八年级数学分式的运算教案(精选18篇)
教案的不断优化和改进是教师职业发展的重要方向。编写教案时要根据学生的不同学习水平和兴趣特点,采用多种教学手段和方法。随着教学改革的不断深入,编写优秀的教案已经成为教师的一项基本素质。
八年级数学分式的运算教案篇一
2.“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
八年级数学分式的运算教案篇二
分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:
(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;
(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2、通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;
(4)通分和约分是两种截然不同的变形、约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
注意:
(1)分式的约分和通分都是依据分式的基本性质;
(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分、
3、求最简公分母的方法是:
(1)将各个分母分解因式;
(2)找各分母系数的最小公倍数;
(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
1、分式的加减法法则:
(1)同分母的分式相加减,分母不变,把分子相加;
(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。
2、分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
4、分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。
5、对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。
八年级数学分式的运算教案篇三
1.理解同分母分式与异分母分式加减法的运算法则,体会类比思想.
2.能运用同分母分式和异分母分式加减运算法则进行运算,体会化归思想.
异分母分式的加减运算.
一师一优课一课一名师(设计者:)。
一、创设情景,明确目标。
同学们还记得分数是如何进行加减法运算的吗?(找同学叙述)。
现在我们看下面两个问题:
请按两个问题的要求列出代数式,请观察两个代数式有何特征,如何对这类代数式进行运算,这就是我们今天所要探究的内容.
二、自主学习,指向目标。
1.自学教材第139至140页.
2.学习至此:请完成《学生用书》相应部分.
三、合作探究,达成目标。
活动一:
1.让学生观察课本p140页思考,并让学生叙述分数加减法法则.
2.类似分数加减法运算法则,推广可得分式的加减法法则,你能叙述吗?
展示点评:同分母的分式相加减,分母________,把分子相________.
异分母的分式相加减,先________,变为________分式,再加减.
八年级数学分式的运算教案篇四
这一课是在学生已经初步了解小括号意义,会用小括号进行计算的基础上进行教学的。上完了整节课之后,我对自己这节课做了如下反思:
一、教学的成功之处。
1、在本节课中又增加了中括号这一内容,致使计算起来又多了几分烦琐性。所以在教学设计时由浅入深,让学生在层层深入中,走进新知、学习新知。
2、本堂课很好的利用了,让学生能够清楚明白的知道老师的要求,而且在一定程度上也引起来学生学习的兴趣。
二、教学中的不足之处。
1、对教学过程中可能会出现的情况没有完全设想清楚。在上课之前我把很多情况都设想了一遍,但是忽略了同学之间有不同层次。比如在指名上台板演的环节,有一个同学出现了我之前并没有预想到的问题,虽然我也随机应变,把该更改的更改的过来了,但是,这件事也提醒了我,在以后的教学过程中,一定要注意有层次的教学,不能忽略掉每个可能会出现的问题。
2、对学生动手做出现的状况估计不足。很多同学在老师讲课的时候都很清楚明白,但是一旦要求他自己动手做的时候,都会出现这样那样的问题。没有考虑到学生动手做的时候有没有真正掌握。
三、整改的措施。
1、注重学生动手操作能力的培养在本节课中,学生在知识方面好像已经掌握得非常牢固,但是实际在他们动手操作的时候却不尽如人意,这就提醒了我,在以后的教学中,不仅要灌输学生知识,更重要的是注重学生操作能力的培养。
2、在备课过程中应充分考虑到多种情况在今天上课的过程中,由于在课前没有对可能出现的状况估计全面,导致学生出现意想不到的状况的时候有一瞬间的不知所措。因此在日后的教学过程中,我要多多预设一些上课可能出现的状况,这样才能更好的教学,也才能更及时的解决学生在学习过程中出现的问题。
将本文的word文档下载到电脑,方便收藏和打印。
八年级数学分式的运算教案篇五
分式的运算法则包括了约分、分式的加减乘法法则和异分母分式的加减法法则这三大要领。
1.约分:
把一个分式的分子和分母的公因式约去的过程为约分。
2.分式的乘法法则:
两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
两个分式相除,把除式的分子和分母颠倒位置(除数的倒数)后再与被除式相乘。
3. 分式的加减法法则:
同分母的分式相加减,分母不变,把分子相加减。
4.异分母分式的加减法法则:
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
初中学的分式内容其实很简单,如x/y是分式,还有x(y+2)/y也是分式,计算的要求也不高。
八年级数学分式的运算教案篇六
在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。优生不多,思想不够活跃,有少数学生不上进,思维跟不上。要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、本学期教学内容分析
本学期教学内容共计六章。
第一章《三角形的证明》
本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。
第二章《一元一次不等式和一元一次不等式组》
本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。
第三章《图形的平移与旋转》
本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。
第四章《分解因式》
本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。
第五章《分式与分式方程》
本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。
第六章《平行四边形》
本章将研究平行四边形的性质与判定,以及三角形中位线的性质,还将探索多边形的内角和,外角和的规律;经历操作,实验等几何发现之旅,享受证明之美。
四、主要措施
1、面向全体学生。
