数据挖掘论文摘要 数据挖掘论文(汇总12篇)
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
数据挖掘论文摘要篇一
摘要:大数据和智游都是当下的热点,没有大数据的智游无从谈“智慧”,数据挖掘是大数据应用于智游的核心,文章探究了在智游应用中,目前大数据挖掘存在的几个问题。
随着人民生活水平的进一步提高,旅游消费的需求进一步上升,在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下,智游应运而生。大数据作为当下的热点已经成了智游发展的有力支撑,没有大数据提供的有利信息,智游无法变得“智慧”。
旅游业是信息密、综合性强、信息依存度高的产业[1],这让其与大数据自然产生了交汇。2010年,江苏省镇江市首先提出“智游”的概念,虽然至今国内外对于智游还没有一个统一的学术定义,但在与大数据相关的描述中,有学者从大数据挖掘在智游中的作用出发,把智游描述为:通过充分收集和管理所有类型和来源的旅游数据,并深入挖掘这些数据的潜在重要价值信息,然后利用这些信息为相关部门或对象提供服务[2]。这一定义充分肯定了在发展智游中,大数据挖掘所起的至关重要的作用,指出了在智游的过程中,数据的收集、储存、管理都是为数据挖掘服务,智游最终所需要的是利用挖掘所得的有用信息。
2011年,我国提出用十年时间基本实现智游的目标[3],过去几年,国家旅游局的相关动作均为了实现这一目标。但是,在借助大数据推动智游的可持续性发展中,大数据所产生的价值却亟待提高,原因之一就是在收集、储存了大量数据后,对它们深入挖掘不够,没有发掘出数据更多的价值。
智游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现wi-fi覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。通过这些平台,已基本能掌握跟游客和景点相关的数据,可以实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及大量部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。
大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景非常广阔,但是面对大量的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,通过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法通过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
2017年,数据安全事件屡见不鲜,伴着大数据而来的数据安全问题日益凸显出来。在大数据时代,无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹,如何保证这些信息被合法合理使用,让数据“可用不可见”[4],这是亟待解决的问题。同时,在大数据资源的开放性和共享性下,个人隐私和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外,经过大数据技术的分析、挖掘,个人隐私更易被发现和暴露,从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。
大数据背景下的智游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智游的构建还缺乏大量人才。
在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘应该被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智游大数据人才。
参考文献
数据挖掘论文摘要篇二
数据挖掘作为一种数据分析的方法,在现代社会的应用越来越广泛。因此,许多研究者致力于数据挖掘技术的研究和应用。其中,论文是数据挖掘研究最主要的成果之一。良好的数据挖掘论文可以促进数据挖掘的发展和应用,提高数据挖掘技术的效率和可靠性。因此,写一篇优秀的数据挖掘论文对于这个领域的研究人员来说至关重要。
第二段:讲述数据挖掘论文的内容需要注意的重点
在写一篇数据挖掘论文时,需要注意几个重点。首先,需要明确研究对象和研究目的,确定原始数据的来源和数据处理方法。其次,需要进行特征分析,挑选有效的特征进行数据挖掘。同时,在数据挖掘过程中需要使用合适的算法和模型,以取得优秀的预测结果。最后,还需要对结果进行验证和评价,以保证数据挖掘结果的准确性和可靠性。
第三段:谈论自己在写数据挖掘论文过程中的体会
在我的研究过程中,我深刻地认识到了数据挖掘技术的重要性和应用价值。我需要详细地了解数据采集、数据清洗、特征选择和评估模型等方面的知识,学习基本的算法和模型,并灵活运用最新的数据挖掘技术,以达到最好的预测结果。同时,我也注意到了不同论文之间的差异,不同研究的方向和方法不同,需要灵活变通和开创性思维,才能写出优秀的数据挖掘论文。
第四段:探讨数据挖掘论文的审查标准和要求
数据挖掘的研究范围和深度不断扩大,论文审查机构和专家对数据挖掘论文的要求也越来越高。好的数据挖掘论文需要有一定的贡献和创新点,同时,还需要展示出数据挖掘算法、模型和数据特征选择的能力,具有可操作性和稳健性。此外,好的数据挖掘论文还需有清晰的图表展示,数据的充分分析和结论的合理性,撰写格式规范明确,语言流畅等特点。
第五段:总结论文写作的经验和启示
总之,在撰写优秀的数据挖掘论文时,应该注重掌握所需的关键技术和知识,同时宏观和微观两个方面的考虑都需要。特别注重特征选择和数据模型的设计更是必不可少的。此外,要注意相关专业期刊的审查标准和要求,并且合理分配时间, 不断完善整理论文。相信在不断读论文,自己不断写论文的过程中,每个人都可以不断提高论文的质量,为数据挖掘技术的发展和实践做出重要贡献。
数据挖掘论文摘要篇三
[1]刘莹。基于数据挖掘的商品销售预测分析[j].科技通报。2014(07)
[2]姜晓娟,郭一娜。基于改进聚类的电信客户流失预测分析[j].太原理工大学学报。2014(04)
[3]李欣海。随机森林模型在分类与回归分析中的应用[j].应用昆虫学报。2013(04)
[4]朱志勇,徐长梅,刘志兵,胡晨刚。基于贝叶斯网络的客户流失分析研究[j].计算机工程与科学。2013(03)
[5]翟健宏,李伟,葛瑞海,杨茹。基于聚类与贝叶斯分类器的网络节点分组算法及评价模型[j].电信科学。2013(02)
[6]王曼,施念,花琳琳,杨永利。成组删除法和多重填补法对随机缺失的二分类变量资料处理效果的比较[j].郑州大学学报(医学版).2012(05)
[7]黄杰晟,曹永锋。挖掘类改进决策树[j].现代计算机(专业版).2010(01)
[8]李净,张范,张智江。数据挖掘技术与电信客户分析[j].信息通信技术。2009(05)
[9]武晓岩,李康。基因表达数据判别分析的随机森林方法[j].中国卫生统计。2006(06)
[10]张璐。论信息与企业竞争力[j].现代情报。2003(01)
[13]俞驰。基于网络数据挖掘的客户获取系统研究[d].西安电子科技大学2009
[14]冯军。数据挖掘在自动外呼系统中的应用[d].北京邮电大学2009
[15]于宝华。基于数据挖掘的高考数据分析[d].天津大学2009
[16]王仁彦。数据挖掘与网站运营管理[d].华东师范大学2010
[19]贾治国。数据挖掘在高考填报志愿上的应用[d].内蒙古大学2005
[22]阮伟玲。面向生鲜农产品溯源的基层数据库建设[d].成都理工大学2015
[23]明慧。复合材料加工工艺数据库构建及数据集成[d].大连理工大学2014
[25]岳雪。基于海量数据挖掘关联测度工具的设计[d].西安财经学院2014
[28]张晓东。全序模块模式下范式分解问题研究[d].哈尔滨理工大学2015
[30]王化楠。一种新的混合遗传的基因聚类方法[d].大连理工大学2014
“大数据”到底有多大?根据研究机构统计,仅在2011年,全球数据增量就达到了1.8zb(即1.8万亿gb),相当于全世界每个人产生200gb以上的数据。这种增长趋势仍在加速,据保守预计,接下来几年中,数据将始终保持每年50%的增长速度。
