读几何原本读后感(实用15篇)
读后感是读者对所读书籍或文章的一种主观感受和思考。在写读后感时,我们应该注意结构清晰、观点明确、语言优美。以下是一些读者对某本书的深度思考和感悟,或许可以给你写读后感提供一些思路。
读几何原本读后感篇一
只要上过初中的人都学过几何,可是不一定知道把几何介绍到中国来的是明朝的大科学家徐光启和来自意大利的传教士利玛窦,更不一定知道是徐光启把这门“测地学”创造性地意译为“几何”的。从1667年《几何原本》前六卷译完至今已有四百年,11月9日上海等地举行了形式多样的纪念活动。来自意大利、美国、加拿大、法国、日本、比利时、芬兰、荷兰、中国等9个国家及两岸四地的60余位中外学者聚会徐光启的安息之地——上海徐汇区,纪念徐光启暨《几何原本》翻译出版400周年。
“一物不知,儒者之耻。”
徐光启家世平凡,父亲是一个不成功的商人,破产后在上海务农,家境不佳。徐光启19岁时中秀才,过了16年才中举人,此后又7年才中进士。在参加翰林院选拔时列第四名,即被选为翰林院庶吉士,相当于是明帝国皇家学院的博士研究生。他殿试排名三甲五十二名,名次靠后,照理没有资格申请入翰林院。他的同科进士、也是他年满花甲的老师黄体仁主动让贤,把考翰林院的机会让给了他。
《明史·徐光启传》中开篇用33个字讲完他的科举经历,紧接着就说他“从西洋人利玛窦学天文、历算、火器,尽其术。遂遍习兵机、屯田、盐策、水利诸书”,可见如果没有跟随利玛窦学习西方科学,徐光启只是有明一代数以千万计的官僚中不出奇的一员。但是因为在1600年遇上了利玛窦,且在翰林院学习期间有机会从学于利玛窦,他得从一干庸众中脱颖而出。
利玛窦(matteoricci)1552年生于意大利马切拉塔,1571年在罗马成为耶稣会的见习修士,在教会里接受了神学、古典文学和自然科学的广泛训练,又在印度的果阿学会了绘制地图和制造各类科学仪器,尤其是天文仪器。
利玛窦于1577年5月离开罗马,于1583年2月来到中国。8月在广东肇庆建立“仙花寺”,开始传教。可是一开始很不顺利。为此,利玛窦转变了策略,决定采取曲线传教的方针,为了接近中国人,利玛窦不仅说中文,写汉字,而且生活也力求中国化。正式服装也改成了宽衣博带的儒生装束。
1598年6月利玛窦去北京见皇帝,未能见到,次年返回南京。在南京期间,利玛窦早已赫赫有名,尤其是他过目不忘、倒背如流的记忆术给人留下了深刻的印象,一传十,十传百,已神乎其神。加之利玛窦高明的社交手段,以及他的那些引人入胜的、代表着西方工艺水平的工艺品和科学仪器,引得高官显贵和名士文人都乐于和他交往。利玛窦则借此来达到自己的目的——推动传教活动。
也正是利玛窦的学识和魅力吸引了徐光启。根据利玛窦的日记记载,约在1597年7月到1600年5月之间。徐光启和利玛窦曾见过一面,利玛窦说这是一次短暂的见面。徐光启主要向利玛窦讨教一些基督教教义,双方并没有深谈。和利玛窦分手之后,徐光启花了两三年时间研究基督教义,思考自己的命运。1603年,徐光启再次去找利玛窦,但利玛窦这时已经离开南京到北京去了。徐光启拜见了留在南京的传教士罗如望,和之长谈数日后,终于受洗成为了基督教徒。
