高中立体几何学习心得(专业17篇)
我们已经尝试了许多方法,但依然没有找到最佳解决方案。如何写一篇优秀的作文是每个学生都需要掌握的技能,下面我来给大家分享一些写作技巧。以下是教育专家总结的培养孩子创新能力的方法和途径,请大家积极尝试。
高中立体几何学习心得篇一
在高中数学学科中,立体几何是一门重要的分支。作为高中生,我始终对立体几何这门学科抱有一定的兴趣和好奇心。近期,在学校的立体几何课程中,我聆听了许多精彩的讲座,通过这些听课经历,我不仅对立体几何的基本概念有了更深入的了解,而且体会到了多样化的学习方法和技巧,下面将为大家分享一下我的心得体会。
首先,立体几何课程的第一堂课让我留下了深刻的印象。老师以清晰和生动的语言为我们介绍了平行体的概念。通过他的讲解,我了解到平行体指的是两体表面上的每一点在空间直线上都有对应点。老师以一个有趣的例子来解释这个概念,使我对平行体的理解更加直观和深入。他也告诉我们如何用空间的旋转来表示两个平行体,这种思维方法让我大开眼界。课堂上,老师还锻炼我们的逻辑思维能力,要求我们从图形上找到相应的结论,在这个过程中,我发现逻辑推理的重要性,它能够帮助我们更好地理解立体几何中的各项理论。
其次,我在立体几何课堂上学到了很多技巧和方法,使我的解题思路更加清晰和系统。例如,在学习三棱锥时,老师给我们推荐了一种简单而有效的方法,即找到底面上每一个顶点与顶点所在的底面上的其它两个顶点的连线,这样我们就能形成一个图形,然后通过在这个图形中连接两个边的交点,就能找到高。这种方法不仅便捷,而且可以避免错综复杂的计算,让我对三棱锥的求解有了新的认识和理解。另外,在学习球体相关知识时,老师通过数学计算和实际例子相结合的方式,帮助我们更好地理解公式的推导过程,接触到了不只是书本上的理论,更体验到了数学在实际生活中的应用。
此外,在立体几何的学习过程中,我认识到数学的美和思维的乐趣。立体几何的图形各具特点,美妙的比例和对称性给人以美的享受,同时,通过观察和推理来解决问题也给予我很大的思维乐趣。我曾遇到一个画圆题目,通过一些角度关系和三角函数的运算,我总算找到了画出满意圆的方法,那一刻的成就感和喜悦溢于言表。数学学科,在我看来,是一种既严谨又富有创造力的学科,立体几何更能展现这种魅力。
最后,立体几何课程也为我塑造了批判性思维和解决实际问题的能力。立体几何作为实际生活中的一门学科,它的应用广泛,例如建筑、工程、设计等领域。在课堂上,老师会针对实际问题给我们一些练习,要求我们通过几何知识来解决。通过这些练习,我们锻炼了自己的应用能力,从而能够更好地把知识运用于实际,培养了我们解决问题的能力。批判性思维在解决立体几何问题中起到重要的作用,我们要对题目进行分析,挖掘其中的逻辑关系,不断提问,不断寻找解决问题的思路。
总而言之,通过高中立体几何课程的学习,我对立体几何的基本概念有了更深入的了解,学会了很多方法和技巧,并领悟到了数学的美和思维的乐趣。立体几何的学习不仅有助于培养我们的逻辑思维和解决问题的能力,还为我们今后在实际生活中应用数学提供了坚实的基础。我相信,在今后的学习和工作中,立体几何的知识和技能将成为我不可或缺的宝贵财富。
高中立体几何学习心得篇二
立体几何是高中数学中的一门重要课程,对于学生来说,掌握立体几何的基本原理和方法,不仅能够提高数学思维能力,还可以帮助学生培养空间想象力和创造力。在我高中的立体几何课堂中,我积极参与,认真听讲,不仅加深了对这门学科的理解,还培养了探索问题的兴趣和勇气。通过这门课程,我体会到了数学的魅力和乐趣,也收获了一些珍贵的启示。
第一节课,老师向我们介绍了立体几何的基本概念和基本对象,让我们了解了几何学的特殊性和复杂性。在这节课上,我深深体会到了几何学是一门需要耐心和细致的学科,只有在掌握了基本知识和技能的基础上,才能更好地理解和应用。同时,老师还通过一些有趣的例子和生动的讲解,激发了我的学习热情,引发了我对立体几何思考的兴趣。
第二节课上,老师讲述了空间几何体的性质和分类,这让我对立体几何的分类和性质有了更深入的了解。通过讨论和实例分析,我逐渐掌握了如何判断一个空间几何体的特点和属性。这让我感到立体几何不再是一堆难以理解的概念,而是一个可以通过思考和分析去解决的问题。我开始喜欢上了这门学科,追求更深层次的探索和理解。
在第三节课上,老师介绍了立体几何的运动和变换,这让我对立体几何的应用有了进一步的认识。通过学习旋转、平移和镜像等运动,我能够理解几何体的不同形态是如何通过变换来实现的。这扩展了我的思维边界,提高了我处理空间问题的能力。同时,老师还给出了一些有趣的实例,让我们通过观察和推理来解决问题,这培养了我的创造性思维。