纵观人类历史,每一次划时代的变革都是以新工具的出现和应用为标志的。蒸汽机把人们从农业时代带入了工业时代,计算机和互联网把人们从工业时代带入了信息时代,而如今大数据时代已经到来,它源自信息时代,又是信息时代全方位的深化应用与延伸。大数据时代的生产原材料是数据,生产工具则是大数据技术,是对信息时代所产生的海量数据的挖掘和分析,从而快速地获取有价值信息的技术和应用。
概括来讲,大数据有三个特征,可总结归纳为“3v”,即量(volume)、类(variety)、时(velocity)。量,数据容量大,现在数据单位已经跃升至zb级别。类,数据种类多,主要来自业务系统,例如社交网络、电子商务和物联网应用。时,处理速度快,时效性要求高,从传统的事务性数据到实时或准实时数据。
数据挖掘,又称为知识发现(knowledgediscovery),是通过分析每个数据,从大量数据中寻找其规律的技术。知识发现过程通常由数据准备、规律寻找和规律表示3个阶段组成。数据准备是从数据中心存储的数据中选取所需数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含规律找出来;规律表示则是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。
“数据海量、信息缺乏”是相当多企业在数据大集中之后面临的尴尬问题。目前,大多数事物型数据库仅实现了数据录入、查询和统计等较低层次的功能,无法发现数据中存在的有用信息,更无法进一步通过数据分析发现更高的价值。如果能够对这些数据进行分析,探寻其数据模式及特征,进而发现某个客户、群体或组织的兴趣和行为规律,专业人员就可以预测到未来可能发生的变化趋势。这样的数据挖掘过程,将极大拓展企业核心竞争力。例如,在网上购物时遇到的提示“浏览了该商品的人还浏览了如下商品”,就是在对大量的购买者“行为轨迹”数据进行记录和挖掘分析的基础上,捕捉总结购买者共性习惯行为,并针对性地利用每一次购买机会而推出的销售策略。
随着社会的进步和信息通信技术的发展,信息系统在各行业、各领域快速拓展。这些系统采集、处理、积累的数据越来越多,数据量增速越来越快,以至用“海量、爆炸性增长”等词汇已无法形容数据的增长速度。
2011年5月,全球知名咨询公司麦肯锡全球研究院发布了一份题为《大数据:创新、竞争和生产力的。下一个新领域》的报告。报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于大数据的运用预示着新一波生产率增长和消费者盈余浪潮的到来。2012年3月29日,美国政府在白宫网站上发布了《大数据研究和发展倡议》,表示将投资2亿美元启动“大数据研究和发展计划”,增强从大数据中分析萃取信息的能力。
在电力行业,坚强智能电网的迅速发展使信息通信技术正以前所未有的广度、深度与电网生产、企业管理快速融合,信息通信系统已经成为智能电网的“中枢神经”,支撑新一代电网生产和管理发展。目前,国家电网公司已初步建成了国内领先、国际一流的信息集成平台。随着三地集中式数据中心的陆续投运,一级部署业务应用范围的拓展,结构化和非结构化数据中心的上线运行,电网业务数据从总量和种类上都已初具规模。随着后续智能电表的逐步普及,电网业务数据将从时效性层面进一步丰富和拓展。大数据的“量类时”特性,已在海量、实时的电网业务数据中进一步凸显,电力大数据分析迫在眉睫。
当前,电网业务数据大致分为三类:一是电力企业生产数据,如发电量、电压稳定性等方面的数据;二是电力企业运营数据,如交易电价、售电量、用电客户等方面的数据;三是电力企业管理数据,如erp、一体化平台、协同办公等方面的数据。如能充分利用这些基于电网实际的数据,对其进行深入分析,便可以提供大量的高附加值服务。这些增值服务将有利于电网安全检测与控制(包括大灾难预警与处理、供电与电力调度决策支持和更准确的用电量预测),客户用电行为分析与客户细分,电力企业精细化运营管理等等,实现更科学的需求侧管理。
例如,在电力营销环节,针对“大营销”体系建设,以客户和市场为导向,省级集中的95598客户服务、计量检定配送业务属地化管理的营销管理体系和24小时面向客户的营销服务系统,可通过数据分析改善服务模式,提高营销能力和服务质量;以分析型数据为基础,优化现有营销组织模式,科学配置计量、收费和服务资源,构建营销稽查数据监控分析模型;建立各种针对营销的系统性算法模型库,发现数据中存在的隐藏关系,为各级决策者提供多维的、直观的、全面的、深入的分析预测性数据,进而主动把握市场动态,采取适当的营销策略,获得更大的企业效益,更好地服务于社会和经济发展。此外,还可以考虑在电力生产环节,利用数据挖掘技术,在线计算输送功率极限,并考虑电压等因素对功率极限的影响,从而合理设置系统输出功率,有效平衡系统的安全性和经济性。
公司具备非常好的从数据运维角度实现更大程度信息、知识发现的条件和基础,完全可以立足数据运维服务,创造数据增值价值,提供并衍生多种服务。以数据中心为纽带,新型数据运维的成果将有可能作为一种新的消费形态与交付方式,给客户带来全新的使用体验,打破传统业务系统间各自为阵的局面,进一步推动电网生产和企业管理,从数据运维角度对企业生产经营、管理以及坚强智能电网建设提供更有力、更长远、更深入的支撑。
这个问题太笼统,基本上算法和应用是两个人来做的,可能是数据挖掘职位。做算法的比较少,也比较高级。
其实所谓做算法大多数时候都不是设计新的算法(这个可以写论文了),更多的是技术选型,特征工程抽取,最多是实现一些已经有论文但是还没有开源模块的算法等,还是要求扎实的算法和数据结构功底,以及丰富的分布式计算的知识的,以及不错的英文阅读和写作能力。但即使是这样也是百里挑一的,很难找到。
绝大读书数据挖掘岗位都是做应用,数据清洗,用现成的库建模,如果你自己不往算法或者架构方面继续提升,和其他的开发岗位的性质基本没什么不同,只要会编程都是很容易入门的。
实际情况不太清楚,由于数据挖掘和大数据这个概念太火了,肯定到处都有人招聘响应的岗位,但是二线城市可能仅仅是停留在概念上,很多实际的工作并没有接触到足够大的数据,都是生搬硬套框架(从我面试的人的工作经验上看即使是在北上广深这种情况也比较多见)。
只是在北上广深,可能接触到大数据的机会多一些。而且做数据挖掘现在热点的技术比如python,spark,scala,r这些技术除了在一线城市之外基本上没有足够的市场(因为会的人太少了,二线城市的公司找不到掌握这些技术的人,不招也没人学)。
所以我推测二线城市最多的还是用java+hadoop,或者用java写一些spark程序。北上广深和二线城市程序员比待遇是欺负人,就不讨论了。
和传统的前后端程序员相比,最主要的去别就是对编程水平的要求。从我招聘的情况来看,做数据挖掘的人编程水平要求可以降低一个档次,甚至都不用掌握面向对象。
但是要求技术全面,编程、sql,linux,正则表达式,hadoop,spark,爬虫,机器学习模型等技术都要掌握一些。前后端可能是要求精深,数据挖掘更强调广博,有架构能力更好。
打基础是最重要的,学习一门数据挖掘常用的语言,比如python,scala,r;学习足够的linux经验,能够通过awk,grep等linux命令快速的处理文本文件。掌握sql,mysql或者postgresql都是比较常用的关系型数据库,搞数据的别跟我说不会用数据库。
补充的一些技能,比如nosql的使用,elasticsearch的使用,分词(jieba等模块的使用),算法的数据结构的知识。
我觉得应当学习,首先hadoop和hive很简单(如果你用aws的话你可以开一台emr,上面直接就有hadoop和hive,可以直接从使用学起)。
我觉得如果不折腾安装和部署,还有linux和mysql的经验,只要半天到一天就能熟悉hadoop和hive的使用(当然你得有linux和mysql的基础,如果没有就先老老实实的学linux和mysql,这两个都可以在自己的pc上安装,自己折腾)。
spark对很多人来说才是需要学习的,如果你有java经验大可以从java入门。如果没有那么还是建议从scala入门,但是实际上如果没有java经验,scala入门也会有一定难度,但是可以慢慢补。
所以总的来说spark才足够难,以至于需要学习。
如果上面任何一个问题的答案是no,我都不建议直接转行或者申请高级的数据挖掘职位(因为你很难找到一个正经的数据挖掘岗位,顶多是一些打擦边球的岗位,无论是实际干的工作还是未来的成长可能对你的帮助都不大)。
无论你现在是学生还是已经再做一些前段后端、运维之类的工作你都有足够的时间补齐这些基础知识。
