八年级数学分式的运算教案(专业21篇)
教案是一份全面清晰的教学计划,能够指导教师有条不紊地开展教学工作。教案的编制需要注重教学资源的合理运用,如图书、多媒体等,以提高教学效果。以下是小编为大家准备的教案范例,供大家参考,以帮助理解和掌握教案的编写方法。记住,在编写教案时,要注重逻辑严密、内容详细全面、语言清晰简洁。现在就来看看吧。
八年级数学分式的运算教案篇一
在新课讲解的过程中,我以自主学习为主,交流展示为辅,先从分步算式入手,再列出综合算式,讲解递等式的书写格式,再通过讨论比较总结出含有乘法和加、减法的综合算式的计算顺序,来突破本单元的重难点。练习的过程中也进行了适当的编排,让学生做题的过程中感受知识的不断巩固和强化,最后做好小结,让学生回顾每一节课。在备课的过程中,我也对学生的情况进行了简单的预设。上完课后发现了课上的很多问题,结合教学设计进行了简单的总结:
1、紧扣教学目标,设计好每一个教学环节。
备课时,根据本节课的教学目标,把新授部分分成了三个部分,由分步算式引入综合算式及综合算式的书写格式为第一个部分,根据情境直接写出综合算式为第二个部分,比较总结为第三个部分。其中第三部分其实是本节课的难点所在,让学生通过观察发现、讨论总结出综合算式的计算顺序,在教学这一环节的时候,由于备课时没有考虑周到,在提问的过程中发现学生有些茫然,不知道该从何入手,这是因为在备课中没有想到怎么样提出有效的问题,有明确指向的问题所造成的,所以在教学中应设计好每一个环节,细致地思考每一个问题的具体提出,每一个追问的层层递进。
2、给学生多一点的时间去思考、发现、练习。
在教学的过程中应多给学生机会,让学生说出他们的想法,说出他们的发现,说出他们的总结。在新授的部分,由于担心学生说的不到位,一次次地纠正学生的答案,或者直接将自己的预设强加给学生,在以后应尽量避免出现这样的情况,在学生能力范围内的,应该给学生更多的机会。在比较讨论的过程中,多给学生思考的时间,慢慢地训练学生的语言表达能力,让学生说出自己的想法。在练习的过程中更是要学生多说,这节课我给学生的时间太少,很多时候怕学生出错或者表达不完整,自己就说出了答案或结果,没有给学生锻炼的机会。
3、多种练习形式结合达到更好的教学效果。
八年级数学分式的运算教案篇二
1.理解同分母分式与异分母分式加减法的运算法则,体会类比思想.
2.能运用同分母分式和异分母分式加减运算法则进行运算,体会化归思想.
异分母分式的加减运算.
一师一优课一课一名师(设计者:)。
一、创设情景,明确目标。
同学们还记得分数是如何进行加减法运算的吗?(找同学叙述)。
现在我们看下面两个问题:
请按两个问题的要求列出代数式,请观察两个代数式有何特征,如何对这类代数式进行运算,这就是我们今天所要探究的内容.
二、自主学习,指向目标。
1.自学教材第139至140页.
2.学习至此:请完成《学生用书》相应部分.
三、合作探究,达成目标。
活动一:
1.让学生观察课本p140页思考,并让学生叙述分数加减法法则.
2.类似分数加减法运算法则,推广可得分式的加减法法则,你能叙述吗?
展示点评:同分母的分式相加减,分母________,把分子相________.
异分母的分式相加减,先________,变为________分式,再加减.