第四节课上,老师讲解了空间解析几何,这让我对立体几何的理论基础有了更深入的了解。通过坐标和向量的引入,我学会了如何用代数的方法描述和处理空间几何体的问题。这样的学习方式让我感到立体几何不再是一个模糊的概念,而是一个可以用严谨的数学语言来表达的学科。这也让我深刻认识到数学作为一门工具的重要性,通过数学的方法和原理可以解决更多更复杂的问题。
在最后一节课上,老师带领我们进行了立体几何的创新性思维训练。通过给出一些有挑战性的问题和开放性的讨论,我感受到了立体几何的魅力和乐趣。在解决问题的过程中,我学会了思考、提问和合作,这培养了我的创新和团队合作能力。通过这样的训练,我明白了学习立体几何的重要性不仅在于掌握知识,更在于培养综合能力和解决问题的能力。
通过高中立体几何的学习,我不仅增强了对数学的兴趣,也提高了自己的思考和分析能力。我明白了数学不仅是一门学科,更是一种思维方式和一种工具。通过立体几何,我学会了如何处理空间问题,如何分析和解决复杂的几何问题。这种能力不仅对我今后的学习和工作有帮助,也为我打开了更广阔的思维空间。我相信,通过不断学习和实践,我可以在立体几何领域取得更大的成就。
高中立体几何学习心得篇三
通过对高中生物新课程标准和有关专业书籍的学习,听取名师的新课改经验传授,以及和课任老师的交流,使我对新课改有了新的认识,认识到新课改的重要性和必要性,下面就新课程,谈几点看法:
根据改革的要求,新的课程内容抛弃了以往追求科学的系统性和完整性的知识体系。它以学生的发展和社会的需要为出发点,综合考虑生物科学发展的现状和未来趋势,根据生命科学的本质,重新组合内容,构建全新的体系。
生物课程中对以往表示不同认知层次的了解、理解、掌握,以及技能目标运用和使用等也已约定俗成的惯用术语,并不一概排斥,而是兼用并蓄,以及通用过重新界定,来提高其可测性、可比性和可操作性。
高中生物的《课标》在能力方面提出了三个方面的要求:第一,能够正确地使用一般的实验器具,掌握采集和处理实验材料、进行实验的操作、生物绘图等技能;第二,能够运用多媒体搜集生物学信息,学会鉴别、选择、运用和分享信息;第三,发展探究能力。
传统的教学,往往把学生当成一个被动接受知识的容器。老师教学生多少知识,几乎就要求学生掌握多少。学生所学的知识是死知识,学生掌握的技能是没有创新的技能。教师在授课过程中,要改变“满堂灌”、“一言堂”的授课方式,教师的教学地位不再是教学的主角。在学习过程中,学生才是学习的主角,学生才是教学的主体。传统教学方式把教师作为教学过程中的主角,忽视学生的地位。生物学科是一个实验科学,这就要求在学科教学中,创设各种问题情景,引导学生自主、探究、合作式的教学方式进行学习。在教学过程中,教师要有选择地对学生进行目的教学。不要忽视学生创造性地学习,不要限制学生思维的发展,不要忽视学生在学习过程中闪光的地方。高中生物的教学中有很多设计实验的题目,教师不要包办,要让学生大胆去设计,大胆开拓自己的思想。教师可以组织学生对每位学生的设计思路进行分析比较,找出不足之处,进行改正,教师在整个的学习过程中,是一个指导者,是一个辅导者。
素质教育要培养学生主体精神、参与意识、独立思考和创造才能。教师在设计课堂教学时,必须依据学生学习生物学的认识规律,在每一个环节上体现学生的主体地位,给学生创造参与的机会,调动学生的积极性,发挥每一个学生的才能。要让学生在教师的启发诱导下积极思考并提出问题,解决问题,独立进行观察分析或实验操作,并能在信息交流中大胆发表自己的意见。
在传统教学中,人们关于评价的理念存在一些误区。这些误区表现在:把评价的过程和学习过程割裂开来,将评价看作是学生学习的终结;把评价的方法简单等同于考试和测验;把评价的目的和功能简化为选拔和等级评定;把评价的主体窄化为教师或行政部门肥学生排除在评价主体之外。
评价本身并不是目的,它只是达到目标的一种手段。大多数的教学评价并不是要学生一比高低,显示优劣,它只是为教学决策搜集信息依据的过程。成功的评价工作应该有利于激发学生的学习动机和学习热情。评价是要让学生感觉到成功,而不是证明他的失败。传统的评价理念过分强调评价的选拔甄别功能,而新的评价理念特别关注学生的实际发展。因此,要通过评价给每一个学生提供学习生物学的机会,提供可共享的学习资源。教学过程中,教师应提供学生自我评价和同学相互评价的机会。通过自我评价,学生可分析自己学习有关生物学的知识、技能和情感态度的优、缺点与需要。学生相互评价则可促进学生之间的交流和资源共享。
