的统计,然后以此类推,将所有药物都按照出现的频数进行降数排列,从而探究参考价值。建模环节以及数据收集环节是医疗信息管理过程的根本,所以需要做好对于建模环节以及数据收集环节的优化,才能够为数据挖掘技术的应用奠定相应的基础[2]。
想要在医疗信息管理过程之中,加强对于数据挖掘技术的有效应用,就需要从数据挖掘技术应用类别处进行着手,从而提升技术应用的针对性与有效性。常见的技术应用类别有:医院资源配置方面、病患区域管理方面、医疗卫生质量管理方面、医疗急诊管理方面、医院经济管理方面以及医疗卫生常见病宣传方面等,数据挖掘技术都可以在这些类别之中实现应用,但是在应用的过程之中也有所不同。以病房区域管理为例,在应用数据挖掘技术之前,首先需要明确不同的科室状况以及病房区域分配状况等,加强病患区域的指标分析,因为病房管理不仅仅影响到科室的工作效率与工作效果,同时也是医疗物资分配与人员编制的主要参考标准。其次利用数据挖掘技术能够较好地实现不同科室工作效率、质量管理质量以及经济收益等多种指标的评估,建立其科室的运营模型,从而实现科室的又好又快发展。比如使用数据挖掘技术建立其病区管理的标准模型以及统计指标,从而计算出科室动态的工作模型以及病床动态的周转次数等[3]。另外在医疗质量管理过程之中,数据挖掘技术提供的不仅仅是资料数据的参考以及疾病的诊断,也能够针对临床的治疗效果进行分析与评价,并且能够预测治疗状况:可以利用医院的医疗数据库,对于病人的基本患病信息进行分类,从而比对死亡率、治愈率等多个数据,实现治疗方案的制订。而在医疗质量管理过程之中也有很多的影响因素,例如基础医疗设备、病床周转次数、病种治愈记录等,所以也可以利用数据挖掘技术来进一步加强其多种数据之间的关联性,从而为提升医院的社会效益与经济效益提出合理的参考性建议。
医院加强数据挖掘技术应用方向的探索上,可以从客户拓展这个角度出发实现对于医疗信息管理。例如通过数据挖掘技术多方进行患者信息比对,同时制订完善的医疗服务影响策略方式,加强对于客户行为的分析;在数据挖掘的基础之上,增强其技术应用的实用性,在分析的基础之上比对自身的竞争优势,实现医院资源的合理规划与合理配置,例如药品、资金以及疾病诊断等,从而实现经营状况的优化。目前医院也逐步向现代化、信息化方向发展,无论是信息管理还是医疗技术方面,医院都已经成为了一个信息化的综合行业体系,所以在加强数据挖掘应用的过程之中,还需要加强数据信息的管理,实现数据挖掘结果的维护,从而提升医院的决策能力,实现数据挖掘技术的高效应用。
医院在目前的医疗信息管理过程之中,还有很大的发展空间,需要综合利用数据挖掘技术,实现其信息管理水平的提升。通过明确数据挖掘技术的应用方向、应用类别以及建模数据环节的优化等,促进医院管理水平的提升,实现数据挖掘技术应用效果的提升。
[2]廖亮。数据挖掘技术在医疗信息管理中的应用[j].中国科技信息,20xx(11):54,56.
数据挖掘论文答辩数据挖掘论文篇十九
摘要:随着科学技术的快速发展,各种新鲜的事物和理念得到了广泛的应用。其中机器学习算法就是一则典型案例——作为一种新型的算法,其广泛应用于各行各业之中。本篇论文旨在探讨机器学习算法在数据挖掘中的具体应用,我们利用庞大的移动终端数据网络,加强了基于gsm网络的户外终端定位,从而提出了3个阶段的定位算法,有效提高了定位的精准度和速度。
关键词:学习算法;gsm网络;定位;数据;。
移动终端定位技术由来已久,其主要是利用各种科学技术手段定位移动物体的精准位置以及高度。目前,移动终端定位技术主要应用于军事定位、紧急救援、网络优化、地图导航等多个现代化的领域,由于移动终端定位技术能够带给精准的位置服务信息,所以其在市场上还是有较大的需求的,这也为移动终端定位技术的优化和发展,带给了推动力。随着通信网络普及,移动终端定位技术的发展也得到了一些帮忙,使得其定位的精准度和速度都得到了全面的优化和提升。同时,传统的定位方法结合先进的算法来进行精准定位,目前依旧还是有较大的进步空间。在工作中我选取机器学习算法结合数据挖掘技术对传统定位技术加以改善,取得了不错的效果,但也遇到了许多问题,例如:使用机器学习算法来进行精准定位暂时无法满足更大的区域要求,还有想要利用较低的设备成本,实现得到更多的精准定位的要求比较困难。所以本文对机器学习算法进行了深入的研究,期望能够帮忙其更快速的定位、更精准的定位,满足市场的需要。
