乘法交换律乘法结合律教案(通用15篇)
教案是指导教师教学活动的有关教学设计和教学指导的重要文件。教案应当根据学生的学习特点和需求,设计合适的教学活动和任务。以下是小编为大家收集的精选教案范例,仅供参考,希望能给您带来启示。
乘法交换律乘法结合律教案篇一
前几天听了一位四年级老师上的课《乘法的交换律和结合律》,这节课是在学生已经学会了加法的交换律和结合律的基础上迁移而来的。课上老师把课堂调控得有声有色,学生也学得有滋有味。
教师在新授乘法结合律时是这样教学的:
生1:我用5×6×23算到一共有690人参加比赛。
生2:我用23×5×6也算到一共有690人参加比赛。
师:能说说你们的想法吗?
生1:我是这样想的,先用5×6算到全校一共有几个班,再乘23就算到一共有690人了。
生2:我是这样想的,先用23×5算到一个年级一共有多少人,再乘6就算到一共有690人了。
生:会,23×5×6=23×(5×6)。
师:请你仔细观察这条等式,你知道“=”左右两边的算式有什么相同点和不同点吗?
生1:乘数是一样的。
生2:它们的计算结果一样。
生3:它们的计算结果一样,但是它们的运算顺序不同。
生4:老师,我能用一句话来概括,它们的乘数不变,运算顺序不同,思路也不同,但是它们的计算结果是相同的。
生:(a×b)×c=a×(b×c)
课上到这儿,似乎顺理成章,师生合作得很和谐,课堂气氛也十分活跃,这节课是一节概念课,学生该掌握的`知识点从学生的反馈来看应该都掌握得不错。可是听着总觉得还缺了些什么,反复想了想,豁然开朗。我们都知道“数学来自于生活也应用于生活”,而这个环节缺少的就是数学的应用,以上的教学中,我们能学会知识,但是却体会不到知识的价值,而这恰恰是数学课要给予学生的极其重要的东西,究其实质,这节课的真正意义正是让学生学会知识去应用知识,体会乘法结合律给日常生活中的计算带来简便的数学价值。所以,在第二次的教学中,在学生得出乘法结合律的字母式之前,教师作了如下设计,课就显得厚重得多了,从中学生能体会到乘法结合律的应用价值。
生:当然是23×(5×6)简单。
师:为什么?
生:因为先算5×6正好算到整数,这样算比较好算。
生:(a×b)×c=a×(b×c)
乘法交换律乘法结合律教案篇二
为了使学生能够尽快切入主题,我将主题图中的信息作了适量的调整,让学生尽快提出问题并解决问题,从中发现计算定律。学生能够主动参与,并能够自己理解并总结出定律及公式,效率较高。因为节省了时间,我将后面的练习增加了内容,从总结加法运算定律和乘法运算定律的特点,到填空并说出应用了那些定律,从口算中实际应用运算定律达到简化计算,再到实际计算,难度逐渐增加,符合学生的认知规律,能更好地让学会应用,感受到运算定律在简算中的重要作用。
同样,节省时间的同时,一副完整的主题图让我分散开,虽然节省了学生分析已知条件的时间,但不利于学生对数学信息较多的应用题的分析和理解。同时,学生在举例来验证乘法交换律的时候,因为有些孩子已经预习或者之前已经掌握,当他们迫不及待地说出运算定律的名称,没有按照原本的教学设计进行的时候,我还是显得应付有些拘谨,备课的时候没有准备充分,或者平时这方面的锻炼就比较缺乏。看上去内容紧凑,练习丰富,但难免有些学生没有完全理解、学会应用,只是“人云亦云”,从最后的作业说明,我对学生关注不够全面。作为教师语言还不够规范,有的时候说“因数”,而有的时候却又说成“乘数”,还需要数学语言的锤炼。
虽然,我在40分钟内完成了教学任务,但在后面的家庭作业和练习中,不难看出一部分孩子对计算定律掌握不够牢固,不知道什么时候该用,该怎么用。因而表面上的环环相扣,可能只符合一部分学有余力的孩子,还不能很好地照顾到每一个层次的学生。因而,不得不去对那些没有完全理解的孩子去“炒生饭”,反而浪费了最有利的教学时机。同样,在后面的应用题中,学生分析问题的能力还有待于加强,不能很好地区分哪些数学信息是有关联的,哪些没有关联,因而,在平时的教学中,不要放过任何一个机会,使学生形成遇到问题能够找到方法去分析的能力。
本课存在的问题集中体现了本人教学中长期以来存在的缺点,本课中因为是让学生自己总结两个定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。还应该关注教学效率,不要盲目地赶时间,为了完成任务而去教学,应该更多地关注学生,不能被个别学优生的精彩发言蒙蔽双眼,从而忽视了那些还需要帮助的学生。同时,有些内容,不适合一带而过,而是应作为教学重难点去层层克服,所以要放慢速度,只有在一个知识点完全吸收后才能开展下一个教学环节!
