实用有理数教案大全(13篇)
教案可以促进教师对课堂教学的思考和反思。教案的内容应当与学生的实际生活和学习经验相结合,使教学更加贴近实际。以下是小编为大家整理的教案范文,希望对教师们的备课工作有所帮助。
有理数教案篇一
学生的知识技能基础:学生在小学已经学习过非负有理数的乘方运算,并且知道a×a记作a2,读作a的平方或a的二次方,前几节课,学生已掌握了有理数的乘法法则,具备了进一步学习有理数的乘法运算的知识技能基础.
学生的活动经验基础:在以往的学习过程中,学生经历了不同类型的数学活动,积累了较为丰富的经验,合作学习的能力和探究学习的意识都有明显的进步,尤其是语言表达能力的提高,为本节课的学习奠定了重要的基础.
学习任务分析。
新版教科书在学生熟练掌握了有理数的乘法运算的基础上,尤其是在学生具备了一定的学习能力和探究方法的基础上,提出了本节课的具体学习任务,理解有理数乘方的意义,掌握有理数乘方的概念,学会有理数乘方的运算,本节课的教学目标是:
在现实背景中,感受有理数乘方的必要性,理解有理数乘方的意义;。
掌握有理数乘方的概念,能进行有理数的乘方运算;。
3、经历有理数乘方的符号法则的探究过程,领悟乘方运算符号的确定法则。
教学过程设计。
本节课设计了六个环节:第一环节:引入情境,导入新课;第二环节:定义乘方,熟悉。
概念;第三环节:例题练习,乘方运算;第四环节:随堂演练,符号法则;第五环节:联系拓广,发散思维;第六环节:课堂小结;第七环节:布置作业。
第一环节:引入情境,导入新课。
活动内容:观察教科书给出的图片,阅读理解教科书提出的问题,弄清题意,计算每一次分裂后细胞的个数,五小时经过十次分裂后细胞的个数.
活动目的:感受现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,面对实际问题,主动尝试从数学的角度运用所学知识解决实际问题,并在解决问题的过程中体验到乘法运算的必要性和优越性,同时体会细胞分裂的述度非常快,从而引出本节课的学习课题:有理数的乘方.
活动的注意事项:在活动中需要运用乘法运算计算五小时一个细胞能分裂成多少个细胞,这个过程不要一次完成,而应让学生仔细分析,逐步完成,并依次类推,如果一次分裂成2个,第2次分裂成2×2个,第三次分裂成2×2×2个.因为五小时要分裂10次,所以第十次分裂成2×2×2………×2×2个.得到这个结果时要指出两点:一是让学生感受细胞分裂的速度非常快的事实.二是要指出这种表示方法很复杂,为了简便,可将它写成210,表示10个2相乘,培养学生的符号感,同时指出这就是乘法运算,从而引出本节课的学习内容:有理数的乘方.
第二环节:定义乘方,熟悉概念。
活动内容:1.归纳多个相同因数相乘的符号表示法,定义乘方运算的概念。
2.通过练习熟悉乘方运算的有关概念.
填空:
(2)(-3)12表示______个_______相乘,读作_________,
(4)3.65的指数是_________,底数是________,读作_______,xm表示____个_____相乘,指数是______,底数是_______,读作_________.
把下列各式写成乘方的形式:
(1)6×6×6;(2)2.1×2.1;。
(3)(-3)(-3)(-3)(-3);。
(4).
活动目的:培养学生的归纳抽象能力,建立符号感,理解符号所表示的数量关系和变化规律,学习新知识,认识乘方是一种运算,幂是乘方运算的结果.还要让学生明白:一个数可以看作这个数本身的一次方,例如8就是,通常指数为1时省略不写。
活动的注意事项:教科书在给出乘方运算的概念后,有关练习放在随堂练习的第一题中.为了及时消化新知识,要完成活动中的填空练习及乘方与乘法的相互转换,真正弄清楚幂的读法和写法,区分幂的指数和底数.
第三环节:例题练习,乘方运算。
活动内容:教科书例1,例2分别计算:
例1:①53;②(-3)4;③(-1/2)3.