数据挖掘又名数据探勘、信息挖掘。它是数据库知识筛选中十分重要的一步。数据挖掘其实指的就是在超多的数据中透过算法找到有用信息的行为。一般状况下,数据挖掘都会和计算机科学紧密联系在一齐,透过统计集合、在线剖析、检索筛选、机器学习、参数识别等多种方法来实现最初的目标。统计算法和机器学习算法是数据挖掘算法里面应用得比较广泛的两类。统计算法依靠于概率分析,然后进行相关性决定,由此来执行运算。
而机器学习算法主要依靠人工智能科技,透过超多的样本收集、学习和训练,能够自动匹配运算所需的相关参数及模式。它综合了数学、物理学、自动化和计算机科学等多种学习理论,虽然能够应用的领域和目标各不相同,但是这些算法都能够被独立使用运算,当然也能够相互帮忙,综合应用,能够说是一种能够“因时而变”、“因事而变”的算法。在机器学习算法的领域,人工神经网络是比较重要和常见的一种。因为它的优秀的数据处理和演练、学习的潜力较强。
而且对于问题数据还能够进行精准的识别与处理分析,所以应用的频次更多。人工神经网络依靠于多种多样的建模模型来进行工作,由此来满足不同的数据需求。综合来看,人工神经网络的建模,它的精准度比较高,综合表述潜力优秀,而且在应用的过程中,不需要依靠专家的辅助力量,虽然仍有缺陷,比如在训练数据的时候耗时较多,知识的理解潜力还没有到达智能化的标准,但是,相对于其他方式而言,人工神经网络的优势依旧是比较突出的。
2以机器学习算法为基础的gsm网络定位。
2.1定位问题的建模。
建模的过程主要是以支持向量机定位方式作为基础,把定位的位置栅格化,面积较小的栅格位置就是独立的一种类别,在定位的位置内,我们收集数目庞大的终端测量数据,然后利用计算机对测量报告进行分析处理,测量栅格的距离度量和精准度,然后对移动终端栅格进行预估决定,最终利用机器学习进行分析求解。
2.2采集数据和预处理。
本次研究,我们采用的模型对象是我国某一个周边长达10千米的二线城市。在该城市区域内,我们测量了四个不同时间段内的数据,为了保证机器学习算法定位的精准性和有效性,我们把其中的三批数据作为训练数据,最后一组数据作为定位数据,然后把定位数据周边十米内的前三组训练数据的相关信息进行清除。一旦确定某一待定位数据,就要在不同的时间内进行测量,按照测量出的数据信息的经纬度和平均值,再进行换算,最终,得到真实的数据量,提升定位的速度以及有效程度。
2.3以基站的经纬度为基础的初步定位。
用机器学习算法来进行移动终端定位,其复杂性也是比较大的,一旦区域面积增加,那么模型和分类也相应增加,而且更加复杂,所以,利用机器学习算法来进行移动终端定位的过程,会随着定位区域面积的增大,而耗费更多的时间。利用基站的经纬度作为基础来进行早期的定位,则需要以下几个步骤:要将边长为十千米的正方形分割成一千米的小栅格,如果想要定位数据集内的相关信息,就要选取对边长是一千米的小栅格进行计算,而如果是想要获得边长一千米的大栅格,就要对边长是一千米的栅格精心计算。
2.4以向量机为基础的二次定位。
在完成初步定位工作后,要确定一个边长为两千米的正方形,由于第一级支持向量机定位的区域是四百米,定位输出的是以一百米栅格作为中心点的经纬度数据信息,相对于一级向量机的定位而言,二级向量机在定位计算的时候难度是较低的,更加简便。后期的预算主要依靠决策函数计算和样本向量机计算。随着栅格的变小,定位的精准度将越来越高,而由于增加分类的问题数量是上升的,所以,定位的复杂度也是相对增加的。
2.5以k-近邻法为基础的三次定位。
第一步要做的就是选定需要定位的区域面积,在二次输出之后,确定其经纬度,然后依靠经纬度来确定边长面积,这些都是进行区域定位的基础性工作,紧之后就是定位模型的训练。以k-近邻法为基础的三次定位需要的是综合训练信息数据,对于这些信息数据,要以大小为选取依据进行筛选和合并,这样就能够减少计算的重复性。当然了,选取的区域面积越大,其定位的速度和精准性也就越低。
3结语。
近年来,随着我国科学技术的不断发展和进步,数据挖掘技术愈加重要。根据上面的研究,我们证明了,在数据挖掘的过程中,应用机器学习算法具有举足轻重的作用。作为一门多领域互相交叉的知识学科,它能够帮忙我们提升定位的精准度以及定位速度,能够被广泛的应用于各行各业。所以,对于机器学习算法,相关人员要加以重视,不断的进行改良以及改善,切实的发挥其有利的方面,将其广泛应用于智能定位的各个领域,帮忙我们解决关于户外移动终端的定位的问题。
参考文献。
[2]李运.机器学习算法在数据挖掘中的应用[d].北京邮电大学,2014.