关注教学的有效性,也就是关注学生对知识的理解掌握程度,作为教师不仅仅是完成教学中规定的任务,还应该熟悉本课在小学以及今后学段所学知识链中所起到的重要作用,把教材备透、备熟,加强教师基本功的练习,能够预设到个各种可能的发生,因而做到紧紧围绕学生的认知程度开展有利于教学的活动,达到让学生能够理解,并熟练应用的程度。
乘法交换律乘法结合律教案篇三
您现在正在阅读的《乘法交换律和结合律》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!《乘法交换律和结合律》教学反思上完这节课后,我的感触很深,我对这节课值得反思的东西还是挺多的。通过本节课的学习,基本达到教学目标。在课堂上我花更多的时间关注学生的学习过程,有意识地引导学生亲历做数学的过程。整个课堂气氛比较好,师生交流和谐融洽。在本节课中,能够抓住重难点,课堂设计比较好,、教学设计很清晰,教学很顺畅,知识讲解比较到位。在探索乘法交换律的过程中,环环相扣,学生学习的激情很高,在用自己喜欢的方法来表示乘法交换律的环节中,学生的兴趣很浓厚,展现出各种各样的表示方法。同时,在总结乘法结合律后,教给孩子们一个手指操,加深了孩子们对乘法结合律的理解。
授人以鱼,不如授人以渔,数学思想方法比数学知识本身更为重要。这节课是在学生已经掌握了乘法的计算方法的基础上进行教学的,通过学习,为学生今后运用规律进行简便计算,提高计算速度打下良好的基础。在教学过程中,我主要通过学生的观察、验证、归纳、运用等学习形式,采用启发式教学方式,由浅入深,从直观到规律,让学生去感受数学问题的探索性,培养学生学习数学的兴趣。教学时,我是先讲乘法交换律,再讲结合律,因为乘法交换律在学生以前的学习中都有渗透,而乘法结合律的生成也有赖于乘法交换律,所以先讲交换律可以以旧引新,为学生下一步学习结合律做好铺垫。
在这次教学中,也存在着许多不足。
一、语言不够严谨,要简洁、精炼。在叙述乘法结合律时,要紧扣乘法结合律的定义。
二、要注意一下细节问题。在学生讨论、举例时,要求孩子验证等式是否成立时,要求叙述得不够严谨。
三、针对学生错误的回答,解释得不是很到位,需要针对孩子的回答,来着重讲解。
四、对于教材提供的主题图的体会:
教材所提供的主题图是计算正方体的个数,在计算中,出现解题策略的多样化,从而产生我们需要的`素材。教后,发现学生能呈现的算法基本上局限在:345、354、453范围内,我们探索所需要的类似3(45)的算式是较难主动再现的。因此,教学中,要通过刻意的人为的引导得到,其实很不自然,有些强加的感觉。也许,直接呈现乘法结合律的事例给学生会更好些。
由于经验的欠缺,对课堂的调控与把握还是做得不到位。有时候我的语言有些随意,不够正式,评价语言不够丰富,这是非常不足之处,既而需要我今后努力学习的方向。还有通过有其他老师的点评,让我明白老师的辅助作用及提问题的技巧性也很重要的,只有这样才能更好地达到课堂的有效教学。
今后的工作中,要多向以下几个方面努力:
1.多听课,多学习。学习优秀教师的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2.加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。
3.认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数。
乘法交换律乘法结合律教案篇四
1、通过探索活动,进一步体会探索的过程和方法。
2、通过探索活动,发现乘法的结合律,并用字母进行表示。
3、在理解结合律的基础上,会对一些算式进行简便计算。