在新课陈培训后,深深感到在我的教学知识范围中存在着诸多不足与遗缺。课标所述“评价”包含着许许多多方面,有课程、学生、学生在完成实际任务时的表现以及考试的评价等等诸门别类。这对我生物教学中如何来评价学生的帮助很深。往往在教学中只是重视学生考试的成绩,而忽视了学生期望老师对于自己的行为、成绩作出的评价。这样以来学生久而久之便对教师对他作出的评价失去了在意的投入,也就将在生物学习过程加以淡忘,只是重视毕业、升学时档案中生物那一栏中的成绩了。
记得我小学时对学习没有兴趣,自然就考不出理想的成绩。但是在一次考试中,偶然的机会,我考得很好,老师给了我极高的评价,当时的我心潮澎湃,满心洋溢着成功的喜悦。也就是那次考试将我的自信、灵感顿时统统载顷刻间激发出来,也就在那以后我的学习兴趣大大提高了,我也变得爱读书了。以上是我的亲身经历,由此看来,老师的评价是那样的举足轻重啊!教师在对学生学习的过程、结果、表现这三方面的评价,都起着关键的作用,那评价不单单是一个分数、一句简单平实的评语,而是教师对学生的每一举动、行为、思想等细微观察后作出的综合性、全面性、鼓舞性较强的评价。这样以来学生会更清楚、深入的了解自己近期的一系列表现是否在某一水平线上。从而有效的激励学生那种积极向上、可以勇于面对摆在自己面前的挑战和困难。
结合我在平时生物教学工作中遇到的问题仔细反思和体会后,感到好的评价对于教学工作起着相当重要的作用。在评价学生时不能再只是重视学生的考试成绩,而是应该结合学生平时在练习中、学习中、与同学交流讨论中的表现,在来给他们作出合理全面的评价。这样以来学生的积极性将会得到大幅度的提高,自然学习兴趣便又会回到学生的身边!
面对新课改,我们要走的路还很漫长,将面对的困难和压力仍旧很大,如何处理好高考的指挥棒和学生的综合发展的关系,是我们将不断探索的问题,我们满怀信心,明天的教育会更美好。
高中立体几何学习心得篇四
高中立体几何作为高中数学的一个重要分支,是学生们常常感到头疼的一门课程。在我的高中生涯中,我也曾面对着立体几何这座高山。但通过与老师良好的互动和自己的努力,我得以逐渐攀登这座高山。以下是我对高中立体几何听课心得的体会。
在第一节高中立体几何的课上,老师引领我们进入了立体几何的世界。她先给我们介绍了立体几何的基本概念,如点、线、面、体、平面图形等,并向我们解释了其中的关系。然后,她展示了一些几何体的模型,比如球体、柱体、锥体等,让我们能够直观地感受这些几何体的特点和性质。通过这些亲身体验,我对立体几何的概念和性质有了初步的了解。
第二段:学习理解和应用立体几何的公式和定理。
在以后的课程中,老师向我们讲解了立体几何的公式和定理。她首先教给我们计算几何体表面积和体积的公式,让我们能够用数值来算出具体的数值。然后,她又向我们讲解了一些重要的立体几何定理,如欧拉定理和平行面定理等。通过学习这些公式和定理,我能够更加深入地理解立体几何的理论体系,并且能够将其运用到实际问题中,解决各种与几何体相关的实际问题。
第三段:通过实例分析学会解决立体几何问题的方法。
老师在课堂上也经常通过实例分析的方式向我们展示如何解决立体几何问题。她会选取一些典型的例子,并逐步演示解题的步骤和方法。通过这些实例分析,我能够更加明确地了解解题的思路和方法。同时,老师还鼓励我们进行课后习题的练习,通过反复的练习和实践,我逐渐掌握了解决立体几何问题的方法。
第四段:与老师互动,拓宽立体几何的思维。
在课堂上,老师也鼓励我们提问和思考。她会用一些引导性的问题向我们提问,激发我们的思维。同时,她还会对我们的问题进行解答和引导,帮助我们理清思路。有时候,她会分组让我们合作解决问题,从而培养我们的团队合作精神和思维能力。通过与老师的互动,我不仅能够解决立体几何中的问题,更能够提升我的思维能力和解决问题的能力。
第五段:总结体会,珍惜立体几何带来的收获。
通过高中立体几何的学习,我深深意识到立体几何的重要性和实用性。在这个三维世界中,立体几何无处不在。它不仅与我们日常生活息息相关,还与现代科技、建筑设计等领域密不可分。通过学习立体几何,我不仅掌握了解决几何问题的方法,更培养了自己的逻辑思维、创新思维和问题解决能力。我将珍惜这段立体几何学习的经历,并将其运用到实际生活中,为自己的学习和未来的发展打下坚实的基础。
通过高中立体几何的学习,我不仅对立体几何的概念和性质有了全面的了解,还学会了应用立体几何的公式和定理解决实际问题的方法。通过实例分析和与老师的互动,我逐渐掌握了解决立体几何问题的技巧和方法,并培养了自己的思维能力和解决问题的能力。我将珍惜立体几何学习的机会,把它作为我高中生活中的一份宝贵收获,并在现实生活中不断应用和发展。