补齐了这些知识之后,第一件事就是了解大数据生态,hadoop生态圈,spark生态圈,机器学习,深度学习(后两者需要高等数学和线性代数基础,如果你的大学专业学这些不要混)。
数据挖掘论文摘要篇四
:随着科学技术的不断发展,数据挖掘技术也应运而生。为了高效有序的医疗信息管理,需要加强数据挖掘技术在医疗信息管理中的实际应用,从而提升医院的管理水平,为医院的管理工作及资源的合理配置提供多样化发展的可能性。笔者将针对数据挖掘技术在医疗信息管理中的应用这一课题进行相应的探究,从而提出合理的改进建议。
:挖掘技术;医疗信息管理;应用方式
数据挖掘作为一种数据信息再利用的有效技术,能够有效地为医院的管理决策提供重要信息。它以数据库、人工智能以及数理统计为主要技术支柱进行技术管理与决策。而在医疗信息管理过程之中应用数据挖掘技术能够较好地针对医疗卫生信息进行整理与归类来建立管理模型,形成有效的总结数据的同时能够为医疗工作的高效进行提供有价值的信息。所以笔者将以数据挖掘技术在医疗信息管理中的应用为着手点,从而针对其应用现状进行探究,以此提出加强数据挖掘技术在医疗信息管理中应用的具体措施,希望能够在理论层面上推动医疗信息管理工作的飞跃。
数据挖掘是结合信息收集技术、人工智能处理技术以及分析检测技术等所形成的功能强大的技术。它能够实现对于数据的收集、问题的定义与处理,并且能够较好地对于结果进行解释与评估。在医疗信息管理工作进行的过程之中,应用数据挖掘技术可以较好地加强医疗信息数据模型的建立,同时以多种形式出现,例如文字信息、基本信号信息、图像收集等,也能够用来进行医疗信息的科普与宣传。并且,数据挖掘技术在医疗信息中所体现出的应用方式有所不同,在数据挖掘技术应用过程之中,既可以针对同一类的实物反应出共同性质的基本特征,同时也能够根据具有一定关联性的事物信息来探究差异。这些功能不仅仅能够在医疗信息的管理层面上给予医疗人员较大的信息管理指导,同时在实际的医疗诊断过程之中,也可以向医生提供患者的患病信息,并且辅助治疗的进行[1]。所以,在医疗信息管理中应用数据挖掘技术不仅仅能够推动医疗信息管理水平的提升,也是医院实现现代化、信息化建设的重要体现,需要从根本上明确医疗信息管理应用数据挖掘技术的必要性与基本内涵,从而针对医院的管理现状实现其管理方式与技术应用的转变与优化。
2.1实现建模环节以及数据收集环节的优化
在应用数据挖掘技术的过程之中,必须基于数据库信息的基础之上,其数据挖掘技术才能够进行相应的规律探究与信息分析,所以需要在源头处加强数据收集环节以及建模环节的优化。以医院中医部门为例,在对于中医处方经验的挖掘方法使用过程之中,需要针对不同的药物进行关联性建模,比如数据库中有基础性药物,针对药物进行频数和次数的统计,然后以此类推,将所有药物都按照出现的频数进行降数排列,从而探究参考价值。建模环节以及数据收集环节是医疗信息管理过程的根本,所以需要做好对于建模环节以及数据收集环节的优化,才能够为数据挖掘技术的应用奠定相应的基础[2]。
2.2细化数据挖掘技术应用类别
想要在医疗信息管理过程之中,加强对于数据挖掘技术的有效应用,就需要从数据挖掘技术应用类别处进行着手,从而提升技术应用的针对性与有效性。常见的技术应用类别有:医院资源配置方面、病患区域管理方面、医疗卫生质量管理方面、医疗急诊管理方面、医院经济管理方面以及医疗卫生常见病宣传方面等,数据挖掘技术都可以在这些类别之中实现应用,但是在应用的过程之中也有所不同。以病房区域管理为例,在应用数据挖掘技术之前,首先需要明确不同的科室状况以及病房区域分配状况等,加强病患区域的指标分析,因为病房管理不仅仅影响到科室的工作效率与工作效果,同时也是医疗物资分配与人员编制的主要参考标准。其次利用数据挖掘技术能够较好地实现不同科室工作效率、质量管理质量以及经济收益等多种指标的评估,建立其科室的运营模型,从而实现科室的又好又快发展。比如使用数据挖掘技术建立其病区管理的标准模型以及统计指标,从而计算出科室动态的工作模型以及病床动态的周转次数等[3]。另外在医疗质量管理过程之中,数据挖掘技术提供的不仅仅是资料数据的参考以及疾病的诊断,也能够针对临床的治疗效果进行分析与评价,并且能够预测治疗状况:可以利用医院的医疗数据库,对于病人的基本患病信息进行分类,从而比对死亡率、治愈率等多个数据,实现治疗方案的制订。而在医疗质量管理过程之中也有很多的影响因素,例如基础医疗设备、病床周转次数、病种治愈记录等,所以也可以利用数据挖掘技术来进一步加强其多种数据之间的关联性,从而为提升医院的社会效益与经济效益提出合理的参考性建议。
2.3明确数据挖掘技术的应用方向
医院加强数据挖掘技术应用方向的探索上,可以从客户拓展这个角度出发实现对于医疗信息管理。例如通过数据挖掘技术多方进行患者信息比对,同时制订完善的医疗服务影响策略方式,加强对于客户行为的分析;在数据挖掘的基础之上,增强其技术应用的实用性,在分析的基础之上比对自身的竞争优势,实现医院资源的合理规划与合理配置,例如药品、资金以及疾病诊断等,从而实现经营状况的优化。目前医院也逐步向现代化、信息化方向发展,无论是信息管理还是医疗技术方面,医院都已经成为了一个信息化的综合行业体系,所以在加强数据挖掘应用的过程之中,还需要加强数据信息的管理,实现数据挖掘结果的维护,从而提升医院的决策能力,实现数据挖掘技术的高效应用。
医院在目前的医疗信息管理过程之中,还有很大的发展空间,需要综合利用数据挖掘技术,实现其信息管理水平的提升。通过明确数据挖掘技术的应用方向、应用类别以及建模数据环节的优化等,促进医院管理水平的提升,实现数据挖掘技术应用效果的提升。
[2]廖亮。数据挖掘技术在医疗信息管理中的应用[j].中国科技信息,20xx(11):54,56.
数据挖掘论文摘要篇五
:中医临床理论多是由著名医家的经验升华形成的,反映了临床上不同学术派系以及不同学科的优势特征,但这其中不免掺杂了个人主观经验,因此本文就中医临床理论研究中医病案为基础,对应用病案数据挖掘结果来总结和重建中医临床理论的方式进行了探讨,认为该方法可为完善中医临床理论提供客观的数据支持,使中医临床理论的来源更具有科学性。
科研一体化中医临床理论决定着中医临床学科的发展水平,是中医临床发展的动力。从古至今,中医名医名家辈出,他们的临床经验和学术思想不断提炼升华,逐步形成了传统的中医临床理论。新中国成立以来,中医不断汲取最新的科技成果,进行了大量临床实践,而中医临床理论发展缓慢,己经成为制约当代中医学术发展的瓶颈,对如何开拓中医临床理论的研究,可谓见仁见智,但各种新的临床理论常常裹挟着“各家学说”。在当今大数据和信息技术发达的背景下,运用数据挖掘技术对中医病案进行大数据分析,客观揭示当前中医临床理论的本来面目,尽可能减少个人见解的偏倚,对于推动中医临床理论发展具有重要的现实意义,本文就基于病案数据挖掘的中医临床理论重建进行探讨如下。
1.1中医古典文献是传统中医临床理论的基础
众所周知,中医之所以能够屹立千年不倒,很大一部分原因是因为其有独特的理论体系,而在这其中,中医古典文献做出的贡献应该是第一位的。因为这些古典文献的记载和流传,为后世的医家提供了参考和借鉴,使得我们从前人的思维上不断创新,与临床进行有机结合,不断研究出新的适合于当前时代的临床理论。例如,中医学无论在理论研究还是在临床治疗方面的丰富,许多根本性的理论都是源自于《内经》。该书创立了藏象、经络、诊法等各方面的理论[1],勾画了中医理论的雏形,构建了中医理论体系的基本框架。到后期东汉时期张仲景的《伤寒论》则是创造了以六经辨证和脏腑辨证为主的局面,其所倡导的“观其脉证,知犯何逆,随证治之”使得辨证论治登上新的高度。到了金元时期,就是百家争鸣的时代,这期间以金元四大家为主的学派开始萌生,留下了许多可供后世医家参考的古典文献并创建了不同的临床理论,而明清时期以叶天士和吴鞠通为首确立的卫气营血和三焦辨证,使温病学的辨证理论逐步趋于完善,至今仍是指导临床治疗温热病的理论依据。总之,传统中医临床理论的构建和完善,离不开前人的摸索与贡献,也得益于著名医学家创建的传统中医理论,使得我们现在的中医体系不断的饱满和充实。
1.2当代著名中医的临床经验不断提升为中医临床理论
