最新八年级数学详细教案 八年级数学教案(汇总8篇)
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么问题来了,教案应该怎么写?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。
八年级数学详细教案篇一
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
算术平方根的概念。
根据算术平方根的概念正确求出非负数的算术平方根。
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.
1、提出问题:(书p68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式=a (x0)中,规定x = .
2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.
3、想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。
4、例1求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69练习1、2
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
p75习题13.1活动第1、2、3题
八年级数学详细教案篇二
2.使学生了解监测防御台风的方法及重要性;
3.使学生了解本市常见的台风灾害及应采取的预防措施。
4.使学生了解寒潮、干旱、暴雨等气象灾害的成因、分布、危害;
5.使学生了解监测防御我市常见的气象灾害应采取的预防措施;
6.使学生在认识自然现象的基础上,探讨改造自然,趋利避害的实际行动。
[重点难点]: 1.台风的危害
2.监测防御台风的重要性
3.台风的危害及形成各种气象灾害的危害
4.监测防御的重要性
5.气象灾害的危害、形成
[教具设计]:
[讲授过程]:
[复习引导]:1.农作物熟制与积温的关系
2.为什么许多新建的房屋不取正南正北走向?
3.我市的许多工厂建在西南郊,这是否合理?为什么?
【引入新课】
气候既是一种资源,也会带来无穷的灾害。许多专家认为,本世纪初是一个自然灾害频发的时期,我们该如何趋利避害呢?今天我们就来谈这个问题。
[讲授新课]:
1.气象灾害的概念
(1)概念:大气对人类的重合财产和经济建设以及国防建设等造成的直接或间接的损害,称为气象灾害。
(2)主要气象灾害:台风、暴雨、洪涝、寒潮;
(3)危害: 2.台风的概念
指导学生阅读课本p58第三段,了解台风的概念。
台风:西北太平洋上热带气旋中心附近风力在12级或以上
飓风:东北太平洋和大西洋热带气旋中心附近风力在12级或以上。
3.台风的结构
指导学生读图2.32,了解台风的结构,并由此分析台风不同区域的天气情况。
提问:台风警报中,为什么说“台风中心附近风力”,而不说“台风中心风力”?
4.台风的路径
指导学生读图2.33,了解台风中心位置及其移动方向,以及暴雨出现的地区,判定不同地区的天气情况。
(2)阅读短文,了解台风的危害。
6.台风危害的监测
(1)指导学生阅读课本p59右第二、三段,了解对台风的监测。
(2)阅读短文,了解台风的监测的结果。
1986年7号台风在登陆广东前三天,中央气象台便发出了准确警报。广东三防指挥部通知并招回在南海北部和广东沿海作业的上千条渔船,数千渔民避免了覆顶之灾,使海上未死一人。1989年8号台风,由于在台风登陆前三天,连续发布了警报和紧急警报,政府采取了有效的防御措施,海上未死一人,经济损失也明显减轻。
阅读短文,思考:
据历史文献记载,公元前206年至1949年,在2155年间,我国共发生水旱灾害1750多次。其中,大旱1056次,大水658次。1931年夏季大水,江汉平原一片汪洋,武汉市区街道可以行船,淹死人数达14万,淹没农田300多万公顷。1946至1949年,四川连续四年干旱,出现了“全蜀大饥,人相食”的惨景。新中国成立以来,水旱灾害仍时有发生,如1991年的7、8月份,在江淮地区遭受特大洪涝灾害的同时,福建、两广和湘赣南部却出现了严重干旱。但由于各地兴建了许多水利工程,大大减轻了水旱灾害的威胁和损失。
为什么我国水旱灾害连年发生?
形成洪涝灾害的原因是什么?
指导学生阅读课本p60,了解暴雨形成的三个条件,以及降雨等级和雨量的关系。
2.干旱
(1)什么是干旱?
干旱是因长期无降水或降水异常偏少而造成空气干燥、土壤缺水的一种现象。
(2)干旱会造成什么危害呢?
严重的干旱会造成粮食减产,人畜饮水困难,影响经济发展和社会安定。
(3)防御干旱、洪涝有哪些减灾措施呢?
修建各种水利工程,提高防洪能力,营造防护林
植树造林,涵养水源,水旱兼治
加强气象卫星监测和预报,提高预报的准确率
3.寒潮
(1)阅读短文
中央气象台今天下午六点钟发布寒潮警报
昨天提到的强冷空气的前锋,今天正午已经移到我国内蒙古醅到西北地区东部一带,并将继续向东南方向移动,影响我国大部地区。
上到后天,渤海、黄海将有7到9级东北风,东海、台湾海峡将先后有6到8级大风。冷空气前锋过后,长江以北地区的气温将下降到8至15摄氏度,其中华北地区北部和东北地区的气温将下降到15至20摄氏度。
这次强冷空气过程造成的降雪、大风、降温天气,将对交通、电讯等有不利影响,请各有关单位注意防寒防冻。
甲、从上面的寒潮警报中,看一看我国受这次寒潮影响的有哪些地区?