教学重、难点。
1、通过探索活动,进一步体会探索的过程和方法,发现乘法的结合律。
2、在理解结合律的基础上,会对一些算式进行简便计算。
教学准备教学挂图,计算器。
教学过程。
一、发现问题:
1、出示长方体图,让学生估计搭这个长方体用了多少个小正方体。
2、用不同方法验证结果。让学生用不同方法计算,并引导讨论为什么方法不同结果却一样,这其中是否蕴含着某些规律。
二、提出假设、举例验证、建立模型。
1、根据上题的规律提出假设。
2、验证提出的假设是否适合其它数据。
小组内举一些数据来验证,可借助计算器,用一些较大的数据验证。
全班交流,并用字母表示结合律。
1、试一试第1题:
让学生尝试用乘法结合律解决连乘运算中的简算问题。然后进行交流,概括出简算的方法。
2、进一步尝试用用乘法结合律解决连乘运算中的简算问题。
乘法交换律乘法结合律教案篇五
本节课是在学生学习过加法的运算定律之后学习的。只学习乘法交换律,内容比较简单。在设计这节课时,力求让学生通过自己的观察、分析,发现这一运算定律,呈现“观察-初步结论-验证-应用”的研究程序。
体现在以下几个方面:
一、把主动权交给学生。
学习的主体是学生,让他们观察,让他们提问,让他们选择问题进行解决,引导他们发现规律、验证规律,给规律命名、用自己的方法表示乘法交换律,应用交换律解决问题……让学生在自主学习,自主探究中经历获取知识的过程,体验着发现的快乐。
二、注重思想和方法的渗透。
学生学习数学不只是简单的计算几道题。知道几个数的概念,而是学会用数学的思想去思考,用数学的方法去解决一些实际的问题。因此本节课注重对数学思想和方法的渗透,整节课紧紧围绕“乘法交换律”让学生在“观察、验证、应用”的活动中,学会有序的思考,经历归纳总结的过程。在学生的学习交流的过程中,让学生学会了如何观察,如何验证,如何思考。
只学习乘法交换律,内容比较简单。在设计这节课时,力求让学生通过自己的观察、分析,发现这一运算定律,呈现“观察-初步结论-验证-应用”的研究程序。
体现在以下几个方面:
一、把主动权交给学生。
学习的主体是学生,让他们观察,让他们提问,让他们选择问题进行解决,引导他们发现规律、验证规律,给规律命名、用自己的方法表示乘法交换律,应用交换律解决问题……让学生在自主学习,自主探究中经历获取知识的过程,体验着发现的快乐。
二、注重思想和方法的渗透。
学生学习数学不只是简单的计算几道题。知道几个数的概念,而是学会用数学的思想去思考,用数学的方法去解决一些实际的问题。因此本节课注重对数学思想和方法的渗透,整节课紧紧围绕“乘法交换律”让学生在“观察、验证、应用”的活动中,学会有序的思考,经历归纳总结的过程。在学生的学习交流的过程中,让学生学会了如何观察,如何验证,如何思考。
乘法交换律乘法结合律教案篇六
乘法结合律是学生学习运算定律的第二阶段,在此之前学生已经熟练掌握了加法交换律和结合律。因为乘法交换律和结合律与加法交换律和结合律基本相同,通过知识的正迁移学生完全能够自己学会。因此我把本节课的学习目标定位为:让学生经历乘法结合律的探索过程,理解和掌握乘法结合律的内容并能用字母表示规律。运用乘法交换律,结合律达到简便计算;利用知识的正迁移,渗透规律的发现,验证的科学方法。培养自觉探索、合作学习的精神,并从中体验到成功感。
其实,很多学生在学习乘法结合律与交换之前,已经会简便运算了。我认为原因有三:
一是教材本身和老师之前或多或少有渗透;
二是学生课外学习所得;