八年级数学分式的运算教案篇三
在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。优生不多,思想不够活跃,有少数学生不上进,思维跟不上。要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、本学期教学内容分析
本学期教学内容共计六章。
第一章《三角形的证明》
本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。
第二章《一元一次不等式和一元一次不等式组》
本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。
第三章《图形的平移与旋转》
本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。
第四章《分解因式》
本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。
第五章《分式与分式方程》
本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。
第六章《平行四边形》
本章将研究平行四边形的性质与判定,以及三角形中位线的性质,还将探索多边形的内角和,外角和的规律;经历操作,实验等几何发现之旅,享受证明之美。
四、主要措施
1、面向全体学生。
由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。
2、重视改进教学方法,坚持启发式,反对注入式。
教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。
3、 改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。
4、课后辅导实行流动分层。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的'非智力因素,弥补智力上的不足。
7、开展课题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、进行个别辅导,优生提升能力,扎实打牢基础知识;对学困生,一些关键知识,辅导他们过关,为他们以后的发展铺平道路。
9、培养学生学习数学的良好习惯。
四、教学进度
第一章《三角形的证明》13课时
1.1等腰三角形 4课时
1.2直角三角形 2课时
1.3线段的垂直平分线 2课时
1.4角平分线 2课时
复习小节与检测 3课时
第二章《一元一次不等式和一元一次不等式组》 12课时
2.1 不等关系 1课时
2.2 不等式的基本性质 1课时
2.3 不等式的解集 1课时
2.4 一元一次不等式2课时
2.5 一元一次不等式与一次函数2课时
2.6 一元一次不等式组 2课时
复习小节 与检测 3课时
第三章《图形的平移与旋转》 10课时
3.1图形的平移 3课时
3.2图形的旋转 2 课时
3.3中心对称 1课时
3.4简单的图形设计 1 课时
复习小节与检测 3课时
期中考试复习2 课时
第四章《分解因式》7课时
4.1分解因式1课时
4.2提公因式法 2课时
4.3公式法 2课时
4.4重心 2课时
复习小节与检测 2课时
第五章《分式与分式方程》 11课时
5.1认识分式 2课时
5.2 分式的乘除法 1课时
5.3分式的加减法 3课时
5.4分式方程 3课时
复习小节与检测 2课时
第六章《平行四边形》 10课时
4.1平行四边形的性质 2课时
4.2特殊的平行四边形的判定 3课时
4.3三角形的中位线 1课时
4.4多边形的内角和外角和 2课时
复习小节与检测 2课时
八年级数学分式的运算教案篇四
1.理解分式的基本性质.
2.会用分式的基本性质将分式变形.
二、重点、难点。
1.重点:理解分式的基本性质.
2.难点:灵活应用分式的基本性质将分式变形.
3.认知难点与突破方法。
教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、例、习题的意图分析。
1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。
四、课堂引入。
1.请同学们考虑:与相等吗?与相等吗?为什么?
2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让学生类比猜想出分式的基本性质.
五、例题讲解。
p7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.
p11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.
p11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.
解:=,=,=,=,=。
六、随堂练习。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.约分:
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改变分式的值,使下列分式的分子和分母都不含“-”号.
七、课后练习。
1.判断下列约分是否正确:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
八年级数学分式的运算教案篇五
分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:
(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;
(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2、通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;
(4)通分和约分是两种截然不同的变形、约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
注意:
(1)分式的约分和通分都是依据分式的基本性质;
(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分、
3、求最简公分母的方法是:
(1)将各个分母分解因式;
(2)找各分母系数的最小公倍数;
(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
1、分式的加减法法则:
(1)同分母的分式相加减,分母不变,把分子相加;
(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。