高中立体几何学习心得篇五
学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
三、培养空间想象力。
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
四、“转化”思想的应用。
我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
(2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
(3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
五、建立数学模型。
新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。
从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。
六、总结规律,规范训练。
立体几何解题过程中,常有显著的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换,如能建立空间坐标系可用空间向量来解决。只有不断总结,才能不断高。
高中立体几何学习心得篇六
作为一名高中生,几何课对我来说充满了挑战和困惑。为了更好地应对立体几何课程,我提前做了大量的准备工作。首先,我翻阅了教材,对重要概念和公式进行了查看和总结。其次,我在网上查找了相关的视频和教学资源进行学习,并做了相应的笔记。最后,我找来了一些例题进行实践练习,以提高自己的解题能力。通过这些准备工作,我对立体几何的基本概念和解题方法有了初步了解,对观课有了一定的预期和期待。
二、观课收获。
观看高中立体几何课程之前,我对此抱有很大的兴趣和好奇。课程开始后,我立刻被老师的教学方法和细致入微的解题步骤所吸引。老师首先向我们介绍了立体几何的基本概念和常用的公式,让我们对整个课程有了整体的了解。随后,老师通过一些具体的例题,一步步地展示了解题的思路和方法,并深入浅出地讲解了其中的原理和推导过程。在这个过程中,我深受启发,对立体几何的学习产生了浓厚的兴趣。在课后,我对老师进行了一对一的探讨,解答了我在学习过程中遇到的一些问题。通过观课和与老师的交流,我对立体几何的理解进一步深化,并对未来的学习有了更明确的目标和方法。
三、思维拓展。
高中立体几何课程不仅仅是学习知识,更是培养思维能力的过程。在观课过程中,我逐渐发现,立体几何需要我们运用抽象思维和空间想象力来解决问题。在解题过程中,我们需要将一个虚拟的几何图形转化为实际的数学问题,并找到合适的方法和公式进行求解。这要求我们具备灵活的思维和创造性的思考能力,培养了我们的逻辑思维和问题解决能力。通过观课和练习,我的思维能力得到了很大的提升,我也更加相信自己能够解决更复杂的立体几何问题。
四、困惑与解答。
在观课过程中,我也遇到了一些困惑。例如,在解决某些题目时,我发现有多种方法可以得到正确的答案。这让我感到困惑,不知道应该选择哪种方法。我向老师请教了这个问题,老师给了我很好的解答。他告诉我不同的方法有不同的优劣,我们需要根据具体情况选择合适的方法。有时候,可以通过推导和变形简化问题,有时候可以通过直接应用公式求解。这样的解答让我豁然开朗,我明白了不同的解题方法可以互补和补充,而不是非此即彼的关系。
五、学以致用。
观看高中立体几何课程给我留下了深刻的印象,也启发了我对数学的热爱和探索欲望。立体几何不仅仅是课本中的一堂课,更是一个世界的开启。通过学习立体几何,我不仅可以在课堂上获得优异的成绩,还可以将所学应用于现实生活中。例如,在建筑设计、机械制造等领域,立体几何的知识都扮演着重要的角色。我希望通过不断学习和实践,将立体几何的知识变成自己的绝活,为自己的未来做好准备。
总结起来,观看高中立体几何课程给我带来了很多收获和启发。通过课前的准备工作,我对立体几何有了初步的了解和认识。在观课的过程中,我感受到了老师的教学方法和细致化的解题步骤所带来的魅力,对立体几何的兴趣被进一步点燃。通过思维拓展和问题解答,我发现立体几何不仅仅是一门学科知识,更是培养思维能力和问题解决能力的过程。最后,我将学到的知识运用到现实生活中,让立体几何的学习不再停留在纸上,而是发挥实际价值。我相信,通过不断地学习和实践,我能够在立体几何中取得更好的成绩,并将其运用于更广阔的领域。
高中立体几何学习心得篇七