三是来自学生自身的计算经验。他们根据自己经验,模糊地知道在乘法算式中,改变乘数的位置、改变运算顺序,结果是不变的,出于需要有时就会对算式进行转换,他们很显然不是通过乘法交换律、结合律。看来,会不会学生是对定律的意义现有模糊认识,然后我们给他们提炼一个本质、简洁的模型的,而这个模型的作用是为他以前的简便算法找到一个数学上的依据。
探索数学的规律是有一个过程的,对这个过程的认识并不是教师传授的,而是需要学生自己体验、感受的。对学生已有的体验与感受及时地进行梳理,是提高探索能力的重要一环。最后,当学生已经概括出乘法的.结合律后,如果能进一步追问:“请大家想一想,我们是怎样发现乘法结合律的呢?”通过学生对方方面面的反思,引出最后的概括。这样可能对学习方法的掌握会更深刻一些。虽然,学生要真正理解概括还需要大量地体验,但相信经历多次这样的过程,学生就能体会到探索的基本步骤。
反思整节课,本课中因为是让学生自己总结定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。但在课前对学生学情关注还是不够,做为代班四年的教师应该为此感到愧疚,应该想到有一部分孩子看不见屏幕上的字,课前就应该给孩子们将学案打印出来,那样能节省更多时间,效率会更高一些。
将本文的word文档下载到电脑,方便收藏和打印。
乘法交换律乘法结合律教案篇七
乘法结合律是学生在学习乘法的运算规律中的一个难点,容易和前面学习的乘法交换律混淆,所以在设计教学过程时,我紧扣课本中的例题,在本节课的导入环节,根据课本上例题引导学生进入情境,让学生一步一步的发现问题,学生学习兴趣较高,接着引导学生根据问题从不同角度思考列出横式,然后让学生观察这两个横式能用什么符号连接起来,学生很快的发现,能用等号,接着顺势总结乘法结合律。
本节课我尊重学生学习的主体地位,让学生发现问题并解决问题,而接下来的习题我也设计了不同类型的题来检测学生对知识的掌握,这个环节习题很丰富,但后来发现有孩子在做题时,能把(a+b)×c=a×c+b×c横式类型的题从前往后做,而不会从后往前做,这使我觉得在以后的教学中除了培养学生从不同角度看问题的同时也要引导他们举一反三的看问题。
乘法交换律乘法结合律教案篇八
乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程。
上完这一课我收获以下几点:
1、充分挖掘教材结合学生实际进行再设计,组织学生估计,多角度观察与多种算法,这一环节设计安排得较好,做到充分利用教材较好地培养了学生的估计意识和探究兴趣。
2、注意渗透一种科学的学习方法。对于结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,本节课我抓住这一教学重点,有意识地设计了“创设情景,发现问题――提出假设,举例验证――概括规律”三个教学环节,使学生经历探究过程,并在此过程中注意渗透“探索与发现”的`一般方法,学生学得积极、主动。
3、紧密联系学生的生活实际,引导学生在已有的基础上发现和归纳出运算定律。学生虽然在此前的学习中,对四则运算中的一些性质和规律有感性的认识,但本单元毕竟是属于理性的总结和概括,比较抽象,学生不易理解和掌握,因此,教学时,我充分利用教材中呈现的学生经历的跳绳、踢键等具体情境,利用学生已掌握的知识,让学生独立解答,然后引导学生分析、比较不同的方法,并通过学生自己的举例发现规律,概括出相应的运算律。
4、重视让学生在探索中经历运算律的发现过程,教学时从实际事例引入,通过学生解答,初步发现不同算法间的联系。接着让学生举出类似的等式,并对这些等式进行分析和比较,引导学生主动地探索规律,发现规律。
将本文的word文档下载到电脑,方便收藏和打印。
乘法交换律乘法结合律教案篇九
乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程。
上完这一课我收获以下几点:
1、充分挖掘教材结合学生实际进行再设计,组织学生估计,多角度观察与多种算法,这一环节设计安排得较好,做到充分利用教材较好地培养了学生的估计意识和探究兴趣。
2、注意渗透一种科学的学习方法。对于结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,本节课我抓住这一教学重点,有意识地设计了“创设情景,发现问题――提出假设,举例验证――概括规律”三个教学环节,使学生经历探究过程,并在此过程中注意渗透“探索与发现”的`一般方法,学生学得积极、主动。
3、紧密联系学生的生活实际,引导学生在已有的基础上发现和归纳出运算定律。学生虽然在此前的学习中,对四则运算中的一些性质和规律有感性的认识,但本单元毕竟是属于理性的总结和概括,比较抽象,学生不易理解和掌握,因此,教学时,我充分利用教材中呈现的学生经历的跳绳、踢键等具体情境,利用学生已掌握的知识,让学生独立解答,然后引导学生分析、比较不同的方法,并通过学生自己的举例发现规律,概括出相应的运算律。
4、重视让学生在探索中经历运算律的发现过程,教学时从实际事例引入,通过学生解答,初步发现不同算法间的联系。接着让学生举出类似的等式,并对这些等式进行分析和比较,引导学生主动地探索规律,发现规律。
乘法交换律乘法结合律教案篇十
在加法运算律教学时,学生对这块知识不感兴趣,有部分学生学习过此类知识,认为自己已经学习过了,掌握了,可是作业做下来并不理想。如让学生根据算式判断用的是什么运算律,部分学生判断还不准确,只知道有些题目怎么做并不知道为什么是这样做?于是我把两课时的教学改成了三课时,重新梳理知识。
在学习乘法运算律时,我让学生自己先说说你认为乘法会有什么样的运算律?不管是已经学习过的还是其他学生(有加法运算律的基础)都能说出乘法交换律a×b=b×a,乘法结合律(a×b)×c=a×(b×c)。看学生得意的表情,我问了一句:“那你知道为什么是a×b=b×a和(a×b)×c=a×(b×c)吗?”学生一个个的说理由,生1:“因为交换两个乘数的位置,它们的积不变。”生2:“因为只是交换了两个乘数的位置,这两个乘数并没有发生改变,所以积不变。”再喊了几名学生理由都是差不多的,这时班上陈某某发言了,他说:“我把a看成1,b看成0,那么1乘0得0,交换位置后0乘1还是得0,所以a×b=b×a。”没想到他的发言竟然引起了全班的哄堂大笑,他不好意思的坐下去了。可是我却做了一个和大家不一样的举动,我大声的说了一句:“非常好!”其他学生有点闹不明白了,一个个看着我……“他用举例的的方法证明了这个运算律是对的。其实在我们的数学学习过程中,经常在一系列的题目中发现一些对这类题目的规律,我们就可以总结归纳,有些总结出来的对所有的此类的题目都适用,有些对一些题目适用。以后在我们的数学学习中要学会观察,找到规律,总结方法。陈某某虽然没有总结规律,可是他用举例的方法从另一个方面来证明也是很了不起的。”我的一番话说的他很不好意思,可能我的话有很多学生都听不懂,但我就是想以此例告诉学生不仅要“知其然”而且要“知其所以然”。有一名学生根据前面学习加法时遇到的用加法交换律检验,想到了用以前学习乘法计算时的验算,交换乘数的位置再算一遍后得到的积是一样的来证明规律的存在。