1601年1月,利玛窦再次晋京面圣,此次获得成功,利玛窦带来的见面礼是自鸣钟和钢琴,这两样东西是要经常修理的,于是他被要求留在京城,以便可以经常为皇帝修理这两样东西。正好1604年4月,徐光启中进士后要留在北京。两人的交往也多起来。在此之前,徐光启对中国传统数字已有较深入的了解,他跟利玛窦学习了西方科技后,向利玛窦请求合作翻译《几何原本》,以克服传统数学只言“法”而不言“义”的缺陷,认为“此书未译,则他书俱不可得论。”利玛窦劝他不要冲动,因为翻译实在太难,徐光启回答说:“一物不知,儒者之耻。”
读几何原本读后感篇二
谁都向往着脚底的路坦荡如砥,渴望着人生之路平步青云。可是向往终归是向往,渴望依旧是渴望,无论是地上的路还是人生之路,并不因人们美好的向往而一味笔直,也不因你心中虔诚的渴望而风平浪静。况且,众所周知,曲线之所以比直线美,就在于它的“曲”。
漫漫人生路,难免经历几个转折点,不免会或多或少地遇到或大或小的转弯处。此时,若是战战兢兢、如临深渊、如履薄冰,势必长困难之傲气,灭自己之威风;若是一味埋怨世事不公平,诘责上天为何给自己这么多的挫折是无济于事的,也不是勇者所为。挫折是上天对勇者的恩赐。也许在我们千方百计去寻找转弯的支撑点,绞尽脑汁的去思索转弯技巧的时候,它阻滞了我们前进的步伐,但是我们应坚信:“失之东隅,收之桑榆。”付出了定会有收获。古代教育家孟子曾说:“故天将降大任于斯人也,必先苦其心志……”也许这些挫折正是大任降临之前的先兆。作家江燕说:“消极的人,每每从机会里看到难题;积极的人,每每从难题里看到机会。”也许这正是自己勇挑重担的开始。
每当回忆往事的时候,我们刻骨铭心的往往是“九曲回肠”处,它之所以让你终身不忘,就是因为它曾使你“坐不安席,食不甘味。”也许你在回忆这些往事时可能没有注意到你自己是笑着回忆的,可是事实上,你确实是笑了,因为你曾克服了困难,战胜了懦弱的自我,给自己的人生画卷添上了最美的一笔。
“不经一事,不长一智”,漫漫征途其实就是困难与智慧铺就的。所谓“种瓜得瓜,种豆得豆。”当我们满心憧憬累累硕果时,便注定了我们首先必须付出艰辛的劳动,发挥自己的聪明才智去面对一切可能要面对的挫折。
读几何原本读后感篇三
摘要:徐光启翻译《几何原本》,使得西方科技知识传入中国,为我国培养了一批数学家,推动我国科技的发展,同时也成为明清实学兴起的重要思想,适应当时中国社会经世致用的治学需要。
《几何原本》作为13世纪古希腊的科学名着,将阿拉伯算学传入我国教育之中,对我国科学技术的发展发挥极大推动作用。在我国《几何原本》翻译传播过程中,常提到徐光启,徐光启不仅是我国杰出的科学家与翻译家,他在水利、天文等方面的表现也尤为突出,作出了杰出的历史贡献,对改善我国科技发展状况有很好的推进作用,以下本文就对此做具体介绍。
一、科学家徐光启。