有理数教案篇二
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想(2)培养学生严谨的思维品质。
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2.通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
(一)重点、难点分析。
(二)教法建议。
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.。
3.任意含加法、减法的算式,都可把运算符号理解为数的`性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7应变成12+7-5,而不能变成12-7+5。
备注:教学过程我主要说第一小节---去括号。
本节课的教学设计环节:
教学环节教学活动设计设计说明。
提出问题,创设情景把以下数相加、相减。
1、+4,-5,+3,-6,-7,3,-2.5。
2、-3.2,-2.6,+5,+6,-4在黑板上写五六个正负数请同学们把他们加在一起再减在一起。不要怕学生写错,让学生自己体会书写的繁琐计算的困难,继而想出解决办法。(可以多给学生时间。)。
尝试指导,实施目标从学生的错误出发,引导学生先填括号,在想法去括号,通过小组探究得出去括号法则。,掌握计算方法。(5-10分钟即可)。
题型训练,巩固目标1、两数加减:+3+(-4);(-5)+(-6);(-8)-(+4);(+5)-(-6)。
-(-7)+(-2.3)-(-5.1)+(-3)此处要反复练习,并使学生明白去括号后的是省略加号的和式。
鼓励学生积极发言,增进师生、生生之间的交流、互动.。
形成性测试,检测目标1、做书18、20、23、24页练习题(只去括号)。
2、利用书上习题1.3复习巩固1、2题的双数题进检测把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。
有理数教案篇三
使学生会使用计算器进行有理数的加减运算.
尝试从不同角度寻求解决问题的方法,并能有效地解决问题.
有克服困难和运用知识解决问题的成功体验.
重点:记清计算器中常用功能键的用法,多进行实际操作,逐步熟悉计算器的用法.
难点:准确地用计算器进行加减运算.
引导使用计算器、电子计算器,简称计算器,具有运算快,操作简便,体积小,功能多等特点,既可帮助我们进行各种复杂的数学计算,还可以帮助我们理解数学概念,有时计算器还可以编程序或绘制各种图形.在信息高速发展的`时代,它已成为人们广泛使用的计算工具。
有理数教案篇四
1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。
2、能力目标:培养学生探究思维能力和分析解决问题的能力。
3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。
难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算。
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
附教学工具:温度计、投影仪、多媒体。
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
1、复习有理数的加法法则,为新课的讲授作好铺垫。
2、(提问)用算式表示:与-3的和等于-10的数。
(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。
1、通过投影仪给出以下算式:
减法加法。
(+10)-(+3)=+7(+10)+(-3)=+7。
让学生比较上面这两个算式并讨论后得出:
(+10)-(+3)=(+10)+(-3)。
再给出以下算式:
减法加法。
(+5)-(+2)=+3(+5)+(-2)=+3。
继续让学生比较上面这两个算式并讨论后得出:
(+5)-(+2)=(+5)+(-2)。
2、讲解课本p80的内容,回答复习题2提出的问题即如何求(-10)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。
文字叙述:减去一个数,等于加上这个数的相反数。
字母表示:a-b=a+(-b)(说明:简明的表示方法,体现字母表示数的优越性,实际运算时会更加方便)。
强调运用法则时:被减数不变,减号变加号,减数变成其相反数。
减数变号。
(减法============加法)。
4、通过例题教学使学生巩固方法,初步具备解决问题的能力。
例1.计算:(1)(-3)-(-5);(2)0-7。
说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。
让学生完成课本p82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。
(师生共同完成)。
本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a-b=a+(-b)。
通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。(六)板书设计:(略)。
有理数教案篇五
(1)正确理解乘方、幂、指数、底数等概念。
通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。
培养探索精神,体验小组交流、合作学习的重要性。
教学重、难点与关键。
1.重点:正确理解乘方的意义,掌握乘方运算法则。
2.难点:正确理解乘方、底数、指数的概念,并合理运算。
3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。
1.几个不等于零的有理数相乘,积的符号是怎样确定的?
几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?