由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。
2、重视改进教学方法,坚持启发式,反对注入式。
教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。
3、 改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。
4、课后辅导实行流动分层。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的'非智力因素,弥补智力上的不足。
7、开展课题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、进行个别辅导,优生提升能力,扎实打牢基础知识;对学困生,一些关键知识,辅导他们过关,为他们以后的发展铺平道路。
9、培养学生学习数学的良好习惯。
四、教学进度
第一章《三角形的证明》13课时
1.1等腰三角形 4课时
1.2直角三角形 2课时
1.3线段的垂直平分线 2课时
1.4角平分线 2课时
复习小节与检测 3课时
第二章《一元一次不等式和一元一次不等式组》 12课时
2.1 不等关系 1课时
2.2 不等式的基本性质 1课时
2.3 不等式的解集 1课时
2.4 一元一次不等式2课时
2.5 一元一次不等式与一次函数2课时
2.6 一元一次不等式组 2课时
复习小节 与检测 3课时
第三章《图形的平移与旋转》 10课时
3.1图形的平移 3课时
3.2图形的旋转 2 课时
3.3中心对称 1课时
3.4简单的图形设计 1 课时
复习小节与检测 3课时
期中考试复习2 课时
第四章《分解因式》7课时
4.1分解因式1课时
4.2提公因式法 2课时
4.3公式法 2课时
4.4重心 2课时
复习小节与检测 2课时
第五章《分式与分式方程》 11课时
5.1认识分式 2课时
5.2 分式的乘除法 1课时
5.3分式的加减法 3课时
5.4分式方程 3课时
复习小节与检测 2课时
第六章《平行四边形》 10课时
4.1平行四边形的性质 2课时
4.2特殊的平行四边形的判定 3课时
4.3三角形的中位线 1课时
4.4多边形的内角和外角和 2课时
复习小节与检测 2课时
八年级数学分式的运算教案篇七
教学。
目标(含重点、难点)及。
设置依据教学目标。
1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.。
3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.。
教学重点与难点。
教学过程。
内容与环节预设、简明设计意图二度备课(即时反思与纠正)。
一、创设情景,引入新课。
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
二、合作交流,探求新知。
1.多面体、棱、顶点概念:
2.合作交流。
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描。
述其特征。)。
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)。
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
长方体和正方体都是直四棱柱。
3.反馈巩固。
完成“做一做”
析:由第(3)小题可以得到:
直棱柱的相邻两条侧棱互相平行且相等。
4.学以至用。
出示例题。(先请学生单独考虑,再作讲解)。
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)。
最后完成例题中的“想一想”
5.巩固练习(学生练习)。
完成“课内练习”
三、小结回顾,反思提高。
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
板书设计。
作业布置或设计作业本及课时特训。
八年级数学分式的运算教案篇八
1、掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。
2、使学生理解判定定理与性质定理的区别与联系。
3、会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。
1、通过“探索式试明法”开拓学生思路,发展学生思维能力。
2、通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力。
通过一题多解激发学生的学习兴趣。
通过学习,体会几何证明的方法美。
构造逆命题,分析探索证明,启发讲解。
1、教学重点:平行四边形的判定定理1、2、3的应用。
2、教学难点:综合应用判定定理和性质定理。
(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理)。
八年级数学分式的运算教案篇九
1、了解方差的定义和计算公式。
2、理解方差概念产生和形成过程。
3、会用方差计算公式比较两组数据波动大小。
重点:掌握方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式。
(一)知识详解:
方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即。
给力小贴士:方差越小说明这组数据越稳定,波动性越低。
(二)自主检测小练习:
1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:1091181213107;
乙组:7891011121112。
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。
引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?
(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。
归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即用来表示。
(一)例题讲解:
金志强1013161412。
提示:先求平均数,然后使用公式计算方差。
(二)小试身手。
1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:
甲:7.8.6.8.6.5.9.10.7.4。
乙:9.5.7.8.7.6.8.6.7.7。
经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。
1、求下列数据的众数:
(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
方差公式:
提示:方差越小,说明这组数据越集中。波动性越小。
每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。
1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。
如果根据这些成绩选拔一人参加比赛,你会选谁呢?