传统中医的临床理论,在很大程度上展示着著名医家的临床经验。在中医理论与实践发展的相互促进过程中,当代医家通过读书、临证、心悟将实践经验不断总结并升华为理论,又在实践中不断完善既有的理论,成为中医理论发展的重要途径和模式,而当代中医理论的发展则需要将传统理论与现代实践相互融合起来。例如上世纪60年代时,面对中医基础理论中新的思想相对匮乏的这一局面,邓铁涛结合其治疗的临床经验,首次提出了“五脏相关学说”。尽管当时的理论准备并不完善,但是这一理论的提出,在很大程度上完善并且取代了“五行学说”中某些模糊性和不确定性,并且随着时代的发展,逐渐验证了邓老的这一经验的正确性,也成为指导中医临床理论的一大重要体系[2]。又如,脑出血这一现代疾病在古代名为中风,多数是“从风而治”,认为肝脏与中风的关系最为密切。随着时代的推进,自20世纪80年代以来,许多学者根据微观辨证和中医理论“离经之血便是瘀”,提出急性出血中风属中医血证,瘀血阻滞是急性期脑出血的最基本病机,是治疗的关键所在[3]。故现代中医临床治疗上多以活血化瘀法治疗脑出血、脑梗塞这一系列疾病。若是仔细研读传统中医临床理论后,我们不难得出其构成和完善离不开当代著名医家的临床经验,它是在历经岁月的洗礼下不断塑造成型的。
1.3传统中医临床理论不断将现代医学相关内容中医化
传统中医临床理论不断吸收现代医学的理论,将其相关内容不断中医化,将病人的各种证型通过五脏辨证、阴阳五行辨证以及八纲辨证划分得越来越细化,以提供病人在中医临床上治疗的理论依据。中医吸取了现代医学理论后正在不断壮大其内容,现代医学相关内容中医化在许多难治疾病的辨证治疗中都起到了良好的指导作用[4]。如艾滋病是古代传统中医辨证论治的空白,通过对艾滋病中医病因病机、证候规律、治法方药的系统研究,提出了“艾毒伤元”“脾为枢机”“气虚为本”的病因病机学说,确立了艾滋病“培元解毒”“益气健脾”的治疗原则,为中医药防治艾滋病奠定了理论基础,为进一步提高艾滋病的中医药临床诊疗效果提供理论依据[5]。
2.1中医主流理论不突出且与时俱进力度不够
不可否认的是,当代的中医临床理论发展也是存在诸多不足的,中医理论的完善和发展是中华五千年来集体智慧的结晶,个别医家提出的临床理论可能各有千秋,其所立的角度和思维也不尽相同。例如,同是治疗输卵管阻塞这一疾病时,朱南孙教授认为多是由于湿蕴冲任所致,其用自拟的清热利湿方来进行治疗;而李广文教授则认为这一疾病多是由于瘀血阻络为主,治疗上以活血祛瘀为法,拟通任种子汤进行治疗[6]。又如对于“和解法”这一治疗方法的理解,当代名医蒲辅周老先生认为“寒热并用,补泻合剂,表里双解,苦辛分消,调和气血,皆谓和解”。而方和谦教授则认为“在治法上扶正祛邪,表里兼顾,此法就为和解法”。不同的医家在面对不同的疾病,甚至是不同的理法方药时,所持的看法常常是“各家学说”,这就导致了当前中医临床理论发展比较混乱,不能全面地体现中国五千年来发展过程中的中医主流理论。目前中医基础理论还存在一个缺陷就是它的与时俱进力度还不够,很多古代经典方药的主治病症,在当今时代已经不再多见了。比如蛔虫导致的蛔厥这一致病因素在现代已经不再常见,对应的乌梅丸的主要适应病症也不再是蛔厥;在针对没有明显临床表现的疾病如乙肝时,按传统中医往往体现出“无证可治”的状态;传统的诊断与现代检查相结合的力度也不够,中医临床基础理论在某些程度上忽略了其与生化、b超、x光、ct等现代检查结果的结合,并没有用中医理论对其做一合理的陈述;且现在临床上很多中药的药理作用、性味归经的研究作用还不够深入、细致,其作用不能在微观上得以解释。这些都导致了临床上很多情况没有从中医理论来认识中医,不是“以中解中”,而是“以西解中”,形成了临床抛弃中医理论的状态[7]。由于中医学是一门实践性很强的学科,它是在哲学辨证的思想指导下,与临床经验不断结合,这与西医知识体系相比较,难免存在一定的滞后性,这都会使得中医临床理论发展相对的落后。
2.2部分中医理论带有权威专家的“个人学说”偏见
传统中医强调个人经验和学说,以中医内科学为例,第八版中的脑系疾病在第九版中已经删除,其涉及到的各种脑系疾病大多数归属于心系疾病与肝系疾病。根据其版本的不同,我们可以明显看出其凸显的中心内容及其思想不同,其多是体现编著者的理论思想,在一定程度上并没有客观地揭示疾病的本质,治疗理论也不够完善,一部分内容与最新研究得出的论文理论不符,这使得当代中医临床理论在某些程度上,带有权威专家的“个人学说”色彩。由于现代西方先进的科技文化流入,使得中医在一定程度上备受质疑,而正是因为人们对于中医理论的一些偏见,才使得中医长期让人诟病。
3.1临床理论应具有真实性与系统性
中医临床理论的发展方形应当是建立在客观并且真实的临床实践基础上,从一次次临床实践中得出。由于历史时代的原因以及假设推理、模式建设的广泛使用,当代中医临床理论中理论与假说并存的现象较为普遍,如中医的五运六气学说对现代疫病预测和人体各经络脏腑在时间上对于人体治病效果的不同等,就需要我们在扎实的文献与临床实践基础上,对医案进行认真总结,利用科学的方法深入挖掘,开展中医理论的去伪存真研究,以促进中医理论的科学与健康发展。另外,传统的中医临床治疗上所用的理法方药,多是根据个人经验所进行的。随着科技的不断发展与时代的不断进步,当代的中医临床理论应该在成功的中医医案上进行系统的总结,不断挖掘和研究其微观的结构,并随着年月的更迭不断更新,不断完善,使其具有科学性和理论依据。同时,对近年来兴起的传染性非典型肺炎、艾滋病、禽流感等古人所没有经历过的疾病的诊治,中医就其病因病机的认识以及探究相应的诊疗方法,无疑也是一种理论上的创新[8]。通过对其进行深一层次的研究和发现,归纳出合适的治则治法,找到针对这一疾病的理法方药,使其更具有系统性,使得临床上中医治病可以循序渐进,注重整体,也是当代临床理论的一大发展方向。
3.2临床理论具有信息化的特点并可持续拓展
随着时代的进步,当代的中医临床理论可以通过网络等方式进行共享,在大数据的这一时代背景下,随着病案的不断报道与积累,可以将各类成功的中医医案进行统计和挖掘,其结果也会不断进行更新和发展。不同的医家对于某一疾病的认识角度可能不同,其表现在病位、病性、病势和证候的判断标准也不一样,因此方药规律也不一样。而通过统计某一中医或西医疾病的较大样本病例,并对其进行数据挖掘,可以得出整个中医群体对于这一疾病诊治的证候分布、治则治法、处方用药等的规律,甚至可以根据统计的结果探索出新的方药,分析他们的共同点和所在差异。将中医临床理论具有信息化的这一特点不断地拓展下去,通过计算机等客观科学的手段进行分析,与主观的名老中医传承模式相比,更具客观性,更容易被临床医生接受,对各种疾病的中医临床用药也更具有指导价值。
4.1病案研究是中医理论发展的重要基础
在当今大数据的时代背景下,中医固有的传统整体论科学特征有了越来越多的可供改变的空间。这种变化既为其按照自身特有的规律发展特点带来了机遇,也给未来中医理论的发展提出了挑战。同时,学习医案研究也是中医学相关大学生们应该学习的一项内容。阅读医案是必要的训练,也是中医入门的方法之一。医案的故事性引人入胜,在自然而然中接受中医思维方法和传统文化知识,同时医案中所呈现的名医风范,医德对学生起到潜移默化的影响,并培养对专业的热爱[9]。病案客观、真实地直接记录疾病诊断和治疗过程,医案研究作为中医理论发展过程中至关重要的一环,是中医理论发展的重要基础,以研究病案为基础,对于中医理论的形成和临床上中医积累经验,都起到了一定的辅助提升作用。
4.2数据挖掘方法是中医理论发展的现代技术手段
利用多种数据挖掘技术对中医病案中的有关信息行进行归纳、整理,是近年来传承中医临床经验的重要方法之一[10]。通过对同一种疾病的病案进行数据挖掘以分析医者的思路和探索其用药的。方法,对中医临床病案进行规范化的整理,能够深入总结其临床经验,挖掘隐藏在大量病案背后的诊治规律,甚至探索出新的方药配伍,为中医理论的发展提供一定的科学依据的同时,使得中医理论的发展越来越现代化,不仅仅只是停留在以前的靠读书和个人经验的结合,也为广大的中医在日后的临床治疗上提供了新的思路和方向。
4.3临床实践推动理论发展,赋予转化医学新的内涵
目前,我们通过并按数据挖掘来总结一些中医对于治疗同一种疾病所采取的诊断和用药,可以获得新的思路,并且为完善我们现有的中医理论基础可以提供可靠的理论支持。采用数据挖掘技术对中医学术思想和临证经验进行研究,可以全面解析其中的规律,分析中医个体化诊疗信息特征,提炼出临证经验中蕴藏的新理论、新力法,可以实现经验的有效总结与传承[11]。与此同时,要求我们用发展的眼光将现代的科技手段整合加入到传统的中医学理论中去,推陈出新,通过临床实践与基础理论的不断结合,不断完善,推动祖国医学现代化,谱写有关于中医学在转化医学上新的篇章。
[2]邱仕君,吴玉生。在基础理论与临床医学之间———对邓铁涛教授五脏相关学说的理论思考[j].湖北民族学院学报(医学版),2005,22(2):36-39.