徐光启是明嘉靖四十一年上海县法华汇人,出生在一个小商人家里,青年时徐光启聪敏好学,曾说出“文宜得气之先,造理之极,方足炳辉千古”,充分体现出他神童才子形象。到了二十岁徐光启考中秀才,就在家乡教书,他白天给学生上课,晚上钻研农业生产技术,他有保家卫国、提高国家科技力量之心,有诗记载“:沪上曾闻倭寇猖,心思报国卫家乡。西来教士传科学,北上生员识利郎。农政全书留百技,几何原本越重洋。翰林院里知危局,力主精兵备火枪。”[1]20后来,徐光启接触西方近代科学,便开始用尽一生去学习和探索西方近代科学,最终成为中国历史上第一位科学家。徐光启编译的西方近代科学着作《几何原本》中,把科学介绍给国人,开启我国士人接触西方科技的窗口,是文化的传播者,也是文化的实践者。在科技发展中,对于农业生产中需要研究天文历法,同时在水利工程中也离不开数学知识,故此,《几何原本》对我国科技发展起到一定的奠基作用,《几何原本》在我国教育中的推行,极大提升人们的觉悟,使人们可以用数学逻辑思想去解决问题,思考问题,促进科技的提升。
1.翻译《几何原本》的波折。徐光启是中国近代科学的先驱,他的科学技术成就中,最大的贡献就是翻译《几何原本》,《几何原本》全书共有十五卷,译出了前六卷。1606年,徐光启跟利玛窦说,想让他为自己传授西方科学知识,利玛窦用《几何原本》做教材,为徐光启讲授西方数学理论,后来徐光启经过一段时间的学习,不仅完全弄懂《几何原本》这部着作的内容,同时也为书中的基本理论与逻辑推理折服,意识到我国古代数学不足,故此下定决心翻译这部着作。
2.《几何原本》翻译的复杂性。1606年秋开始翻译《几何原本》,徐光启翻译《几何原本》中,由于该着作是用拉丁文写的,而拉丁文与中文语法不同,词汇也不一样,对于书里的数学专业名词中文中没有相应词汇,因此要把《几何原本》译得准确且通俗易懂,是不容易的事情[2]64.翻译《几何原本》中,先是由利玛窦用中文口头翻译,然后由徐光启草录下来,并在译完一段后由徐光启字斟句酌地推敲修改,最后让利玛窦对照原着核对。1607年利玛窦在向罗马的报告中写道“:现在只好用数学来笼络中国的人心。”足见利玛窦真正的心意了。已译出的前六卷是原书的拉丁文译文,至于克拉维斯的注解以及其他收集的欧几里得《原本》研究者的工作,几乎全部删去。虽然如此,《几何原本》的传入对中国数学界仍有一定的影响。
徐光启在《几何原本杂议》中对它评价很高,说:“此书为益,能令学理者祛其浮气,练其精心,学事者资其定法,发其巧思,故举世无一人不当学。”在徐光启翻译完《测量法义》章节之后,徐光启又接着写《测量异同》、《勾股义》两本书。在《测量异同》中,他比较中西方的测量方法,并用《几何原本》的定理解释中西方的测量方法和理论根据的一致性。《勾股义》是仿照《几何原本》方法,试图给中国古代的勾股算术加以严格的论述[3]131.它表明徐光启在一定程度上已经接受了《几何原本》的逻辑推理思想。徐光启对数学的认识和数学研究的方法都有独特的见解。他认为中国当时数学不发达的基本原因“,其一为名理之儒,土苴天下之实事;其一为妖妄之术,谬言数有神理,能知来藏往,靡所不效”.前者指当时一般学者名儒鄙视数学这一实用之学;后者指数学研究陷入神秘主义泥坑。他把讲究数学原理的《几何原本》看成是一切数学应用的基础。
徐光启翻译《几何原本》,振兴数学,指出明代数学落后的原因,提出“:度数旁通十事”的数学应用,预设公理、公设、定义,《几何原本》集演绎法大成,拥有逻辑严密、推理清晰的体系,讲求实用与计算技巧的提升“,能令学理者祛其浮气,练其精心,学事者资其定法,发其巧思”.