必做题:教材141页练习1.2;选做题:练习册对应部分习题。
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
八年级数学分式的运算教案篇十
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
算术平方根的概念。
根据算术平方根的概念正确求出非负数的算术平方根。
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.
1、提出问题:(书p68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式=a (x0)中,规定x = .
2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.
3、想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。
4、例1求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69练习1、2
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
p75习题13.1活动第1、2、3题
八年级数学分式的运算教案篇十一
教学目标:
1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。
重点与难点:
重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:分析典型图案的设计意图。
疑点:在设计的图案中清晰地表现自己的设计意图。
教具学具准备:
提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。
教学过程设计:
1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。
明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。
2、课本。
1欣赏课本75页图3—24的图案,并分析这个图案形成过程。
评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。
评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。
(二)课内练习。
(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。
(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。
(三)议一议。
生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。
(四)课时小结。
本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。
通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。
进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。
八年级数学分式的运算教案篇十二
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.
将实际问题中的等量 关系用分式方程表示
找实际问题中的等量关系
有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)
如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________
从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。
这 一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程
分式方程与整式方程有什么区别?
(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好
本节课你学到了哪些知识?有什么感想?
八年级数学分式的运算教案篇十三
《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。
本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。
(一)知识目标:
1、要求学生掌握正方形的概念及性质;
2、能正确运用正方形的性质进行简单的计算、推理、论证;
(二)能力目标:
1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;
2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;
(三)情感目标:
1、让学生树立科学、严谨、理论联系实际的良好学风;
2、培养学生互相帮助、团结协作、相互讨论的团队精神;
3、通过正方形图形的完美性,培养学生品格的完美性。
该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。
针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。
通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。
本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。
第一环节:相关知识回顾。
以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。
第二环节:新课讲解通过学生们的发现引出课题“正方形”
1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。
2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;
定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。
以上是对正方形定义和性质的学习,之后是进行例题讲解。
4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。
第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。
5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。
6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。
八年级数学分式的运算教案篇十四
调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。
例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。
例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数。
例如:求一组数据3,2,3,5,3,1的众数。
解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。
又如:求一组数据2,3,5,2,3,6的众数。
解:这组数据中2出现2次,3出现2次,5,6各出现1次。
所以这组数据的众数是2和3。
【规律方法小结】。
(1)平均数、中位数、众数都是描述一组数据集中趋势的量。
(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。
(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。
(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。
探究交流。
1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?
解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。
总结:
(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。
(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。
(3)中位数的单位与数据的单位相同。
(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。
课堂检测。
基本概念题。
1、填空题。
(1)数据15,23,17,18,22的平均数是;
(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。
基础知识应用题。
2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。
(1)计算这10个班次乘车人数的平均数;
(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。
八年级数学分式的运算教案篇十五
整节课我设计了五个部分:
1、由生活引入,激发学习兴趣。
2、动手操作,形象感知。
3、观察比较,探究规律。
4、运用规律,自学例题。
5、拓展与延伸。
从课的开始,用学生身边的事情引入,大大提高了学生学习的积极性,一下子把学生吸引住了。再通过学生自己动手折纸操作,不断猜想,不断验证,再猜想,验证,学生的自信心就会大增。我想,长此以往,学生慢慢就会从“能学习”转化为“会学习了”。这节新授课的设计,目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。
反思这节课的教学,我想在验证、交流环节学生们参与率需要提高,尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的.状态。在巩固练习环节上,学生们练习的密度还不够,毕竟回答问题的同学在少数。还可以给每生准备一份练习纸,这样能确保每位学生的练习量。
八年级数学分式的运算教案篇十六
进行《分式的加减法》的教学时,通过复习同分母异分母分数的加减计算类比学习分式的加减运算以分式的通分(分母为异分母的情况)作为预备知识检测,再到学生自主学习所完成的基础练习题及熟练法则,通过让学生板演计算过程后出现的问题(分子的加减,去括号问题及分式的最简化等)给予讲解及问题的讨论。最后是课堂练习巩固和小结作业布置。
在授课结束后发现学生对于同分母的分式的加减运算掌握得比较好但是对于异分母的`分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。
分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,除法应转化为乘法。并且计算的最终结果应该为最简分式的形式,在计算时应先观察分式的特点从而分析是不是可以结合乘法的分配律进行计算从而达到化繁为简的目的。
八年级数学分式的运算教案篇十七
本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
八年级数学分式的运算教案篇十八
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.
2、会求一组数据的极差.
1、重点:会求一组数据的极差.
2、难点:本节课内容较容易接受,不存在难点、
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法、
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图、
观察一下,它们有区别吗?说说你观察得到的结果、
本节课在教材中没有相应的例题,教材p152习题分析。
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。