边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa.
aa简记作a2,读作a的平方(或二次方)。
aaa简记作a3,读作a的立方(或三次方)。
一般地,几个相同的因数a相乘,记作an.即aaa.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
有理数教案篇六
1、知识目标:利用10的乘方,进行科学记数,会用科学记数法表示大于10的数.。
2、能力目标:会解决与科学记数法有关的实际问题.。
3、情感态度和价值观:正确使用科学记数法表示数,表现出一丝不苟的精神.。
会用科学记数法表示大于10的数.。
正确使用科学记数法表示数.。
用乘方的形式,有时可方便地来表示日常生活中遇到的一些较大的数,如:
太阳的半径约696000千米。
富士山可能爆发,这将造成至少25000亿日元的损失。
光的速度大约是300000000米/秒;
全世界人口数大约是6100000000.。
这样的大数,读、写都不方便,考虑到10的乘方有如下特点:
102=100,103=1000,104=10000,?
例1、用科学记数法记出下列各数:
(1)1000000;(2)57000000;(3)123000000000。
解:(1)1000000=1×106。
(2)57000000=5.7×107。
(3)123000000000=1.23×1011.。
用科学记数法表示一个数时,首先要确定这个数的整数部分的位数.。
1.用科学记数法记出下列各数.。
(1)30060;(2)15400000;(3)123000.。
2.下列用科学记数法记出的数,原来各是什么数?
(1)2×105;(2)7.12×103;(3)8.5×106.。
3.已知长方形的长为7×105mm,宽为5×104mm,求长方形的面积.。
4.把199000000用科学记数法写成1.99×10n3的形式,求n的值.。
课堂练习答案。
2.(1)100000;(2)7120;(3)8500000.。
3.3.5×1010mm.。
4.n的值为11.。
有理数教案篇七
一说教材:
(一)地位、作用:
(二)教学目标:
1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。
2、能力目标:培养学生探究思维能力和分析解决问题的能力。
3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。
(三)重点、难点:
难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算。
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
附教学工具:温度计、投影仪、多媒体。
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教学程序:
(一)引入课题环节:
2、(提问)用算式表示:与-3的和等于-10的数。
(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。
(二)新课讲解环节:
1、通过投影仪给出以下算式:
减法加法。
(+10)-(+3)=+7(+10)+(-3)=+7。
让学生比较上面这两个算式并讨论后得出:
(+10)-(+3)=(+10)+(-3)。
再给出以下算式:
减法加法。
(+5)-(+2)=+3(+5)+(-2)=+3。
继续让学生比较上面这两个算式并讨论后得出:
(+5)-(+2)=(+5)+(-2)。
2、讲解课本p80的内容,回答复习题2提出的问题即如何求(-10)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。
文字叙述:减去一个数,等于加上这个数的相反数。
字母表示:a-b=a+(-b)(说明:简明的表示方法,体现字母表示数的优越性,
实际运算时会更加方便)。
强调运用法则时:被减数不变,减号变加号,减数变成其相反数。
减数变号。
(减法============加法)。
4、通过例题教学使学生巩固方法,初步具备解决问题的能力。
例1.计算:(1)(-3)-(-5);(2)0-7。
例2.计算(1)7.2-(-4.8);(2)(-3-)-5。
说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。
(三)巩固练习环节:
让学生完成课本p82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。
(四)课堂小结环节:(师生共同完成)。
本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a-b=a+(-b)。
(五)布置课后作业:课本p83习题2.6的2、3、4、5的偶数题。
通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。
(六)板书设计:(略)。
一、教材分析:
《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。
鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:
1、知识目标:
经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。
2、能力目标:
经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。
3、情感目标:
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。
二、学情分析:
我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。
在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。
三、教法选择及学法指导:
《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。
上述教学程序的.实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,()体验知识产生和发展的全过程。
一、教材分析:
《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。
鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:
1、知识目标:
经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。
2、能力目标:
经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。
3、情感目标:
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。
二、学情分析:
我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。
在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。
三、教法选择及学法指导:
《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。
上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。
四、过程分析:
教学环节。
教学活动设计。
设计说明。
创设情境自然引入。
(板书课题)。
通过温度的比较让学生明白减法的实际意义在于同类量之间的比较,为后来运用减法解决实际问题打下基础。
从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣。同时这也符合七年级学生的认知特征,使学生乐于进一步探索。
探索规律。
将本文的word文档下载到电脑,方便收藏和打印。
有理数教案篇八
一、教学目标:
知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
二、教学重点:运用有理数的减法法则,熟练进行减法运算。
三、教学难点:理解有理数减法法则。
四、教材分析:本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
五、教学方法:师生互动法。
六、教具:幻灯片。
七、课时:1课时。
八、教学过程:
1、计算(口答):
(1)1+(-2)。
(2)-10+(+3)。
(3)+10+(-3)。
2、出示幻灯片二:
如图:
教师引导观察。
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)。
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?