[3]顾宁,周仲英。通下法治疗急性脑出血研究进展[j].中国中医急诊,2000,9(5):227.
[4]靳士英。邓铁涛教授学术成就管[j].现代医院,2004(9):1-6.
[7]孟静岩,应森林。试论中医基础理论指导临床研究的思考与途径[j].上海中医药大学学报,2009(3):3-5.
数据挖掘论文摘要篇六
:数据挖掘是一种特殊的数据分析过程,其不仅在功能上具有多样性,同时还具有着自动化、智能化处理以及抽象化分析判断的特点,对于计算机犯罪案件中的信息取证有着非常大的帮助。本文结合数据挖掘技术的概念与功能,对其在计算机犯罪取证中的应用进行了分析。
:数据挖掘技术;计算机;犯罪取证
随着信息技术与互联网的不断普及,计算机犯罪案件变得越来越多,同时由于计算机犯罪的隐蔽性、复杂性特点,案件侦破工作也具有着相当的难度,而数据挖掘技术不仅能够对计算机犯罪案件中的原始数据进行分析并提取出有效信息,同时还能够实现与其他案件的对比,而这些对于计算机犯罪案件的侦破都是十分有利的。
1.1数据挖掘技术的概念
数据挖掘技术是针对当前信息时代下海量的网络数据信息而言的,简单来说,就是从大量的、不完全的、有噪声的、模糊的随机数据中对潜在的有效知识进行自动提取,从而为判断决策提供有利的信息支持。同时,从数据挖掘所能够的得到的知识来看,主要可以分为广义型知识、分类型知识、关联性知识、预测性知识以及离型知识几种。
1.2数据挖掘技术的功能
根据数据挖掘技术所能够提取的不同类型知识,数据挖掘技术也可以在此基础上进行功能分类,如关联分析、聚类分析、孤立点分析、时间序列分析以及分类预测等都是数据挖掘技术的重要功能之一,而其中又以关联分析与分类预测最为主要。大量的数据中存在着多个项集,各个项集之间的取值往往存在着一定的规律性,而关联分析则正是利用这一点,对各项集之间的关联关系进行挖掘,找到数据间隐藏的关联网,主要算法有fp-growth算法、apriori算法等。在计算机犯罪取证中,可以先对犯罪案件中的特征与行为进行深度的挖掘,从而明确其中所存在的联系,同时,在获得审计数据后,就可以对其中的审计信息进行整理并中存入到数据库中进行再次分析,从而达到案件树立的效果,这样,就能够清晰的判断出案件中的行为是否具有犯罪特征[1]。而分类分析则是对现有数据进行分类整理,以明确所获得数据中的相关性的一种数据挖掘功能。在分类分析的过程中,已知数据会被分为不同的数据组,并按照具体的数据属性进行明确分类,之后再通过对分组中数据属性的具体分析,最终就可以得到数据属性模型。在计算机犯罪案件中,可以将按照这种数据分类、分析的方法得到案件的数据属性模型,之后将这一数据属性模型与其他案件的数据属性模型进行对比,这样就能够判断嫌疑人是否在作案动机、发生规律以及具体特征等方面与其他案件模型相符,也就是说,一旦这一案件的数据模型属性与其他案件的数据模型属性大多相符,那么这些数据就可以被确定为犯罪证据。此外,在不同案件间的共性与差异的基础上,分类分析还可以实现对于未知数据信息或类似数据信息的有效预测,这对于计算机犯罪案件的处理也是很有帮助的。此外,数据挖掘分类预测功能的实现主要依赖决策树、支持向量机、vsm、logisitic回归、朴素贝叶斯等几种,这些算法各有优劣,在实际应用中需要根据案件的实际情况进行选择,例如支持向量机具有很高的分类正确率,因此适合用于特征为线性不可分的案件,而决策树更容易理解与解释。
对于数据挖掘技术,目前的计算机犯罪取证工作并未形成一个明确而统一的应用步骤,因此,我们可以根据数据挖掘技术的特征与具体功能,对数据挖掘技术在计算机犯罪取证中的应用提供一个较为可行的具体思路[2]。首先,当案件发生后,一般能够获取到海量的原始数据,面对这些数据,可以利用fp-growth算法、apriori算法等算法进行关联分析,找到案件相关的潜在有用信息,如犯罪嫌疑人的犯罪动机、案发时间、作案嫌疑人的基本信息等等。在获取这些基本信息后,虽然能够对案件的基本特征有一定的了解,但犯罪嫌疑人却难以通过这些简单的信息进行确定,因此还需利用决策树、支持向量机等算法进行分类预测分析,通过对原始信息的准确分类,可以得到案件的犯罪行为模式(数据属性模型),而通过与其他案件犯罪行为模式的对比,就能够对犯罪嫌疑人的具体特征进行进一步的预测,如经常活动的场所、行为习惯、分布区域等,从而缩小犯罪嫌疑人的锁定范围,为案件侦破工作带来巨大帮助。此外,在计算机犯罪案件处理完毕后,所建立的嫌疑人犯罪行为模式以及通过关联分析、分类预测分析得到的案件信息仍具有着很高的利用价值,因此不仅需要将这些信息存入到专门的数据库中,同时还要根据案件的结果对数据进行再次分析与修正,并做好犯罪行为模式的分类与标记工作,为之后的案件侦破工作提供更加丰富、详细的数据参考。
总而言之,数据挖掘技术自计算机犯罪取证中的应用是借助以各种算法为基础的关联、分类预测功能来实现的,而随着技术的不断提升以及数据库中的犯罪行为模式会不断得到完善,在未来数据挖掘技术所能够起到的作用也必将越来越大。
作者:周永杰单位:河南警察学院信息安全系
数据挖掘论文摘要篇七
由于信息技术的迅速发展,现代的档案管理模式与过去相比,也有了很大的变化,也让如今的档案管理模式有了新的挑战。让人们对信息即时、大量地获取是目前档案管理工作和档案管理系统急切需要解决的问题。
(一)数据挖掘技术。数据挖掘是指从大量的、不规则、乱序的数据中,进行分析归纳,得到隐藏的,未知的,但同时又含有较大价值的信息和知识。它主要对确定目标的有关信息,使用自动化和统计学等方法对信息进行预测、偏差分析和关联分析等,从而得到合理的结论。在档案管理中使用数据挖掘技术,能够充分地发挥档案管理的作用,从而达到良好的档案管理工作效果。(二)数据挖掘技术分析。数据挖掘技术分析的方法是多种多样的,其主要方法有以下几种:1.关联分析。指从已经知道的信息数据中,找到多次展现的信息数据,由信息的说明特征,从而得到具有相同属性的事物特征。2.分类分析。利用信息数据的特征,归纳总结相关信息数据的数据库,建立所需要的数据模型,从而来识别一些未知的信息数据。3.聚类分析。通过在确定的数据中,找寻信息的价值联系,得到相应的管理方案。4.序列分析。通过分析信息的前后因果关系,从而判断信息之间可能出现的联系。
在进行现代档案信息处理时,传统的档案管理方法已经不能满足其管理的要求,数据挖掘技术在这方面确有着显著的优势。首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自然也就越高,所以其安全性就很难得到保障,在档案管理中运用数据挖掘技术,可以让档案的信息数据得到分析统计,归纳总结,不必次次实物查阅,这样就极大地提升了档案相关内容的安全性,降低档案的磨损率。并且可以对私密档案进行加密,进行授权查阅,进一步提高档案信息的安全性。其次,对档案进行鉴定与甄别,这也是档案工作中较困难的过程,过去做好这方面的工作主要依靠管理档案管理员自己的能力和水平,主观上的因素影响很大,但是数据挖掘技术可以及时对档案进行编码和收集,对档案进行数字化的管理和规划,解放人力资源,提升档案利用的服务水平。第三,数据挖掘技术可以减少档案的收集和保管成本,根据档案的特点和规律建立的数据模型能为之后的工作人员建立一种标准,提升了档案的鉴定效率。
(一)档案信息的收集。在实施档案管理工作时,首先需要对档案信息数据的收集。可以运用相关档案数据库的数据资料,进行科学的分析,制定科学的说明方案,对确定的数据集合类型和一些相关概念的模型进行科学说明,利用这些数据说明,建立准确的数据模型,并以此数据模型作为标准,为档案信息的快速分类以及整合奠定基础。例如,在体育局的相关网站上提供问卷,利用问卷来得到的所需要的信息数据,导入数据库中,让数据库模型中保有使用者的相关个人信息,通过对使用者的信息数据进行说明,从而判断使用者可能的类型,提升服务的准确性。因此,数据挖掘技术为档案信息的迅速有效收集,为档案分类以及后续工作的顺利展开,提供了有利条件,为个性化服务的实现提供了保证。(二)档案信息的分类。数据挖掘技术具有的属性分析能力,可以将数据库中的信息进行分门别类,将信息的对象通过不同的特征,规划为不同的分类。将数据挖掘技术运用到档案管理中时,可以简单快速地找到想要的档案数据,能根据数据中使用者的相关数据,找寻使用者在数据库中的信息,使用数据模型的分析能力,分析出使用者的相关特征。利如,在使用者上网使用网址时,数据挖掘技术可以充分利用使用者的搜索数据以及网站的访问记录,自动保存用户的搜索信息、搜索内容、下载次数、时间等,得到用户的偏好和特征,对用户可能存在的需求进行预测和分类,更加迅速和准确的,为用户提供个性化的服务。(三)档案信息的整合。数据挖掘技术可以对新旧档案的信息进行整合处理,可以较为简单地将“死档案”整合形成为“活档案”,提供良好的档案信息和有效的档案管理。例如,对于企事业单位而言,培训新员工的成本往往比聘请老员工的成本要高出很多。对老员工的档案信息情况进行全体整合,使档案资源充分发挥作用,将档案数据进行总结和规划,根据数据之间的联系确定老员工流失的原因,然后建立清晰、明白的数据库,这样可以防止人才流失,也能大大提高档案管理的效率。