2、分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
4、分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。
5、对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。
八年级数学分式的运算教案篇六
这一课是在学生已经初步了解小括号意义,会用小括号进行计算的基础上进行教学的。上完了整节课之后,我对自己这节课做了如下反思:
一、教学的成功之处。
1、在本节课中又增加了中括号这一内容,致使计算起来又多了几分烦琐性。所以在教学设计时由浅入深,让学生在层层深入中,走进新知、学习新知。
2、本堂课很好的利用了,让学生能够清楚明白的知道老师的要求,而且在一定程度上也引起来学生学习的兴趣。
二、教学中的不足之处。
1、对教学过程中可能会出现的情况没有完全设想清楚。在上课之前我把很多情况都设想了一遍,但是忽略了同学之间有不同层次。比如在指名上台板演的环节,有一个同学出现了我之前并没有预想到的问题,虽然我也随机应变,把该更改的更改的过来了,但是,这件事也提醒了我,在以后的教学过程中,一定要注意有层次的教学,不能忽略掉每个可能会出现的问题。
2、对学生动手做出现的状况估计不足。很多同学在老师讲课的时候都很清楚明白,但是一旦要求他自己动手做的时候,都会出现这样那样的问题。没有考虑到学生动手做的时候有没有真正掌握。
三、整改的措施。
1、注重学生动手操作能力的培养在本节课中,学生在知识方面好像已经掌握得非常牢固,但是实际在他们动手操作的时候却不尽如人意,这就提醒了我,在以后的教学中,不仅要灌输学生知识,更重要的是注重学生操作能力的培养。
2、在备课过程中应充分考虑到多种情况在今天上课的过程中,由于在课前没有对可能出现的状况估计全面,导致学生出现意想不到的状况的时候有一瞬间的不知所措。因此在日后的教学过程中,我要多多预设一些上课可能出现的状况,这样才能更好的教学,也才能更及时的解决学生在学习过程中出现的问题。
将本文的word文档下载到电脑,方便收藏和打印。
八年级数学分式的运算教案篇七
2.“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
八年级数学分式的运算教案篇八
教学。
目标(含重点、难点)及。
设置依据教学目标。
1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.。
3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.。
教学重点与难点。
教学过程。
内容与环节预设、简明设计意图二度备课(即时反思与纠正)。
一、创设情景,引入新课。
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
二、合作交流,探求新知。
1.多面体、棱、顶点概念:
2.合作交流。
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描。
述其特征。)。
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)。
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
长方体和正方体都是直四棱柱。
3.反馈巩固。
完成“做一做”
析:由第(3)小题可以得到:
直棱柱的相邻两条侧棱互相平行且相等。
4.学以至用。
出示例题。(先请学生单独考虑,再作讲解)。
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)。
最后完成例题中的“想一想”
5.巩固练习(学生练习)。
完成“课内练习”
三、小结回顾,反思提高。
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
板书设计。
作业布置或设计作业本及课时特训。
八年级数学分式的运算教案篇九
分式的运算法则包括了约分、分式的加减乘法法则和异分母分式的加减法法则这三大要领。
1.约分:
把一个分式的分子和分母的公因式约去的过程为约分。
2.分式的乘法法则:
两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
两个分式相除,把除式的分子和分母颠倒位置(除数的倒数)后再与被除式相乘。
3. 分式的加减法法则:
同分母的分式相加减,分母不变,把分子相加减。
4.异分母分式的加减法法则:
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
初中学的分式内容其实很简单,如x/y是分式,还有x(y+2)/y也是分式,计算的要求也不高。
八年级数学分式的运算教案篇十
通过类比分数的基本性质及分数的约分、通分,推测出分式的基本性质、约分和通分,通过例题、练习来巩固这些知识点。
教学目标。
知识与技能。
3.说出分式通分、约分的步骤和依据,总结分式通分、约分的方法;。
4.说出最简分式的意义,能将分式化为最简分式。
过程与方法。
经历与他人合作探究分式的基本性质及应用的过程,通过类比分数的基本性质,推测出分式的基本性质。
情感态度价值观。
体会知识点之间的联系,在已有数学经验的基础上,提高学数学的乐趣。
教学重点、难点。
重点:1.分式的基本性质;2.利用分式的基本性质约分、通分;3.将一个分式化简为最简分式、将分式通分。
难点:分子、分母是多项式的分式的约分和通分。
教学方法。
启发引导,讲练结合。
教学媒体课件。
课时安排。
1课时。
教学设计过程。
(一)复习引入。
1.分式的定义;。
通过回顾我们可以得出:
八年级数学分式的运算教案篇十一
多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。
二、自主学习,指向目标。
学习至此:请完成《学生用书》相应部分。
三、合作探究,达成目标。
多边形的定义及有关概念。
活动一:阅读教材p19。
小组讨论:结合具体图形说出多边形的边、内角、外角?
反思小结:多边形的定义及相关概念。
针对训练:见《学生用书》相应部分。
多边形的对角线。
活动二:(1)十边形的对角线有35条。
(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。
反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。
小组讨论:如何灵活运用多边形对角线条数的规律解题?
针对训练:见《学生用书》相应部分。
正多边形的有关概念。
活动二:阅读教材p20。
小组讨论:判断一个多边形是否是正多边形的条件?