(2)概念:
由强冷空气迅速入侵造成大范围的剧烈降温,并伴有大风、雨雪、冻害等现象,这样的冷空气过程称为寒潮。
八年级数学详细教案篇三
《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。
本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。
(一)知识目标:
1、要求学生掌握正方形的概念及性质;
2、能正确运用正方形的性质进行简单的计算、推理、论证;
(二)能力目标:
1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;
2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;
(三)情感目标:
1、让学生树立科学、严谨、理论联系实际的良好学风;
2、培养学生互相帮助、团结协作、相互讨论的团队精神;
3、通过正方形图形的完美性,培养学生品格的完美性。
该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。
针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。
通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。
本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。
第一环节:相关知识回顾
以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。
第二环节:新课讲解通过学生们的发现引出课题“正方形”
1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。
2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;
定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。
以上是对正方形定义和性质的学习,之后是进行例题讲解。
4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。
第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。
5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。
6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。
八年级数学详细教案篇四
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.
将实际问题中的等量 关系用分式方程表示
找实际问题中的等量关系
有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)
如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________
从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。
这 一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程
分式方程与整式方程有什么区别?
(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好
本节课你学到了哪些知识?有什么感想?
八年级数学详细教案篇五
1.什么叫平行四边形?平行四边形有什么性质?
2.将以上的性质定理,分别用命题形式叙述出来。
平行四边形的判定方法:
证明:两组对边分别相等的四边形是平行四边形
已知:
求证:
学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。
观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形
八年级数学详细教案篇六
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。
2、会求一组数据的极差。
1、重点:会求一组数据的极差。
2、难点:本节课内容较容易接受,不存在难点.
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法.
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图.
观察一下,它们有区别吗?说说你观察得到的结果.
本节课在教材中没有相应的例题,教材p152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级数学详细教案篇七
本课(节)课题3.1 认识直棱柱第 1 课时 / 共 课时
教学目标(含重点、难点)及
设置依据教学目标
1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.
3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.
教学重点与难点
教 学 过 程
内容与环节预设、简明设计意图二度备课(即时反思与纠正)
一、创设情景,引入新课
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
二、合作交流,探求新知
1.多面体、棱、顶点概念:
2.合作交流
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描
述其特征。)
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
长方体和正方体都是直四棱柱。
3.反馈巩固
完成“做一做”
析:由第(3)小题可以得到:
直棱柱的相邻两条侧棱互相平行且相等。
4.学以至用
出示例题。(先请学生单独考虑,再作讲解)
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)
最后完成例题中的“想一想”
5.巩固练习(学生练习)
完成“课内练习”
三、小结回顾,反思提高
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
板书设计
作业布置或设计作业本及课时特训
八年级数学详细教案篇八
北师大版六年级数学上册《观察的范围》课本第80、81页的内容。
1、给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程。
2、感受观察范围随观察点,观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象。
3、通过观察、操作、想象等活动,发展空间观念。
经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变。
能用所学知识解决日常生活中的一些现象。
一、创设情境:
通过小游戏让学生在动手、动眼、动脑的同时给学生抽象点、线、区域及确定观察的范围埋下伏笔。
二、导入新课:
小游戏中的数学知识,增强学生求知欲望,展示课题:观察的范围
三、积极探究、发现规律
1、创设情境、引入问题。
桃树下落了一地桃子,小猴在墙外的树上向里张望。猜一猜,小猴爬在a、b、c三点哪一点看见的桃子最多?学生回答后,师:是否如你们所说的一样,咱们具体来探究一下。
2、引导画图,确定范围。
(1)你知道小猴在a处时,看到哪些部分?学生随便指。
(2)引导学生画出关键的一条线,确定离墙最近的点a/?从而确定观察范围。(教师演示)
(3)学生动手确定b、c、的观察范围。
通过比较,使学生充分理解“看到墙内离最近的点”和看到的“区域”的含义。
3、自主操作、感知发现。
比一比:小猴爬在a、b、c三点哪一点看见的桃子最多?
小猴爬得越高,看到得桃子越xx,说明小猴看到的范围就越xx。
怎样确定观察的范围?
1、找观察“点”。
2、确定遮挡物的“关键点”。
3、画出经过关键点的视线。
板书:观察点影响观察范围。
四、应用知识,解决问题。(设计意图:动手操作,应用所学知识解释生活中的现象)
场景一:教师先演示路灯下其中一根杆子的影子,再让学生试着画一画。引导学生发现同样高的杆子离路灯越近,影子就越短。
场景二:描述客车司机的观察范围,进一步理解观察点变影响观察范围变。
场景三:警察和小偷的较量,对学生具有一定的挑战性,教师应给予指导。小组合作、讨论,教师适当指导,运用课件演示。
五、全课小结:这节课你们学到了哪些知识。(边问边答并板书)
六、布置作业:
b楼的居民近期向刚刚建起的a楼的开发商表示抗议,你能试着说说为什么?
通过画一画,看出a楼挡主了b楼部分用户的阳光所以发生了争执。
板书:
观察的范围