1.促使人们形成逻辑思维。徐光启是一个觉悟者,他认识到西方科学的重大价值,放下自己的传统思想专心翻译书籍,打破中国科学思想的压抑状态,使得科学在士人眼中有了新的位置,使人们可以通过西方科技思想去解决生活中遇到的问题,能够直观面对困难,相信科学[4]190.徐光启翻译《几何原本》,破除中国古代的“唯风土论”思想,并且还详细论述中国数学落后的原因,指出数学应用在社会实践中的广泛性,使人们能够运用逻辑推理去思考问题,简化实践中的难题。徐光启翻译《几何原本》,向国人普及科学,改变人的根本思想。徐光启指出,所有的问题都可以用科学来解决,更加有效、针对性更强。中国科技发展中,《几何原本》为改变中国科学面貌,将西方先进科学技术知识采用简单易懂的语言介绍给中国的学者,这在一定程度上影响中国数学、地理学、天文学的进步,变革中国科学研究方法,转变中国古代小农经济科学形态,趋向逻辑论证、数学分析科学特征,使人们对事物的描述更加严谨具体,不再是仅存于表象;同时也开始用实验为手段来论证事实,分条分析、严密严格论证问题,开对事物做出科学研究。注重逻辑体系中概念、符号的概括抽象,运用《几何原本》知识,演绎出逻辑严密的框架,这对于我国后世科技理论的形成发挥直接作用。
2.影响我国数学成果的提升。清代数学家梅文鼎、明安图、李善兰的一些成果都受益于《几何原本》,如李善兰的尖锥积分公式,基于多种几何模型的无穷级数建模,三角形的面积,对勾股定理的证明,勾股相求,勾股测望,平面形相容问题,理分中末线,平面几何图解法等,都用到《几何原本》中的主要思想[5]36.西方数学基础为欧几里得《几何原本》,徐光启翻译并出版《几何原本》,使中国数学知识的结构发生了重要变化,运用《几何原本》中的公式定理,把古代已有的数学方法更加严格化,创立出新的数学证明系统,通过《几何原本》将西方科学中国的三角学与测量术传入到中国,向中国介绍西方数学,不单单是数学方面的科技影响,更是思想方法的影响[6]27.徐光启翻译出版的《几何原本》中,有点、线、面、角、平行、相似等概念术语;徐光启将《几何原本》翻译得通畅简易,使人们更容易接受《几何原本》中的`科学知识,促进我国科技的提升。
3.影响数学教学。在数学教育中渗透公理化方法,以突破传统中国的“天人合一”整体思维方式,把社会中的道理分为物理、至理以及类似自然的科学,体现的是思维的逻辑性、严密性和表达方式的简洁性,抽象化表达内容,这对于培养学生在数学中的逻辑思维起到一定的积极作用,同时也有利于提升人们的素质教育。《几何原本》应用到数学教学中,也会产生一些负面影响,这就主要表现在数学教材方面,它不仅与实际问题脱节,还会导致教学中对抽象数学结论的不深刻,难以运用数学手段解决数学问题。因此,在数学教学中,可以通过《几何原本》的逻辑思维,将数学教学与逻辑思维相互结合,简化问题,提升解题认知能力。如在《几何原本》中提到的透视法,就是在绘画中可以运用数学理论,这将会影响中国的绘画艺术,起到一定的补充、完善作用,弥补传统数学中的不足。同时,《几何原本》中也传入我国一些三角学知识,主要包括平面三角学方面的知识,如明末《崇祯历书》中记载的《大测》、《测量全义》,为人们介绍西方三角学;同时在《测量全义》中,也介绍球面三角学;《测量全义》、《大测》、《割圆八线表》,还介绍三角函数表;故此,在数学教学中,能够正确把握教材,将《几何原本》发展史融入数学教学中,在抽象理论定性中,来加深理解,体现了数学模型方法在课程中的渗透,不仅可以充分反映出数学知识的演变过程,也可以准确把握数学中的辩证关系,取得良好的教育教学效果。
综上所述,在中西文化交流背景下,徐光启的《几何原本》翻译成功,使《几何原本》为中国传统数学提供了新的数学内容,改善传统数学教学思维模式,不仅使中国士人对于西方数学知识加深了解,同时,它所代表的逻辑推理方法以及科学实验,为我国近代科学的产生与发展提供重要线索,对我国科技发展也起到一定推进作用。
参考文献:
[1]宋芝业。徐、利译《几何原本》若干史实新证[j].山东社会科学,2010(4)。
[2]徐光启。徐光启文集[m].上海古籍出版社,1984.
[3]宋芝业,王雪源。为什么翻译《几何原本》---《几何原本》(前六卷)翻译过程中的中西比较[j].北京理工大学学报,2010(5),[4]李春勇。徐光启评传[m].中国思想家评传丛,2010.