课本中让学生在解决具体的情境中数学问题,引出一组算式,让学生初步理解两个乘数交换位置,积不变,再让学生通过举例,经历分析、综合、抽象的过程,得出乘法交换律,并用字母表示。乘法结合律的编排和加法结合律的相似,引导学生经过小组讨论发现规律。如果此课是在我以前教学,可能就如教材安排的学生经历这一系列的探索,发现规律,然后让学生通过试一试巩固规律,特别是让学生用自己喜欢的方式去表达规律时,学生可能想到很多不一样的自己喜欢的方式,可是在这边的教学一点点都没有实现,因为大部分学生已经知道了用a和b的形式来表示。可是我在教学加法运算律时,按照我预设的上课,活动没有开展起来,课后我反思,是我没有考虑学生的实际情况,这边的学生在课前有多种途径去在上课之前接受知识,不管是主动还是被动,大部分学生都已经被灌输了a×b=b×a等等之类的知识。学生在上课时就认为自己已经懂了,不用听了;而在以前的学校,学生没有这么多途径,对于他们来说书上的知识就时新知识,他们知识的获得除了课前自己预习外,更多是在课堂上去探索,所以他们课堂上注意力集中,对规律的探索有更多的兴趣,更能经历知识的形成和发展的过程。
在上课时因为学生的特殊情况,在总结出规律后,针对学生的掌握情况,我没有出现试一试,而是直接出现两道题目让学生去进行比赛,(15×17×2和17×(15×2))让学生观察后任选一题进行,看看谁做的快?大部分学生选了第2题,有个别学生选第一题但也用了运算律简便计算。比赛完毕,我让学生汇报,问为什么你会选第一题,体会到把15和2相乘的优越性。
乘法交换律乘法结合律教案篇十一
通过本节课教学,由此引发了我的几点思考和体会:
1、提供主动参与的条件,促进教学资源动态生成。
传统的课堂教学是教师讲、学生听,依据教材给的例子,通过观察,发现规律,再进行模仿练习,课堂沉闷乏味。首先,通过教材重组,呈现教学内容结构,学生在感性认识上获得了基础,从而为发现、概括乘法结合律奠定了基础。其次,为学生提供足够的学习时间和空间,教师启发学生用抽象的算式来举例验证,引导学生进行小组合作探究,师生、生生多向互动,人人体验探索规律的过程。第三,改变了学生被动接受的学习方式,让学生根据自己对知识的理解和课堂中获得的信息进行判断和辨析,提出自己的见解和疑问。因此,课堂上体现学生在主动参与中思维的灵活性和开拓性,出现了许多令我意外而惊喜的资源。如有的学生提出:乘法结合律不仅是三个数相乘,还可以是四个数相乘。另一个学生提出:两个数相乘也能运用乘法结合律的例子等。
2、捕捉和利用教学资源,促进教学过程动态生成。
相乘”,可以看出学生的思维相当拓展,已经不惟书、不惟师,敢于质疑、批判的精神风貌。我再次引导学生讨论、交流:“怎样归纳乘法结合律,你能说说吗?”及时促进学生的思维提升到更高的层面,进行思维的聚合。当学生提出“125×16也能运用乘法结合律”时,我觉得这节课的教学已经成功了。学生学会迁移,学会从个别到一般的推理方法,从而进一步拓展学生的思维,把课堂教学再次推上新的“高潮”。
通过这节课的教学,我深深体会到:一个真实的教学过程是不可预设的,而是一个师生等多种因素间动态的相互作用的过程。教师应多关注学生,要为学生提供必要的资源,要善于开发和利用学生资源,使课堂成为一个资源生成和动态生成的过程,成为促进师生生命共同发展的场所。
乘法交换律乘法结合律教案篇十二
上完这节课后,我的感触很深,我对这节课值得反思的东西还是挺多的。通过本节课的.学习,基本达到教学目标。在课堂上我花更多的时间关注学生的学习过程,有意识地引导学生亲历做数学的过程。首先我在通过复习加法运算定律引入课题,然后让学生读图根据已知条件提出问题,对问题解答。这里的每个问题都可以列出两个不同的算式,因为是对同一问题的解答所以学生能够理解把这两个算式写成一个等式。之后让学生观察这个等式。提出问题这个等式有什么特点让学生思考,课后我觉得这个问题提的不是很清楚,如果问等式的左右两有什么异同学生也许会更容易的发现这一规律。