(+10)-(+3)=7。
再计算:(+10)+(-3),师让学生观察两式结果,由此得到:
(+10)-(+3)=(+10)+(-3)。
观察减法是否可以转化为加法计算呢?是如何转化的呢?
(教师发挥主导作用,注意学生的参与意识)。
2、再看一题:
计算:(-10)-(-3)。
问题:计算:(-10)+(+3)。
教师引导,学生观察上述两题结果,由此得到。
(-10)-(-3)=(-10)+(+3)。
教师进一步引导学生观察式子,你能得到什么结论呢?
教师总结:由以上两式可以看出减法运算可以转化成加法运算。
教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?
教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。
强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)。
3、例题讲解:
出示幻灯片三(例1和例2)。
例1计算:
(1)6-(-8)。
(2)(-2)-3。
(3)(-2.8)-(-1.7)。
(4)0-4。
(5)5+(-3)-(-2)。
(6)(-5)-(-2.4)+(-1)。
教师板书做示范,强调解题的规范性,然后师生共同总结解题步骤,(1)转化(2)进行加法运算。
师巡视指导,最后师生讲评两个学生的解题过程。
课后练习1、2。
教师巡视指导。
师组织学生自己编题。
1、谈谈本节课你有哪些收获和体会?[。
2、本节课涉及的数学思想和数学方法是什么。
教师点评:有理数减法法则是一个转化法则,要求同学们掌握并能应用进行计算。
课堂检测(包括基础题和能力提高题)。
1、-9-(-11)。
2、3-15。
学生思考后抢答,尽量照顾不同层次的学生参与的积极性。
学生观察思考如何计算。
学生观察思考。
互相讨论。
学生口述解题过程。
由两个学生板演,其他学生在练习本上做。
第1小题学生抢答。
第2小题找两个学生板演。
学生回答。
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用。
既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础。
创设问题情境,激发学生的认知兴趣。
让学生通过尝试,自己认识减法可以转化为加法计算。
学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力。
可以培养学生严谨的学风和良好的学习习惯,同时锻炼学生的表达能力。
可以照顾不层次的学生,调动学生学习积极性。
通过练习让学生进一步巩固新知,体验知识的应用性。
能增强学生学习的主动性和参与意识。
学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
锻炼学生综合运用知识,独立解题的能力。
板书设计:
(+10)-(+3)=(+10)+(-3)。
(-10)-(-3)=(-10)+(+3)。
减去一个数等于加上这个数的相反数.例1:
例2:。
练习:
教学反思:
本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。
有理数教案篇九
3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.。
教学建议。
(一)重点、难点分析。
(二)知识结构。
(三)教法建议。
有理数教案篇十
使学生会使用计算器进行有理数的加减运算.
尝试从不同角度寻求解决问题的方法,并能有效地解决问题.
有克服困难和运用知识解决问题的成功体验.
重点:记清计算器中常用功能键的用法,多进行实际操作,逐步熟悉计算器的用法.
难点:准确地用计算器进行加减运算.
引导使用计算器、电子计算器,简称计算器,具有运算快,操作简便,体积小,功能多等特点,既可帮助我们进行各种复杂的数学计算,还可以帮助我们理解数学概念,有时计算器还可以编程序或绘制各种图形.在信息高速发展的.时代,它已成为人们广泛使用的计算工具。
有理数教案篇十一
教学目标:
1、知识与技能。
会比较两个(或几个)有理数的大小。
2、过程与方法。
通过具体实例,抽象出比较两个有理数大小的方法。利用数轴,会比较几个有理数的大小,进一步培养学生数形结合的数学思想方法,提高学生学习兴趣。
重点、难点:
1、重点:掌握有理数大小的比较法则。
2、难点:比较两个负数的大小。
教学过程:
一、创设情景,导入新课。
1、数轴包括哪几个要素?怎么画?