[5]杨泽忠。利玛窦和徐光启翻译《几何原本》的过程[j].数学通报,2012(4)。
[6]纪志刚。汉译《几何原本》的版本整理与翻译研究[j].上海交通大学学报,2013(3)。
读几何原本读后感篇四
只要上过初中的人都学过几何,可是不一定知道把几何介绍到中国来的是明朝的大科学家徐光启与来自意大利的传教士利玛窦,更不一定知道是徐光启把这门“测地学”创造性地意译为“几何”的。从1667年《几何原本》前六卷译完至今已有四百年,11月9日上海、台湾等地举行了形式多样的纪念活动。来自意大利、美国、加拿大、法国、日本、比利时、芬兰、荷兰、中国等9个国家及两岸四地的60余位中外学者聚会徐光启的安息之地——上海徐汇区,纪念徐光启暨《几何原本》翻译出版400周年。
“一物不知,儒者之耻。”
徐光启家世平凡,父亲是一个不成功的商人,破产后在上海务农,家境不佳。徐光启19岁时中秀才,过了16年才中举人,此后又7年才中进士。在参加翰林院选拔时列第四名,即被选为翰林院庶吉士,相当于是明帝国皇家学院的博士研究生。二名,名次靠后,照理没有资格申请入翰林院。他的同科进士、也是他年满花甲的老师黄体仁主动让贤,把考翰林院的机会让给了他。
《明史·徐光启传》中开篇用33个字讲完他的科举经历,紧接着就说他“从西洋人利玛窦学天文、历算、火器,尽其术。遂遍习兵机、屯田、盐策、水利诸书”,可见如果没有跟随利玛窦学习西方科学,徐光启只是有明一代数以千万计的官僚中不出奇的一员。但是因为在1600年遇上了利玛窦,且在翰林院学习期间有机会从学于利玛窦,他得从一干庸众中脱颖而出。
利玛窦(matteoricci)1552年生于意大利马切拉塔,1571年在罗马成为耶稣会的见习修士,在教会里接受了神学、古典文学和自然科学的广泛训练,又在印度的果阿学会了绘制地图和制造各类科学仪器,尤其是天文仪器。
利玛窦于1577年5月离开罗马,于1583年2月来到中国。8月在广东肇庆建立“仙花寺”,开始传教。可是一开始很不顺利。为此,利玛窦转变了策略,决定采取曲线传教的方针,为了接近中国人,利玛窦不仅说中文,写汉字,而且生活也力求中国化。正式服装也改成了宽衣博带的儒生装束。
1598年6月利玛窦去北京见皇帝,未能见到,次年返回南京。在南京期间,利玛窦早已赫赫有名,尤其是他过目不忘、倒背如流的记忆术给人留下了深刻的印象,一传十,十传百,已神乎其神。加之利玛窦高明的社交手段,以及他的那些引人入胜的、代表着西方工艺水平的工艺品和科学仪器,引得高官显贵和名士文人都乐于与他交往。利玛窦则借此来达到自己的目的——推动传教活动。
也正是利玛窦的学识和魅力吸引了徐光启。根据利玛窦的日记记载,约在1597年7月到1600年5月之间。徐光启与利玛窦曾见过一面,利玛窦说这是一次短暂的见面。徐光启主要向利玛窦讨教一些基督教教义,双方并没有深谈。与利玛窦分手之后,徐光启花了两三年时间研究基督教义,思考自己的命运。1603年,徐光启再次去找利玛窦,但利玛窦这时已经离开南京到北京去了。徐光启拜见了留在南京的传教士罗如望,与之长谈数日后,终于受洗成为了基督教徒。
1601年1月,利玛窦再次晋京面圣,此次获得成功,利玛窦带来的见面礼是自鸣钟和钢琴,这两样东西是要经常修理的,于是他被要求留在京城,以便可以经常为皇帝修理这两样东西。正好1604年4月,徐光启中进士后要留在北京。两人的交往也多起来。在此之前,徐光启对中国传统数字已有较深入的了解,他跟利玛窦学习了西方科技后,向利玛窦请求合作翻译《几何原本》,以克服传统数学只言“法”而不言“义”的缺陷,认为“此书未译,则他书俱不可得论。”利玛窦劝他不要冲动,因为翻译实在太难,徐光启回答说:“一物不知,儒者之耻。”
大学生读后感|读一本好书读后感|好书推荐。