反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。
针对训练:见《学生用书》相应部分。
四、总结梳理,内化目标。
本节学习的数学知识是:
1、多边形、多边形的外角,多边形的对角线。
2、凸凹多边形的概念。
五、达标检测,反思目标。
1、下列叙述正确的是(d)。
a、每条边都相等的多边形是正多边形。
c、每个角都相等的多边形叫正多边形。
d、每条边、每个角都相等的多边形叫正多边形。
2、小学学过的下列图形中不可能是正多边形的是(d)。
a、三角形b。正方形c。四边形d。梯形。
3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。
4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。
八年级数学分式的运算教案篇十二
《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。
本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。
本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。
本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。
1、初步理解特殊四边形性质;
2、培养学生自主收集、描述和分析数据的能力;
1、了解特殊四边形性质的形成过程;
2、初步了解探究新知识的一些方法;
1、了解特殊四边形在日常生活中的应用;
2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;
3、初步具有感性认识上升到理性认识的辩证唯物主义思想。
教学环境:
多媒体计算机网络教室。
教学课型:
试验探究式。
教学重点:
特殊四边形性质。
教学难点:
特殊四边形性质的发现。
一、设置情景,提出问题。
提出问题:
1、电动门的网格和结点能组成哪些四边形?
2、在开(关)门过程中这些四边形是如何变化的?
3、你还发现了什么?
解决问题:
学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;
当我们学习完本节知识后,其他问题就容易解决了。
(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)。
二、整体了解,形成系统。
本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。
提出问题:
1、本章主要研究哪些特殊四边形?
2、从哪几方面研究这些特殊四边形?
解决问题:
学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。
1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形。
3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。
(意图:学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)。
三、个体研究、总结性质。
1、平行四边形性质。
提出问题:
在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。
解决问题:
教师引导学生拖动b点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。
在图形变化过程中,
(1)对边相等;
(2)对角相等;
(3)通过ao=co、bo=do,可得对角线互相平分;
(4)通过邻角互补,可得对边平行;
(5)内外角和都等于360度;
(6)邻角互补;
……。
指导学生填表:
平行四边形性质矩形性质正方形性质。
菱形性质。
梯形性质等腰梯形性质。
直角梯形性质。
(既属于平行四边形性质又属于矩形性质可以画箭头)。
按照平行四边形性质的探索思路,分别研究:
2、矩形性质;
3、菱形性质;
4、正方形性质;
5、梯形性质;
6、等腰梯形性质;
7、直角梯形的性质。
(意图:学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)。
教师总结:
(意图:掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)。
四、联系生活,解决问题。
解决问题:
学生操作电脑,观察图形、分组讨论,教师个别指导。
学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。
四边形具有不稳定性,而三角形没有这个特点……。
(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)。
五、小结。
1.研究问题从整体到局部的方法;
2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。
六、作业。
1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。
2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。
针对教学内容、学生特点及设计方案,预计下列学习效果:
利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。
在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。
由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。
八年级数学分式的运算教案篇十三
本学期我所教的八年级两个班的学生总体上热爱学习,但方法、效率上存在着不少问题。还有个别学生爱贪玩,打游戏、不做作业、未及时完成任务等现象也会偶尔发生。由于我做了大量的工作,这些问题在最大限度上得到控制,没有成为一种势头。我分别对各种不同层次的学生进行教育教学工作,使他们在数学的各个方面有所转变。下面将培优补差的工作总结一下。
对于全体学生而言,我首先想办法端正学生的态度。我一直强调数学学习主要的问题是计算问题,只要会审题,会书写,难的任务就完成了。平时要在课堂或课后等空闲时间多练、精练,给组长过关。课堂上必须认真听讲,多做习题,课下要学会自我检查,这样在难的题也会掌握。中午有时会出一些练习题,都只有七、八个小题,一般只用十来分钟就会完成。这样就可检验出当天所学知识是否掌握了。如果这些都能做到,相信他们的数学一定会学好。这样交代清楚要做的任务,他们该知道做什么,心里有底,学习态度上会有保障。总比只讲大道理、学生不知怎么做强一些。另外,我平时还讲一些数学方面的有趣的小故事,学生喜欢听,认为数学很有意思,慢慢地喜欢上了数学。
这一个学期他们根本就没有在我施压下才完成任务,而是主动提前找我,让我检查他们掌握的情况。我每次都对他们的积极态度给予表扬,这样他们表现得更积极了。在我检查他们的学习时,我往往做得比较灵活。比如检查便变式训练的时候,我把每个题型随机变动一下,看他们能不能反应过来。这样就悄无声息地拔高了他们应用知识的能力。
同时,在教育的过程中注重摆事实、讲道理,以理服人,让他们心服口服,充分认识自己的错误言行,决心悔过。
总之,在本月里,我虽然取得了一定的成绩。但也还存在着一些问题,如教育、教学方法、手段还有待改进。但我相信只要学校的支持,我的培优工作一定能越做越好的。
八年级数学分式的运算教案篇十四
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
算术平方根的概念。
根据算术平方根的概念正确求出非负数的算术平方根。
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.