各个环节的衔接不是很紧凑,本来后面还安排了两道应用题,但由于时间关系没来得及做。
乘法交换律乘法结合律教案篇十三
教学内容:
第61至62页例题,试一试,想想做做的第1至5题。
教学目标:
1、使学生经历探索乘法交换律和乘法结合律的过程,理解并掌握乘法交换律和乘法结合律,并能用这两个运算律进行一些简便运算。
2、在学习新知识的过程中,培养学生新旧知识间的迁移能力,在解决问题的过程中,培养学生灵活选择和应用乘法交换律和乘法结合律的能力。
3、培养学生积极交流、认真倾听的习惯。
教学重点:
理解并掌握乘法交换律和乘法结合律并能用这两个运算律进行一些简便运算。
教学难点:
教学过程:
一、复习旧知:
学生猜测,取名字。(板书其中的一些猜测)。
二、举例验证:
你能否找一些实际例子来证明你的观点?
(可以用数字举例,也可以用生活中的例子。)。
那找一个例子说明刚才的结论错误的呢?
你们找到反而的例子了吗?你们没找到,老师也没找到,那么我们到书上找找答案。
三:自学课本:
自学书本第61.、62页。
说说你们自学后有什么想说的吗?
等式怎么填?
这样填的'依据是什么?
在乘法结合律中,等号两边的算式,有什么相同和不同?
你能不能用一句两句话概括一下乘法结合律和乘法交换律?
试一试。
(学生自己练习,请两个学生板演)。
四、巩固练习:
1、想想做做第1题。
学生在书上填空,思考各题分别用了什么规律。
集体交流。
2、想想做做第2题。
算一算。
比一比,每组中哪道算式的计算算得快,为什么?
3、想想做做第3题。
4、想想做做第5题。
用不同算式求出苹果。
和梨各有多少千克。
学生自己练习,指名板演。
集体交流。
五、全课小结:
这节课你有什么收获?
六、课堂作业:
第62想想做做的第4题。
反思:
作为一节探索数学的规律课,对于乘法交换律与结合律的教学,不应仅仅满足于学生理解、掌握乘法交换律与结合律,会运用乘法交换律与结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这是一个教学的重点,也是难点。
本课让学生自己根据加法结合和交换律来寻找乘法运算定律,通过验证猜想得到并发现了乘法交换律与结合律,从教学素材的选择上充分体现了以“学生为主体”的课堂教学观,教师真正在教学设计中把探索权力放给了学生,学生列举算式例子空间很大,发现验证了这两个规律,体现了“以学生为本”充分尊重了学生个性,并积极引导学生展开探究,把思维的空间留给学生,教师基本上是学生探究知识的参谋与协助者,学生主体地位得到充分体现。同时也节省了教学时间,这样使我们的课堂教学更有效。
乘法交换律乘法结合律教案篇十四
北师大版教材四年级上册第三单元中的〈〈探索与发现(二)〉〉。
二、教学目标。
3、感受数学探索的乐趣,培养自主探究问题的能力。
三、教学重、难点。
四、教具准备一些小长方体。
五、教学过程。
(一)口算比赛,激发学习兴趣。
1、出示口算题。
2×55×1425×4125×836×25。
2、谈话引入。
师:他们怎么计算那么快呀?是不是有什么规律呢?这节课我们就一起来探索发现吧!
3、板书课题。
(二)创设情境,发现问题。
1、动手操作。
师生共同用小长方体搭一个和教材上一样的大长方体。
2、估一估。
师:请大家认真观察,估一估这个长方体是由多少个小长方体搭成的?
学生独立观察,思考后集体交流。
3、算一算。
师:谁估计的准确呢?请同学们在本子上算一算。
学生独立思考,计算。
4、交流算法。
师:谁愿意把你的办法介绍给大家?