大学生读后感|读一本好书读后感|好书推荐。
读几何原本读后感篇五
《几何原本》的作者欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学。
《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。
就我目前拜访的几个命题来看,欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于欧几里得反复运用一种思想、使读者不断接受的缘故吧。
不过,我要着重讲的,是他的哲学。
书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”。这些命题,我在读时,内心一直承受着几何外的震撼。
大多数现代人,好奇心似乎已经泯灭了。这里所说的好奇心不单单是指那种对新奇的事物感兴趣,同样指对平常的事物感兴趣。比如说,许多人会问“宇航员在空中为什么会飘起来”,但也许不会问“我们为什么能够站在地上而不会飘起来”;许多人会问“吃什么东西能减肥”,但也许不会问“羊为什么吃草而不吃肉”。
我们对身边的事物太习以为常了,以致不会对许多“平常”的事物感兴趣,进而去琢磨透它。牛顿为什么会发现万有引力?很大一部分原因,就在于他有好奇心。
如果仅把《几何原本》当做数学书看,那可就大错特错了:因为古希腊的数学渗透着哲学,学数学,就是学哲学。而哲学第一课:人要建立好奇心,不仅探索新奇的事物,更要探索身边的平常事,这就是我读《几何原本》意外的收获吧!
读几何原本读后感篇六
在文艺复兴以后的欧洲,代数学由于受到阿拉伯的影响而迅速发展。另一方面,17世纪以后,数学分析的发展非常显著。因此,几何学也摆脱了和代数学相隔离的状态。正如在其名著《几何学》中所说的一样,数与图形之间存在着密切的关系,在空间设立坐标,而且以数与数之间关系来表示图形;反过来,可把图形表示成为数与数之间的关系。这样,按照坐标把图形改成数与数之间的关系问题而对之进行处理,这个方法称为解析几何。恩格斯在其《自然辩证法》中高度评价了笛卡儿的工作,他指出:“数学中的转折点是笛卡儿的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就成为必要的。了……”
事实上,笛卡儿的思想为17世纪数学分析的发展提供了有力的基础。到了18世纪,解析几何由于l。欧拉等人的开拓得到迅速的发展,连希腊时代的阿波罗尼奥斯(约公元前262~约前190)等人探讨过的圆锥曲线论,也重新被看成为二次曲线论而加以代数地整理。另外,18世纪中发展起来的数学分析反过来又被应用到几何学中去,在该世纪末期,g。蒙日首创了数学分析对于几何的应用,而成为微分几何的先驱者。如上所述,用解析几何的`方法可以讨论许多几何问题。但是不能说,这对于所有问题都是最适用的。同解析几何方法相对立的,有综合几何或纯粹几何方法,它是不用坐标而直接考察图形的方法,数学家欧几里得几何本来就是如此。射影几何是在这思想方法指导下的产物。
早在文艺复兴时期的意大利盛行而且发展了造型美术,与它随伴而来的有所谓透视图法的研究,当时有过许多人包括达·芬奇在内把这个透视图法作为实用几何进行了研究。从17世纪起,g。德扎格、b。帕斯卡把这个透视图法加以推广和发展,从而奠定了射影几何。分别以他们命名的两个定理,成了射影几何的基础。其一是德扎格定理:如果平面上两个三角形的对应顶点的连线相会于一点,那么它们的对应边的交点在一直线上;而且反过来也成立。其二是帕斯卡定理:如果一个六角形的顶点在同一圆锥曲线上,那么它的三对对边的交点在同一直线上;而且反过来也成立。18世纪以后,j。—v。彭赛列、z。n。m。嘉诺、j。施泰纳等完成了这门几何学。