20xx年7月中旬的海南省高中教师网上远程研修,让还未踏上讲台的我感受到了即将面临的巨大挑战,同事也带给了我对即将开始的从教生涯以无限的希望与遐想。
岗前的网上远程研修以及工作后对《高中英语课程标准》的研读与学习,使我对自己读书期间接受的教育观念及一些教育理论做了深刻的反思,我深刻地意识到现代教育观念是以每一个学生的全面发展为核心,面向全体学生,关注学生的个体差异性,使每个学生都能得到充分的发展,让学生在主动学习的过程中不断地锻炼自己、提高自己。
高中英语课程的总目标是使学生在义务教育阶段英语学习的基础上,进一步明确英语学习的目的,发展自主学习和合作学习的能力;形成有效的英语学习策略;培养学生的综合语言运用能力的基础上着重提高学生用英语获取信息、处理信息、分析问题和解决问题的能力,特别注重提高学生用英语进行思维和表达的能力;形成跨文化交际的意识和基本的跨文化交际能力;进一步拓宽国际视野,增强爱国主义精神和民族使命感,形成健全的情感、态度、价值观,为未来发展和终身学习奠定良好的基础。
高中英语课程包括五个维度的基本目标,即语言技能目标、语言知识目标,情感态度目标,学习策略目标和文化意识目标。要把情感和态度列为高中英语的课程目标,其理由是学习学习外语的过程不仅仅是一个学语言知识、语言技能的过程,也是一个人全面发展的过程,而情感是他们发展的部分。为此,学生仅仅记忆一定量的词汇,懂得一些语法知识是不能够达到高中英语教学的标准的;而必须学会运用这些知识获取信息,处理信息,进行思维和表达,能够分析的解决问题。要达到这个目标,单靠过去的教学方式,仅凭讲、练、译是不行的。教师必须改进教学方式,变学生被动学习、机械记忆的过程为主动实践、积极探索的过程。这就需要我们教师们认真合作与研究,创造性地发挥,认真实践和探索。在教学评价方面,评价教学的效果不是看教师讲了什么,也不是仅仅了解学生听了什么,读了什么,做了什么,而是看学生通过听、读、做等活动,学会了什么,读会了用语言做了什么,而是看学生通过听、读、做等活动,学会了什么都会了用语言做什么事情,做的效果如何,教师应该把眼光更多地方在学生身上,放在学生的情感和语言能力发展上,而不能仅关注教学内容和教学步骤。
高中立体几何学习心得篇八
通过网上远程研修以及对《高中英语课程标准》的研读学习,本人对高中英语新课程的教学方式与方法有了较为全面、深入的理解。主要是以下几个方面:
第一、课堂教学活动要以学生为主体,而不是以教师为主体;
第四、学生不是机械地记忆知识,而是运用所学英语语言知识去做一些具体的事情,学习不是整齐划一地按教师的要求做同样的事情,而是根据自己的学习需要,按自己的学习方式实现学习目标。
本次高中新课程的一个重要举措是按照模块来设计和安排课程。通过研修以及对《高中英语课程标准》的研读学习,本人对高中英语课程结构有了更为深刻的理解。比如:不能强迫全校某个年级或者某个班全体学生同时同意修习某任意选修课程模块,要积极创造条件,体现多样性,选择性,综合性,让高中生在自主选择和主动学习中实现个性的发展,满足学生个性发展的需求。
通过研修以及对《高中英语课程标准》的研读学习,本人还认识了新高中英语课程的词汇量设置及关于词汇教学的理论与方法这一热点关注问题。通过研修及研读学习,本人牢固树立“用教材去教而不是教教材”的思想,树立在教学中创造性的使用教材的意识,明确了教材与新课程标准之间的关系,领会了教材与考试的关系等许许多多与新课程实施有关系的问题。
《高中英语课程标准》的研读学习过程中,本人深感高中新课程的研究学习还有很多很多,在掌握理解更多内容的同时,也增加了不少困惑,如:考试评价如何改革,改革后能否适应新课程的教育理念?活动多与课时有限相矛盾,如何协调?如何解决探究活动多与资源不足的矛盾?等等这些问题都需要我在今后的教学实践工作中去深入地反思。
高中立体几何学习心得篇九
高中数学,可能对于某些人来说是一门头疼的课程。现在,我以毕业多年的身份来谈谈高中数学的学习心得体会,可能说法有些偏颇,但是都是我的真实感受,希望对广大奋斗在高考征程上的人有些小小的启发作用。
我记得高一的第一次数学考试,我考了150,那次考试给了我很大的信心去把后面的学习搞好。其实我不是什么高考数学满分的人,我的分数对于那些真正高分的人来说特别普通,我更愿意站在一个原来学不好,后来怎么把数学学好这个角度去谈。
首先,要坚定信心,不要觉得提高成绩是很困难甚至是不可能的事。我初中数学也曾经不及格过,可是后来我还是凭着一点一滴的努力让自己的成绩慢慢提上来。其次,要努力,除了努力还是努力!