学生汇报,师板书:(3×5)×4=603×(5×4)=60。
5、比一比。
师:比较这两个算式,你发现了什么?
生:…。
(三)提出假设,举例验证。
1、提出假设。
师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。
2、学生举例。
小组内互相交流,教师巡视指导。
3、集体交流。
师:谁愿意介绍一下你们小组举例的情况?
生:…。
(四)概括规律。
学生同桌交流后反馈。
师:这样的例子多不多?(多)能举完吗?(不能)。
生:…。
生说师板书:(a×b)×c=a×(b×c)叫做乘法结合律。
(五)运用规律,解决问题。
师:看来运用乘法结合律可以使一些计算简便。
2、出示38×25×4。
师:能用乘法结合律使这道题计算简便吗?
学生试做,教师指导。
3、独立计算:42×125×8。
1、出示一组数据。
4×5=5×412×10=10×126×7=7×6。
师:认真观察,你发现了什么?
生:…。
2、学生举例验证,发现规律。
3、用字母来表示,生说师板书:a×b=b×a。
(七)运用模型,完成练习。
1、“练一练”第1题。
学生独立做题后集体交流。
2、“练一练”第2题。
学生独立做题后展示评比。
(八)课堂小结。
师:这节课你有什么收获?
学生自由发言。
乘法交换律乘法结合律教案篇十五
北师大版教材四年级上册第三单元中的《探索与发现(二)》。
二、教学目标。
1、经历探索过程,发现乘法结合律和交换律,并用字母表示。
2、在理解乘法结合律和交换律的基础上,会对一些算式进行简便计算。
3、感受数学探索的乐趣,培养自主探究问题的能力。
三、教学重、难点。
1、重点:探索、发现、理解和应用乘法结合律和交换律。
四、教具准备。
一些小长方体。
五、教学过程。
(一)口算比赛,激发学习兴趣。
1、出示口算题。
2×55×1425×4125×836×25。
2、谈话引入。
师:他们怎么计算那么快呀?是不是有什么规律呢?这节课我们就一起来探索发现吧!
3、板书课题。
(二)创设情境,发现问题。
1、动手操作。
师生共同用小长方体搭一个和教材上一样的大长方体。
2、估一估。
师:请大家认真观察,估一估这个长方体是由多少个小长方体搭成的?
学生独立观察,思考后集体交流。
3、算一算。
师:谁估计的准确呢?请同学们在本子上算一算。
学生独立思考,计算。
4、交流算法。
师:谁愿意把你的办法介绍给大家?
学生汇报,师板书:(3×5)×4=603×(5×4)=60。
5、比一比。
师:比较这两个算式,你发现了什么?
生:…。
(三)提出假设,举例验证。
1、提出假设。
师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。
2、学生举例。
小组内互相交流,教师巡视指导。
3、集体交流。
师:谁愿意介绍一下你们小组举例的情况?
生:…。
(四)概括规律。
学生同桌交流后反馈。
师:这样的例子多不多?(多)能举完吗?(不能)。
生:…。
生说师板书:(a×b)×c=a×(b×c)叫做乘法结合律。
(五)运用规律,解决问题。
1、比较(3×5)×4=603×(5×4)=60两个算式的计算过程,哪个更简便?
师:看来运用乘法结合律可以使一些计算简便。
2、出示38×25×4。
学生试做,教师指导。
3、独立计算:42×125×8。
(六)探索乘法交换律。
1、出示一组数据。
4×5=5×412×10=10×126×7=7×6。
师:认真观察,你发现了什么?
生:…。
2、学生举例验证,发现规律。
3、用字母来表示,生说师板书:a×b=b×a。
(七)运用模型,完成练习。
1、“练一练”第1题。
学生独立做题后集体交流。
2、“练一练”第2题。
学生独立做题后展示评比。
(八)课堂小结。
师:这节课你有什么收获?
学生自由发言。