2、大于0的数在数轴上位于原点的哪一侧?小于0的数呢?
3、问:如何比较两个正数的大小?
(1)珠穆朗玛峰与吐鲁番盆地,问:哪个地方高?
(2)温度计示意图:-3℃与5℃哪个温度高?
上述两个问题,实际是比较8844.43与-155的大小,以及5与-3的大小,像这样的问题实际上是比较两个有理数在大小(板书课题)。
二、合作交流,解读探究。
1、(出示两个不同温度的温度计挂图)在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5℃在-2℃上边,5℃高于-2℃;-1℃在-4℃上边,-1℃高于-4℃。
下面的结论引导学生把温度计与数轴类比,自己归纳出来:
(1)在数轴上表示的两个数,右边的数总比左边的`数大.
(2)正数都大于零,负数都小于零,正数大于负数。
例1、在数轴上画出表示下列各数的点,并用把它们连接起来。
4.5,6,-3,0,-2.5,-4。
通过此例引导学生总结出正数都大于0,负数都小于0,正数大于一切负数的规律.要提醒学生,用连接两个以上数时,小数在前,大数在后,不能出现54这样的式子.
2、利用数轴我们已经会比较有理数的大小。
由上面数轴,我们可以知道-40.43,其中-4,-3都是负数,它们的绝对值哪个大?显然3|引导学生得出结论:
两个正数比较,绝对值大的数大;。
两个负数比较,绝对值大的反而小。
这样以后在比较负数大小时就不必每次再画数轴了。
三、应用迁移,巩固提高。
例2(p16例)、比较下列每一结数的大小。
1、-100与0.01;2、-100与-33、与。4、-(-0.2)与。
学生活动:在练习本上解答。
教师活动:让学生各自独立思考,然后请三名学生到黑板上分别解答,待学生解答完后,再请全班学生交流讨论其正确性。
解:1、-100。
2、因为=100,=3,而1003,所以-100。
3、=0.667,==0.6,而0.6670.6,所以。
练习:课本p17练习第1、2。习题1.3a第1题。
四、总结反思。
先由学生叙述比较有理数大小的两种方法利用数轴比较大小和利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了:正数大于一切负数;两个负数,绝对值大的反而小。
五、作业。
课本p17习题1.3a第2、3、题。p18b第5题。
备选拓展。
1、.若a是正整数,且,符合条件的a有()个。
a6b5c4d3e2。
2、(1)整数x满足3,则x=___________________,。
(2)负整数x满足,则x=___________________。
3有人说2个多于1个,因此2aa,你认为对吗?为什么?
有理数教案篇十二
使学生了解了负数产生的背景,理解正、负数及零的意义,掌握正、负数的表示方法,会用正、负数表示具有相反意义的量。
2.能力目标。
3.思想目标。
对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。
本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
正、负数的意义,
负数的意义及0的内涵。
鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。
有理数教案篇十三
2、经历探索有理数加法法则的过程,理解有理数加法法则;
3、感受数学模型的思想;
4、养成认真计算的习惯。
【对话探索设计】。
〖探索1。
1、第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?
2、第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?
假设原点为运动起点,用数轴检验你的答案、
〖法则理解。
有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________。
这条法则包括两种情况:
(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;
〖探索2。
2、第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?
3、正数和负数相加,结果是正数还是负数?
〖法则理解。
例如(+6)+(―2)=+(6―2)=+4、答案+4之所以取+号,是因为两个加数(+6与―2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到。
〖议一议。
有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算、他说的对不对?
〖练习。
2、如果物体先向右运动5米,再向右运动―8米,那么两次运动后总的结果是什么?
3、检查3包洗衣粉的重量(单位:克),把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:
―3.5,+1.2,―2.7。
这3包洗衣粉的重量一共超过标准重量多少?
4、仿照(―8)+(+3)=―(8―3)=―5的格式解题:
(1)(―3)+(+8)=。
(2)―5+(+4)=。
(3)(―100)+(+30)=。
(4)(―100)+(+109)=。
〖法则理解。
有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____。
例如(+3)+(―3)=______,(―108)+(+108)=______。