还是不说废话了,重点说一下怎么把数学学好。
都是很典型的,也很浅显易懂的,掌握了它们就是掌握了最基本的东西,才能为做难题打下牢固的基础。
果你看了之后觉得那些例题还算有些深度,你看了有点思路,但是又不是可以马上解答出来的题,这种辅导资料就比较合适你。如果你看了半天,完全不知道那些例题在说什么,你还买了,最后你可能要花费很多时间去理解它,掌握它,但最后对你学习成绩的提高又不是特别有用。
及某个知识点,比如说在解析几何那里,会涉及通过引进x轴,y轴,z轴这些坐标轴来解答一些原本通过直观解答比较难以理解的题。老师教了这个知识点以后,你要争取早一点把辅导资料上有关于这一节的知识全部弄懂,这样才好为后面解答更难的题打下基础,因为后面的知识点都是在前面的基础上延伸的。(当然,我指的是专属解析几何这一块)。
特别是选择题,有一些选项比较有迷惑性,一时粗心可能就丢了一道选择题而使你的'整体分数和别人落下一大截。要争取自己会做的题全部做出来,自己实在不会的,巧妙地猜一个。有时,最不像答案的那一个可能就是答案,看上去表面很像答案的可能根本不是。
最好保证基础题全部拿到分数,最后的一两道大题能做。
几步是几步。
说得完的。我这里说的可能对于绝大多数人来说是废话,但是,万变不离其宗,也许这些话你都听过,但是真正去做,付诸实践,又可能收到你意想不到的效果。
祝
所有数学基础不好的学生都能战胜自己!
高中立体几何学习心得篇十
我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。
例如:
(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。
斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的'角。
(2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。
而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
(3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。
而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。
同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
(4)三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。
以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。
将本文的word文档下载到电脑,方便收藏和打印。
高中立体几何学习心得篇十一
在学习过程中,用传统的方法不太好做的题目,抓住好本质,建立空间直角坐标系,借助向量这个有用的工具,证明垂直,平行,解决夹角,线面角,二面角等问题就非常容易.
高考中还十分重视解题过程表述的正确与严谨。同学们对“作”、“证”、“算”三个环节往往头轻脚重,对图形构成交代不清楚,造成逻辑上错误,对需要严格论证的往往没有表达出来,只算结果。这些在复习中都应该引起注意。在传统的逻辑推理方法中的基本步骤是:“一作,二证明,三求”;在用向量代数法时,必须按照“一建系,二求点的坐标,三求向量的坐标,四运用向量公式求解”;如在证明线面垂直时,证明线线垂直时,容易只证明与平面内一条直线垂直就下结论,这里应强调证明两条相交直线,缺一不可;用空间向量解决问题时,需要建立坐标系,一定要说清楚;用三垂线定理作二面角的平面角时,一定得点明斜线在平面上射影;书写解题过程的最后都必须写结题语。在解题中,要书写规范,如用平行四边形abcd表示平面时,可以写成平面ac,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交代清楚,自己心中有数而不把它写出来是不行的。
高中立体几何学习心得篇十二
特殊化意识。许多线面关系的问题要特别注意它们的特殊位置关系,在一些计算问题中,一般位置和特殊位置的答案是不变的,从特殊中寻找快捷的解题思路。要培养这种意识,以提高解题速度。有时,由特殊图形的关系可引出一般在关系。
运动的观点。平移不改变角的大小,在立体几何中,所有角的求解都可做平行线来解决,这样可将不相交的线的夹角转化为相交线的夹角;直线不能移动,但其方向向量可以按需要任意平移。
在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。