读几何原本读后感篇七
古希腊数学家欧几里得写出的数学史上里程碑式的著作,就是这本《几何原本》。
这本书基于柏拉图、欧多克斯等前人的研究成果,通过公理化思想和论证数学的逻辑,将零散的数学理论构建、组织成一个系统的数学体系。点是没有部分的那种东西,线是没有宽度的长度,面是只有长度和宽度的那种东西,就是他对几何图形里面最基本的点、线、面这三个元素进行的抽象而概括的描述。
《几何原本》从5个公设和5个公理出发,以逻辑证明的方法,将一个个定理进行推论。这些定理和证明涉及几何与代数、圆与角、圆与正多边形、比例、相似、和数论。几何基础有勾股定理、5种正多面体和不可公约量,求解的问题包括三等分任意角、求作某个立方体、化方为圆等等。几何与代数涉及几何图形当中的面积、线段的长度和角的相互关系。圆与角阐述的是圆、弦、切线、割线、圆心角、圆周角的定理,比如弓形、等角、圆的相交、弦的平分等。圆与正多边形讨论的是圆和内接外切的正多边形的角、内切圆、内接正五边形等图形。比例有正比例、反比例、分配比例,以及同倍数、等倍量等等。相似描述了比例的属性,即许多事物和图形以相等或相似的形式存在,从事物之间的相似性特征,归纳推理事物存在的原理。比如在相似三角形中,等角所对的边对应成比例。两个三角形的三边对应边成比例,对对应角是相等的。数论描述了世界构成的数量关系,将数作为整个自然的本源,也揭开了古希腊美学思想的开端。
读几何原本读后感篇八
今天我读了一本书,叫《几何原本》。它是古希腊数学家、哲学家欧几里德的一本不朽之作,集合希腊数学家的成果和精神于一书。
《几何原本》收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题,即先提出公理、公设和定义,再由简到繁予以证明,并在此基础上形成欧氏几何学体系。欧几里德认为,数学是一个高贵的世界,即使身为世俗的君主,在这里也毫无特权。与时间中速朽的物质相比,数学所揭示的世界才是永恒的。《几何原本》既是数学著作,又极富哲学精神,并第一次完成了人类对空间的认识。古希腊数学脱胎于哲学,它使用各种可能的描述,解析了我们的宇宙,使它不在混沌、分离,它完全有别于起源并应用于世俗的中国和古埃及数学。它建立起物质与精神世界的确定体系,致使渺小如人类也能从中获得些许自信。
本书命题1便提出了如何作等边三角形,由此产生了三角形全等定理。即角、边、角或边、角、边或边、边、边相等,并进一步提出了等腰三角形——等边即等角;等角即等边。就这样欧几里德分别从点、线、面、角四个部分,由浅入深,提出了自己的几何理论。前面的命题为后面的铺垫;后面的命题由前面的推导,环环相扣,十分严谨。
读几何原本读后感篇九
曾几何时,故人与我共感春华秋实;曾几何时,故人与我念念不愿相离;曾几何时,故人与我情谊似火;曾几何时,故人同我形影相依。
还记得懵懂无知,那时的我们相知相伴六年——一起感叹人生,一起放空自己,一起展望未来。但正如老套的电视剧一般,我们在六年级时因为差异而渐行渐远:她选择到条件更好的民办中学学习,而我则选择老老实实地就近划分。我们在星空下相约即使两人分离情谊仍永生不变的誓言,但时间却给我们上了一堂永生难忘的课。
初中这两年,因为学业的紧张我们再也没有见面,只是偶尔在网上进行短暂的聊天。我们身边最亲近的朋友也在渐渐改变,我和她也开始渐行渐远渐无书。联系如同风筝的线——无法经受时光的蹉跎而渐渐断开。
直到今年初二学期的结束,面临初三学年的到来我感受到了前所未有的彷徨与担忧,我下定决心选择去面对她,我希冀着我能同以前那样向她分享我的一切。
内心极度忐忑紧张的我慢慢吞吞地去往她家,却发现偌大的房间里只有她空身一人,我想给她一个大大的拥抱,但双手却无可奈何地耷拉着。