综上所述,在这个信息技术迅速跳跃发展的时代,将数据挖掘技术运用到档案管理工作中是时代发展的需求与必然结果。利用数据挖掘技术,可以使档案管理工作的效率大大提升,不仅减少了搜索档案信息的时间,节省人力物力,避免资源的浪费,还能帮助用户在海量的信息数据中,快速找到所需的档案数据信息。数据挖掘技术的运用,使静态的档案信息变成了可以“主动”为企事业单位的发展,提供有效的个性化服务的档案管家,推动了社会的快速发展。
[2]宇然,数据挖掘技术研究以及在档案计算机管理系统中的应用[d].沈阳工业大学,20xx.
[3]吴秀霞,关于档案管理方面的数据挖掘分析及应用探讨[j].经营管理者,20xx:338.
数据挖掘论文摘要篇八
摘要:大数据和智游都是当下的热点,没有大数据的智游无从谈“智慧”,数据挖掘是大数据应用于智游的核心,文章探究了在智游应用中,目前大数据挖掘存在的几个问题。
随着人民生活水平的进一步提高,旅游消费的需求进一步上升,在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下,智游应运而生。大数据作为当下的热点已经成了智游发展的有力支撑,没有大数据提供的有利信息,智游无法变得“智慧”。
旅游业是信息密、综合性强、信息依存度高的产业[1],这让其与大数据自然产生了交汇。2010年,江苏省镇江市首先提出“智游”的概念,虽然至今国内外对于智游还没有一个统一的学术定义,但在与大数据相关的描述中,有学者从大数据挖掘在智游中的作用出发,把智游描述为:通过充分收集和管理所有类型和来源的旅游数据,并深入挖掘这些数据的潜在重要价值信息,然后利用这些信息为相关部门或对象提供服务[2]。这一定义充分肯定了在发展智游中,大数据挖掘所起的至关重要的作用,指出了在智游的过程中,数据的收集、储存、管理都是为数据挖掘服务,智游最终所需要的是利用挖掘所得的有用信息。
2011年,我国提出用十年时间基本实现智游的目标[3],过去几年,国家旅游局的相关动作均为了实现这一目标。但是,在借助大数据推动智游的可持续性发展中,大数据所产生的价值却亟待提高,原因之一就是在收集、储存了大量数据后,对它们深入挖掘不够,没有发掘出数据更多的价值。
智游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现wi-fi覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。通过这些平台,已基本能掌握跟游客和景点相关的数据,可以实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及大量部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。
大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景非常广阔,但是面对大量的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,通过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法通过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
2017年,数据安全事件屡见不鲜,伴着大数据而来的数据安全问题日益凸显出来。在大数据时代,无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹,如何保证这些信息被合法合理使用,让数据“可用不可见”[4],这是亟待解决的问题。同时,在大数据资源的开放性和共享性下,个人隐私和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外,经过大数据技术的分析、挖掘,个人隐私更易被发现和暴露,从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。
大数据背景下的智游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智游的构建还缺乏大量人才。
在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘应该被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智游大数据人才。
参考文献
数据挖掘论文摘要篇九
摘要:大数据和智游都是当下的热点, 没有大数据的智游无从谈“智慧”, 数据挖掘是大数据应用于智游的核心, 文章探究了在智游应用中, 目前大数据挖掘存在的几个问题。
随着人民生活水平的进一步提高, 旅游消费的需求进一步上升, 在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下, 智游应运而生。大数据作为当下的热点已经成了智游发展的有力支撑, 没有大数据提供的有利信息, 智游无法变得“智慧”。
旅游业是信息密、综合性强、信息依存度高的产业[1], 这让其与大数据自然产生了交汇。2010年, 江苏省镇江市首先提出“智游”的概念, 虽然至今国内外对于智游还没有一个统一的学术定义, 但在与大数据相关的描述中, 有学者从大数据挖掘在智游中的作用出发, 把智游描述为:通过充分收集和管理所有类型和来源的旅游数据, 并深入挖掘这些数据的潜在重要价值信息, 然后利用这些信息为相关部门或对象提供服务[2]。这一定义充分肯定了在发展智游中, 大数据挖掘所起的至关重要的作用, 指出了在智游的过程中, 数据的收集、储存、管理都是为数据挖掘服务, 智游最终所需要的是利用挖掘所得的有用信息。
2011年, 我国提出用十年时间基本实现智游的目标[3], 过去几年, 国家旅游局的相关动作均为了实现这一目标。但是, 在借助大数据推动智游的可持续性发展中, 大数据所产生的价值却亟待提高, 原因之一就是在收集、储存了大量数据后, 对它们深入挖掘不够, 没有发掘出数据更多的价值。
智游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展, 国内许多景区已经实现wi-fi覆盖, 部分景区也已实现人与人、人与物、人与景点之间的实时互动, 多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台, 从中进行数据统计、行为分析、监控预警、服务质量监督等。通过这些平台, 已基本能掌握跟游客和景点相关的数据, 可以实现更好旅游监控、产业宏观监控, 对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看, 我国的信息化建设还需加强。虽然通讯网络已基本能保证, 但是大部分景区还无法实现对景区全面、透彻、及时的感知, 更为困难的是对平台的建设。在数据共享平台的建设上, 除了必备的硬件设施, 大数据实验平台还涉及大量部门, 如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联, 要想建立一个完整全面的大数据实验平台, 难度可想而知。
大数据时代缺的不是数据, 而是方法。大数据在旅游行业的应用前景非常广阔, 但是面对大量的数据, 不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用, 那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据, 通过云计算技术, 对数据的收集、存储都较为容易, 但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析, 相似度分析, 距离分析, 聚类分析等等, 这些方法从不同的角度对数据进行挖掘。其中, 相关性分析方法通过关联多个数据来源, 挖掘数据价值。但针对旅游数据, 采用这些方法挖掘数据的价值信息, 难度也很大, 因为旅游数据中冗余数据很多, 数据存在形式很复杂。在旅游非结构化数据中, 一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析, 对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