1、提出问题:(书p68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式=a (x0)中,规定x = .
2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.
3、想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。
4、例1求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69练习1、2
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
p75习题13.1活动第1、2、3题
八年级数学分式的运算教案篇十五
整节课我设计了五个部分:
1、由生活引入,激发学习兴趣。
2、动手操作,形象感知。
3、观察比较,探究规律。
4、运用规律,自学例题。
5、拓展与延伸。
从课的开始,用学生身边的事情引入,大大提高了学生学习的积极性,一下子把学生吸引住了。再通过学生自己动手折纸操作,不断猜想,不断验证,再猜想,验证,学生的自信心就会大增。我想,长此以往,学生慢慢就会从“能学习”转化为“会学习了”。这节新授课的设计,目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。
反思这节课的教学,我想在验证、交流环节学生们参与率需要提高,尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的.状态。在巩固练习环节上,学生们练习的密度还不够,毕竟回答问题的同学在少数。还可以给每生准备一份练习纸,这样能确保每位学生的练习量。
八年级数学分式的运算教案篇十六
正比例函数的概念。
2、内容解析。
一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。
基于以上分析,确定本节课的教学重点:正比例函数的概念。
1、目标。
(1)经历正比例函数概念的形成过程,理解正比例函数的概念;
(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。
2、目标解析。
达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。
达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。
正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的`每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。
因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。
八年级数学分式的运算教案篇十七
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题。
平行四边形的判定方法及应用。
阅读教材p44至p45。
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(5)你还能找出其他方法吗?
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
证明:(画出图形)。
平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。
八年级数学分式的运算教案篇十八
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.
将实际问题中的等量 关系用分式方程表示
找实际问题中的等量关系
有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)
如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________
从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。
这 一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程
分式方程与整式方程有什么区别?
(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好
本节课你学到了哪些知识?有什么感想?
八年级数学分式的运算教案篇十九
《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。
本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。
(一)知识目标:
1、要求学生掌握正方形的概念及性质;
2、能正确运用正方形的性质进行简单的计算、推理、论证;
(二)能力目标:
1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;
2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;
(三)情感目标:
1、让学生树立科学、严谨、理论联系实际的良好学风;
2、培养学生互相帮助、团结协作、相互讨论的团队精神;
3、通过正方形图形的完美性,培养学生品格的完美性。
该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。
针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。
通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。
本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。
第一环节:相关知识回顾。
以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。
第二环节:新课讲解通过学生们的发现引出课题“正方形”
1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。
2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;
定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。
以上是对正方形定义和性质的学习,之后是进行例题讲解。
4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。
第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。
5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。
6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。
八年级数学分式的运算教案篇二十
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.
2、会求一组数据的极差.
1、重点:会求一组数据的极差.
2、难点:本节课内容较容易接受,不存在难点、
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法、
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图、
观察一下,它们有区别吗?说说你观察得到的结果、
本节课在教材中没有相应的例题,教材p152习题分析。
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。
八年级数学分式的运算教案篇二十一
1、了解方差的定义和计算公式。
2、理解方差概念产生和形成过程。
3、会用方差计算公式比较两组数据波动大小。
重点:掌握方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式。
(一)知识详解:
方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即。
给力小贴士:方差越小说明这组数据越稳定,波动性越低。
(二)自主检测小练习:
1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:1091181213107;
乙组:7891011121112。
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。
引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?
(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。
归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即用来表示。
(一)例题讲解:
金志强1013161412。
提示:先求平均数,然后使用公式计算方差。
(二)小试身手。
1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:
甲:7.8.6.8.6.5.9.10.7.4。
乙:9.5.7.8.7.6.8.6.7.7。
经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。
1、求下列数据的众数:
(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
方差公式:
提示:方差越小,说明这组数据越集中。波动性越小。
每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。
1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。
如果根据这些成绩选拔一人参加比赛,你会选谁呢?
必做题:教材141页练习1.2;选做题:练习册对应部分习题。
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!