高中立体几何学习心得篇十三
直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。(这个定理对今后学习线面垂直以及二面角的平面角的作法非常重要)定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:
(1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
(2)培养空间想象力。
(3)得出一些解题方面的启示。
在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,(我要求学生用手里的书本当平面,笔作直线)这样亲自实践可以帮助提高空间想象力。对后面的学习也打下了很好的基础。
高中立体几何学习心得篇十四
通过这段时间的新课改学习结合自己在教学中的经验和反思,我有些看法和体会。
我以前不管是读书还是教书,总是认为老师是教课本,学生是学课本,老师是通过教课本教给学生知识,学生是通过学课本掌握所学知识。课本是“经”,老师和学生都是课本忠实的追随者,这就导致上语文课对教材的每一篇课文教师都是不厌其烦的,详详细细、认认真真、方方面面的讲解。做到以本为本、以纲为纲,但脱离生活实际,学生没有兴趣。
新课程观认为“课程不仅是知识,同时也是经验,是活动。课程不仅是文本课程,更是体验课程。课程不再只是知识的载体,而是教师和学生共同探求新知识的过程。课程是由教材、教师与学生、教学情景、教学环境构成的一种生态系统。”
比如对一篇课文的理解,如果由你教师根据参考书的答案讲出,那学生只能得到一种理解,甚至根本不理解。若能由同学之间讨论,师生共同交流,调动学生自己的生活经历和情感体验,那么学生的理解不但是多方面的,而且也深刻得多。所以老师在教学当中要善于捕捉课程资源,不仅仅是课本,其实你身边的一切都可以是传授知识的载体。
现在,我认为教学,特别是语文教学,教师的文学知识要丰富,语文素养要丰厚这就要靠终身的学习和积累,需要教师的终身备课。在课堂教学中老师的知识在系统性和框架上要起到高屋建瓴的导向作用,但对具体的问题教师无需作细致的准备。这样,既能保证上课中教师“导”的作用,又能使得师生面对同一问题处于同一起跑线上,利于师生共同参与交流,利于学生的理解分析。所以教师要改变以往的课前细致备课为终身备课。
我们老师在上课时大多关注的是这堂课我上得好不好,我的要求学生有没有达到,我的讲解学生有没有理解。其实,教师都太注重自我的感觉,而没有考虑学生的`兴趣体验。所以我们语文老师不管在上什么课,都不能只关注自己的感受,而是要注重学生的兴趣体验,要设身处地的为学生考虑,站在学生的角度来上课。
唐代散文家韩愈所说的“弟子不必不如师,师不必贤于弟子”这一观点,我认为应该作为参与新课改实践的老师的基本理念之一。教师不应该是,也不可能是知识的权威,教师应该是学生学习的伙伴和引路人。教师和学生在探求知识上应该是平等的,如果把教师权威化,那只能造成学生对教师的依赖和盲从以及限制他们思维。“弟子不必不如师”,如果不信,那就请不信的你在毫无准备的情况下,突然抛出一幅对联的上句,要求师生一起对出下句。我想,对得最快、最好的不一定就是老师。
以上就是我在这一学的语文新课改教学当中得到的浅见。
高中立体几何学习心得篇十五
近日,xxx省重点高中五校联盟“关注核心素养,提高备考实效”主题研讨活动在牡丹江第一中学开展,我有幸观摩了牡一中xx老师的《中国古代明清时期》一节二轮复习课,还有大庆实验中学徐红老师的《明清社会之城市经济发展与局限》一课,并参加了研讨和经验分享活动,收获颇多。
对高考的把握比较准,落的比较实。历史学科高考考查能力的较多,偏重于分析、理解、辨析、评价等能力的考查,在试卷中直接考查基础知识的内容很少,但是能力又是建立在基础知识之上的,没有基础史实是无法答题的,历史知识点多而且散,学生记忆有困难,遗忘率高,如何解决知识和能力之间的关系,这是长时间困扰一线老师的难题。牡丹江一中xx老师通过填空、改错的方式加强了基础知识的记忆,也实现了对易错点的辨析,很好的巩固了基础知识,并就概念解析提供范例,加深对知识的掌握。历史高考注重考查某一事件的时代背景,解决这一问题就要总结某一时期的阶段特征,注重历史各线索之间的联系。郑老师和同学一起归纳明清时期的阶段特征,通过表格“明清时期中西对比”加深对知识的掌握理解,也容易在学生的思维体系中构建起中外联系的脉络。大庆实验中学的徐红老师则是在最后总结的时候用思维导图将具体的知识点联系起来,效果都很好。