2017年, 数据安全事件屡见不鲜, 伴着大数据而来的数据安全问题日益凸显出来。在大数据时代, 无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹, 如何保证这些信息被合法合理使用, 让数据“可用不可见”[4], 这是亟待解决的问题。同时, 在大数据资源的开放性和共享性下, 个人隐私和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外, 经过大数据技术的分析、挖掘, 个人隐私更易被发现和暴露, 从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库, 被完全共享、挖掘、分析, 那游客的人身财产安全将会受到严重影响, 最终降低旅游体验。所以, 数据的安全管理是进行大数据挖掘的前提。
大数据背景下的智游离不开人才的创新活动及技术支持, 然而与专业相衔接的大数据人才培养未能及时跟上行业需求, 加之创新型人才的外流, 以及数据统计未来3~5年大数据行业将面临全球性的人才荒, 国内智游的构建还缺乏大量人才。
在信息化建设上, 加大政府投入, 加强基础设施建设, 整合结构化数据, 抓取非结构化数据, 打通各数据壁垒, 建设旅游大数据实验平台;在挖掘方法上, 对旅游大数据实时性数据的挖掘应该被放在重要位置;在数据安全上, 从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手, 提升大数据环境下数据安全保护水平。加强人才的培养与引进, 加强产学研合作, 培养智游大数据人才。
参考文献
数据挖掘论文摘要篇十
随着会计现代化的发展,会计越来越多的运用计算机技术的拓展。
数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜存有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。
常用的数据挖掘方法主要有决策树(decisiontree)、遗传算法(geneticalgorithms)、关联分析(associationanalysis).聚类分析(c~smranalysis)、序列模式分析(sequentialpattern)以及神经网络(neuralnetworks)等。
由于数据挖掘市场还处于起步的阶段,但是发展很快。在国外有一些著名的大公司对数据挖掘系统进行了开发。
igentminer这是ibm公司的数据挖掘产品,它提供了很多数据挖掘算法,包括关联、分类、回归、预测模型、偏离检测、序列模式分析和聚类。有2个特点:一是它的数据挖掘算法的可伸缩性;二是它与ibm/db/2关系数据库系统紧密地结合在一起。
t是由sgi公司开发的,它也提供了多种数据挖掘方法,包括关联分析和分类以及高级统计和可视化工具。特色是它具有的强大的图形工具,包括规则可视化工具、树可视化工具、地图可视化工具和多维数据分散可视化工具,它们用于实现数据和数据挖掘结果的可视化。
tine是由isl公司开发的,它为终端用户和开发者提供提供了一个集成的数据挖掘开发环境。
面对日益激烈的竞争环境,企业管理者对决策信息的需求也越来越高。管理会计作为企业决策支持系统的重要组成部分,提供更多、更有效的有用信息责无旁贷。因此,从海量数据中挖掘和寻求知识和信息,为决策提供有力支持成为管理会计师使用数据挖掘的强大动力。例如,数据挖掘可以帮助企业加强成本管理,改进产品和服务质量,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。
实践证明数据挖掘不仅能明显改善企业内部流程,而且能够从战略的高度对企业的竞争环境、市场、顾客和供应商进行分析,以获得有价值的商业情报,保持和提高企业持续竞争优势。如,对顾客价值分析能够将为企业创造80%价值的20%的顾客区分出来,对其提供更优质的服务,以保持这部分顾客。
险
利用数据挖掘技术可以建立企业财务风险预警模型。企业财务风险的发生并非一蹴而就,而是一个积累的、渐进的过程,通过建立财务风险预警模型,可以随时监控企业财务状况,防范财务危机的发生。另外,也可以利用数据挖掘技术,对企业筹资和投资过程中的行为进行监控,防止恶意的商业欺诈行为,维护企业利益。尤其是在金融企业,通过数据挖掘,可以解决银行业面临的如信用卡的恶意透支及可疑的信用卡交易等欺诈行为。根据sec的报告,美国银行、美国第一银行、联邦住房贷款抵押公司等数家银行已采用了数据挖掘技术。
作业成本法以其对成本的精确计算和对资源的充分利用引起了人们的极大兴趣,但其复杂的操作使得很多管理者望而却步。利用数据挖掘中的回归分析、分类分析等方法能帮助管理会计师确定成本动因,更加准确计算成本。同时,也可以通过分析作业与价值之间的关系,确定增值作业和非增值作业,持续改进和优化企业价值链。在thomasg,johnj和il-woonkim的调查中,数据挖掘被用在作业成本管理中仅占3%。
管理会计师在很多情况下需要对未来进行预测,而预测是建立在大量的历史数据和适当的模型基础上的。数据挖掘自动在大型数据库中寻找预测性信息,利用趋势分析、时间序列分析等方法,建立对如销售、成本、资金等的预测模型,科学准确的预测企业各项指标,作为决策的依据。例如对市场调查数据的分析可以帮助预测销售;根据历史资料建立销售预测模型等。
投资决策分析本身就是一个非常复杂的过程,往往要借助一些工具和模型。数据挖掘技术提供了有效的工具。从公司的财务报告、宏观的经济环境以及行业基本状况等大量的数据资料中挖掘出与决策相关的实质性的信息,保证投资决策的正确性和有效性。如利用时间序列分析模型预测股票价格进行投资;用联机分析处理技术分析公司的信用等级,以预防投资风险等。
品种优化是选择适当的产品组合以实现最大的利益的过程,这些利益可以是短期利润,也可以是长期市场占有率,还可以是构建长期客户群及其综合体。为了达到这些目标,管理会计师不仅仅需要价格和成本数据有时还需要知道替代品的情况,以及在某一市场段位上它们与原产品竞争的状况。另外企业也需要了解一个产品是如何刺激另一些产品的销量的等等。例如,非盈利性产品本身是没有利润可言的,但是,如果它带来了可观的客户流量,并刺激了高利润产品的销售,那么,这种产品就非常有利可图,就应该包括在产品清单中。这些信息可根据实际数据,通过关联分析等技术来得到。
管理会计师可以利用数据挖掘工具来评价企业的财务风险,建立企业财务危机预警模型,进行破产预测。破产预测或称财务危机预警模型能够帮助管理者及时了解企业的财务风险,提前采取风险防范措施,避免破产。另外,破产预测模型还能帮助分析破产原因,对企业管理者意义重大。,数据挖掘技术包括多维判别式分析、逻辑回归分析、遗传算法、神经网络以及决策树等方法在管理会计中得到了广泛的应用。
数据挖掘是个崭新的领域,对于数字和信息的处理是非常科学和方便的,也是非常高效率和合理分析的非常好的工具,对于会计管理领域的应用在国际上只是刚刚开始,相信随着会计的国际化的接轨和计算机科学的进步,在我国的会计领域中的数据挖掘理论会得到不断的提升,在管理会计实际应用中的数据挖掘也越来越多样化和普及化。
数据挖掘论文摘要篇十一
在电子商务中运用数据挖掘技术,对服务器上的日志数据、用户信息和访问链接信息进行数据挖掘,有效了解客户的购买欲望,从而调整电子商务平台,最终实现利益更大化。本文旨在了解电子商务中的数据源有哪些,发掘数据挖掘在电子商务中的具体作用,从而为数据挖掘的具体设计奠定基础。
一、电子商务中数据挖掘的数据源
1.服务器日志数据客户在访问网站时,就会在服务器上产生相应的服务器数据,这些文件主要是日志文件。而日志文件又可分为ser-vicelogs、errorlogs、cookielogs。其中servicelogs文件格式是最常用的标准公用日志文件格式,也是标准组合日志文件格式。标准公用日志文件的格式存储关于客户连接的物理信息。标准组合日志文件格式主要包含关于日志文件元信息的指令,如版本号,会话监控开始和结束的日期等。在日志文件中,cookielogs日志文件是很重要的日志文件,是服务器为了自动追踪网站访问者,为单个客户浏览器生成日志[1]。
2.客户登记信息
客户登记信息是指客户通过web页输入的、并提交给服务器的相关用户信息,这些信息通常是关于用户的常用特征。
在web的数据挖掘中,客户登记信息需要和访问日志集成,以提高数据挖掘的准确度,使之能更进一步的了解客户。
页面的超级链接
辅之以监视所有到达服务器的数据,提取其中的http请求信息。此部分数据主要来自浏览者的点击流,用于考察用户的行为表现。网络底层信息监听过滤指监听整个网络的所有信息流量,并根据信息源主机、目标主机、服务协议端口等信息过滤掉垃圾数据,然后进行进一步的处理,如关键字的搜索等,最终将用户感兴趣的数据发送到给定的数据接受程序存储到数据库中进行分析统计。
二、web数据挖掘在电子商务中的应用通过对数据源的原始积累、仔细分析,再利用数据发掘技术,最终达到为企业为用户服务的目的,而这些服务主要有以下几种。
1.改进站点设计,提高客户访问的兴趣对客户来说,传统客户与销售商之间的空间距离在电子商务中已经不存在了,在internet上,每一个销售商对于客户来说都是一样的,那么如何使客户在自己的销售站点上驻留更长的时间,对销售商来说将是一个挑战。为了使客户在自己的网站上驻留更长的时间,就应该对客户的访问信息进行挖掘,通过挖掘就能知道客户的浏览行为,从而了解客户的兴趣及需求所在,并根据需求动态地调整页面,向客户展示一个特殊的页面,提供特有的一些商品信息和广告,以使客户能继续保持对访问站点的兴趣。
2.发现潜在客户
在对web的客户访问信息的挖掘中,利用分类技术可以在internet上找到未来的潜在客户。获得这些潜在的客户通常的市场策略是:先对已经存在的访问者进行分类。对于一个新的访问者,通过在web上的分类发现,识别出这个客户与已经分类的老客户的一些公共的描述,从而对这个新客户进行正确的归类。然后从它所属类判断这个新客户是否为潜在的购买者,决定是否要把这个新客户作为潜在的客户来对待。
客户的类型确定后,就可以对客户动态地展示web页面,页面的内容取决于客户与销售商提供的产品和服务之间的关联。
对于一个新的客户,如果花了一段时间浏览市场站点,就可以把此客户作为潜在的客户并向这个客户展示一些特殊的页面内容。
3.个性化服务
根据网站用户的访问情况,为用户提供个性化信息服务,这是许多互联网应用,尤其是互联网信息服务或电子商务(网站)所追求的目标。根据用户的访问行为和档案向使用者进行动态的推荐,对许多应用都有很大的吸引力。web日志挖掘是一个能够出色地完成这个目标的方式。通过web数据挖掘,可以理解访问者的动态行为,据此优化电子商务网站的经营模式。通过把所掌握的大量客户分成不同的类,对不同类的客户提供个性化服务来提高客户的满意度,从而保住老客户;通过对具有相似浏览行为的客户进行分组,提取组中客户的共同特征,从而实现客户的聚类,这可以帮助电子商务企业更好地了解客户的兴趣、消费习惯和消费倾向,预测他们的需求,有针对性地向他们推荐特定的商品并实现交叉销售,可以提高交易成功率和交易量,提高营销效果。
例如全球最大中文购物网站淘宝网。当你购买一件商品后,淘宝网会自动提示你“购买过此商品的人也购买过……”类似的信息,这就是个性化服务的代表。
4.交易评价
现在几乎每一个电子商务网站都增加了交易评价功能,交易评价功能主要就是为了降低交易中的信息不对称问题。
电子商务交易平台设计了在线信誉评价系统,对买卖双方的交易历史及其评价进行记录。在声誉效应的影响下,卖家也更加重视买家的交易满意度,并且也形成了为获取好评减少差评而提高服务质量的良好风气。交易中的不满意(或者成为纠纷)是产生非好评(包括中评和差评)的直接原因。那么,交易中一般会产生哪些交易纠纷,这些交易纠纷的存在会如何影响交易评价结果,这些问题的解决对卖家的经营具有重要的指导价值。
总结
数据挖掘是当今世界研究的热门领域,其研究具有广阔的应用前景和巨大的现实意义。借助数据挖掘可以改进企业的电子商务平台,增加企业的经营业绩,拓宽企业的经营思路,最终提高企业的竞争力。
参考文献:
数据挖掘论文摘要篇十二
随着我国社会经济的不断发展,人力资源管理也受到越来越多人们的重视,然而在如今激烈的市场竞争下很多企业依然不重视人力资源管理,从而使得自身的整体工作效率不高。为此,笔者认为为了提高矿建人力资源管理的质量,应采取数据挖掘技术来开展工作,从而让整个企业在激烈的市场竞争中稳定、长久发展下去。
:数据挖掘技术;企业人力资源管理;应用
随着我国人力资源管理体系的不断发展,隐藏在管理工作中的问题也被逐渐显露出来,虽然很多企业的高层管理者对人力资源管理这块已经高度重视,但是企业往往是希望通过运用相关的系统来对人才进行管理,基于我国社会整体经济实力的不断发展以及互联网信息时代的到来,数据挖掘技术也受到越来越多的企业多关注,并纷纷采用该技术对自身人力资源进行管理,同时也将人力资源管理系统作为整个信息化建设过程中的核心部位,就数据调查显示,数据挖掘技术已经被国外很多软件开放式引入自身的人力资源管理工作中,并使自身内部逐步形成了一套完整的人力资源管理系统体系。除此之外,数据挖掘技术也被广泛应用在企业的基本人力资源档案管理工作中,随着信息技术时代的到来,以往传统的计算机管理模式对人力资源管理效率往往并不高,为此,数据挖掘技术对企业人力资管理工作是百利而无一害的。
2、1人才的招聘
任何企业在发展过程中都是离不开新鲜血液注入的,随着目前我国市场经济竞争趋势的不断增长,企业要想稳固发展必须要引入人力资源管理,只有这样才能提高企业经济效益以及社会收益。为此,企业应对人才进行招聘,这也是获取人力资源的重要手段,通过采用数据挖掘技术来吸引社会中的各类人才,并采取有效的人才管理流程来对人才进行筛选,最终选择质量最佳的人才资源。与此同时,企业对人才招聘质量的优与良对自身内部的员工、人类资源也会造成一定的影响,换句话来讲,人才的招聘往往是企业人力资源管理工作开展的前期阶段,然而在实际人才招聘过程中很多企业总是找不到合适的人选,同时也有大量的优质人才也很难找的适合自身的工作,这也就加大了企业人才招聘的难度,也进一步加大了招聘的成本,为此,企业采取数据挖掘技术可以有效降低人才招聘的成本支出,从而使自身获得更大的经济收益与社会利益。
2、2对人才的管理
随着社会对人才需求量的不断增加,企业对员工的数据记录和管理方式也逐步优化,然而在很多企业人力资源管理过程中仍然存在着诸多问题,而这些问题的存在对企业未来发展也产生阻碍作用。为了企业在未来发展道路上稳固、长久发展,应采取数据挖掘技术来对人才进行管理,以往传统的管理模式往往是对员工的基本信息以及日常考核进行管理,这种管理方式已经不适应现在时代发展的趋势,为此,矿建企业必要顺应当下时代的发展趋势来采取有效的措施来对人力资源进行管理,现代化的管理模式主要强调的是对相关数据的分析和整理能力,通过对数据的分析来形成具有实际指导作用的总结,从而为企业人力资源管理工作提供有价值的参考依据。例如,在实际人力资源管理过程中可以利用数据挖掘技术来对企业内部员工的薪资水平进行分析,并对企业的成本控制提出有效的建议,也可以利用数据挖掘技术对企业中年纪较大的员工进行分析,并对其进行科学的评判,从而对其提出更有利的参考价值和依据。
2、3实现对企业人才的合理分配
随着我国社会经济的不断发展,人才的发展形势也变得越来越“多元化”“个体化”。为此,笔者认为为了进一步提高矿建企业人力资源管理工作的质量,应采取数据挖掘技术来对人才进行合理分配,并结合内部员工的实际特点以及具体类型进行客观性的评判,这对企业的人才资源管理以及未来发展无疑是百利无一害的。通过采取数据挖掘技术不仅可以实现对员工的共性以及特点进行分析,使每一位员工的信息资源、岗位职责得到有效划分,同时也进一步实现对企业人才的合理分配。通过对数据信息的管理技术构建实现对人员分组,从而使数据挖掘技术在企业人力资源管理中得到有效利用,使其发挥最大的作用与价值,同时也进一步提高企业人力资源管理工作的效率和和质量,最终推动企业稳固、长久的发展。
综上所述,随着社会经济的飞速发展,建设领域也得到逐步提高,然而在人力资源管理工作中依然存在着诸多问题,这些问题的存在也严重阻碍我国社会经济的稳固发展。所以,只有充分采用数据挖掘技术来开展人力资源管理工作,才能提高企业的人力资源管理水平。
[1]曾巍、数据挖掘在人力资源市场中的应用与研究[d]。吉林大学,20xx