课堂中注重知识延展的宽度,也注重具体问题的深度。郑老师在课堂中运用微课的方式把这一时期大量的知识呈献给学生,尽最大程度满足学生的学习需求,宏观掌握这一时期历史的全貌。针对岳麓版教材专题呈现方式,学生很难突破,形成通史观念,这样的方法,让学生重新构建了知识体系,延展了知识宽度。在课堂中,教师和学生一起归纳“丝银之路”的积极影响,具体分析了17、18世纪中国大量丝织品出口和白银流入给中国的影响,从而加深概念教学,同时又归纳这一类问题思考的角度。
找准高考的脉搏,针对性的解决问题。大庆实验中学的徐虹老师以小切口《明清社会之城市经济发展与局限》一课对接高考,用大量的材料和问题,深化对知识的理解,渗透这类题的解题方法。近几年高考试题总是考主干,但“小切口”让学生摸不着头脑,这种课堂训练很有必要,也很有针对性。但是在课堂教学中学生的参与度不是很高,因此我们在教学中还要关注学情,及时铺垫台阶,最后要给学生一个反思的过程。
各学校经验分享中感觉到:各学校复习策略有不同,但有着共同的做法:找的准,抓的紧,研的透,落得实。各学校重点研究近几年高考试题,不断学习提高,把握高考考什么,怎么考,在过程中不断寻找规律,因此复习策略有针对性;在教学过程中能针对学生状况,强化基础知识,尤其强调概念教学、观点教学、学习方法的渗透,同时课时训练及时,学生会在过程中认识到自己的进步和不足;教师不仅研究高考试题,把握考试方向,还研究答案的制定,如何表述的简洁规范、某类问题从哪些角度考虑、高考的评分细则等,做到胸有成竹,才能在指导学生备考时游刃有余。参会的五校实力不俗,教学过程都能注重学案的制定、材料的选取、限时训练的及时批改、学生问题的及时反馈和解决,只有落到实处才有学生成绩的提高。
一分耕耘一分收获,学习先进学校的教学思想和课堂实践能激发我更深入研究高考,研究复习策略,研究学生学习规律,期待有一个更好的高考成绩。
高中立体几何学习心得篇十六
阅读课文是复习的第一步。通过阅读,把握全文大意,了解作者情感、文章特色等知识点。不同类型的课文需要不同的读法:教读课文需精读,字、词、句、篇等各个知识点全方位掌握,精彩语段达到成诵;自读课文需泛读,有的还需跳读,一目十行,以求提高阅读速度。阅读速度,也是近几年高考考查项目之一。
即在阅读课文同时,把文中的重点句、中心句、名句以至生字、生词,用不同的符号勾画出来,既能加深印象,又便于复习巩固,一目了然。遇到规范句子,不妨划分句子成分,复句还需标明关系,典型语段要划分层次、归纳层意。遇到疑难,还要作标记,便于以后向老师同学求教。
查什么呢查工具书。字典、词典、参考资料,只要用得上,尽可能发挥工具书的作用。亲自查找答案,是探索学习方法、摸索学习规律的过程,也是提高运用工具书能力的过程。对于似曾相识的语句,不妨查一查以往学过的课文,把新旧知识联系起来,“温故而知新”。查出的答案经过分析辨别,理解能力又能得到提高。
“三人行,必有我师焉”。复习过程免不了有疑难,要独立钻研,实在解决不了的,要善于向老师、同学请教。有时自己向老师请教一个问题,老师很可能不止讲一个问相关知识联系起来,使你融会贯通。
俗话说,眼看十遍,不如手过一遍。无论平时学习还是考试,有的同学往往把常用字词写错,为什么呢就是缺少写的训练。生字、生词、重点语句不妨在理解记忆的基础上,反复写一写。又如一些作文题,往往看似容易写来难,也要动笔写写,切忌眼高手低。
就是通过做练习题,检验自己对知识掌握的程度。做题要把考题的目的、意图弄清,要注意归纳总结,寻找规律,触类旁通,增强应试能力。做练习题,既要在老师指导下进行,也要自觉地做。我们反对搞“题海战术”,但不做一定数量的练习题,也谈不上质量。练然后知不足,及时反馈矫正,以求牢固掌握所学知识和技能。
复习的内容可以通过“想”来巩固。可以从点到面,也可以从整体到部分,或纵向或横向,把知识点有机地联系起来,形成知识体系,印在脑海里。当某个知识点联想不起来时,要经过查找及时巩固。想的时空受限制,无论课上、课下,还是校内、校外,都可以尽情地利用时空。当你“山穷水尽”之时,通过联想,也许会步入“柳暗花明”之境。
高中立体几何学习心得篇十七
从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。
建立空间观念要做到:重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视野,培养空间感。加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。
此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。