我心里不知为何蓦然一痛,但仍保持笑容。
我走向她的书桌,发现书桌上‘空无一物’,只有各式各样的练习题集。我装作无意地问道:“唉,这桌子上不是有以前我们在元旦晚会上的合照吗,你不小心。弄丢了吗?”她却坦坦然然地说:“不是啊,太占位置了,我给她收起来了。”
字字如利剑般刺向了我。
一时竟无语凝噎,我竭尽全力挤出了一个笑容:“啊,也对,那没事我就不打扰你学习了,先走了。”
那些曾几何时想如今竟只是水中月、镜中花。
人生若只如初见当时只道是寻常。
读几何原本读后感篇十
公理化结构是近代数学的主要特征。而《原本》是完成公理化结构的最早典范,它产生于两千多年前,这是难能可贵的。不过用现代的标准去衡量,也有不少缺点。首先,一个公理系统都有若干原始概念,或称不定义概念,作为其他概念定义的基础。点、线、面就属于这一类。而在《原本》中一一给出定义,这些定义本身就是含混不清的。其次是公理系统不完备,没有运动、顺序、连续性等公理,所以许多证明不得不借助于直观。此外,有的公理不是独立的,即可以由别的公理推出。这些缺陷直到18希尔伯特(hilbert)的《几何基础》出版才得到了补救。尽管如此,毕竟瑕不掩瑜,《原本》开创了数学公理化的正确道路,对整个数学发展的影响,超过了历史上任何其他著作。
《原本》的两个理论支柱――比例论和穷竭法。为了论述相似形的理论,欧几里得安排了比例论,引用了欧多克索斯的比例论。这个理论是无比的成功,它避开了无理数,而建立了可公度与不可公度的正确的比例论,因而顺利地建立了相似形的理论。在几何发展的历史上,解决曲边围成的面积和曲面围成的体积等问题,一直是人们关注的重要课题。这也是微积分最初涉及的问题。它的解决依赖于极限理论,这已是17世纪的事了。然而在古希腊于公元前三四世纪对一些重要的面积、体积问题的证明却没有明显的极限过程,他们解决这些问题的理念和方法是如此的超前,并且深刻地影响着数学的发展。
化圆为方问题是古希腊数学家欧多克索斯提出的,后来以“穷竭法”而得名的方法。“穷竭法”的依据是阿基米得公理和反证法。在《几何原本》中欧几里得利用“穷竭法”证明了许多命题,如圆与圆的面积之比等于直径平方比。两球体积之比等于它们的直径的立方比。阿基米德应用“穷竭法”更加熟练,而且技巧很高。并且用它解决了一批重要的面积和体积命题。当然,利用“穷竭法”证明命题,首先要知道命题的结论,而结论往往是由推测、判断等确定的。阿基米德在此做了重要的工作,他在《方法》一文中阐述了发现结论的一般方法,这实际又包含了积分的思想。他在数学上的贡献,奠定了他在数学史上的突出地位。
作图问题的研究与终结。欧几里得在《原本》中谈了正三角形、正方形、正五边形、正六边形、正十五边形的作图,未提及其他正多边形的作法。可见他已尝试着作过其他正多边形,碰到了“不能”作出的情形。但当时还无法判断真正的“不能作”,还是暂时找不到作图方法。
高斯并未满足于寻求个别正多边形的作图方法,他希望能找到一种判别准则,哪些正多边形用直尺和圆规可以作出、哪些正多边形不能作出。也就是说,他已经意识到直尺和圆规的“效能”不是万能的,可能对某些正多边形不能作出,而不是人们找不到作图方法。18,他发现了新的研究结果,这个结果可以判断一个正多边形“能作”或“不能作”的准则。判断这个问题是否可作,首先把问题化为代数方程。
然后,用代数方法来判断。判断的准则是:“对一个几何量用直尺和圆规能作出的充分必要条件是:这个几何量所对应的数能由已知量所对应的数,经有限次的加、减、乘、除及开平方而得到。”(圆周率不可能如此得到,它是超越数,还有e、刘维尔数都是超越数,我们知道,实数是不可数的,实数分为有理数和无理数,其中有理数和一部分无理数,比如根号2,是代数数,而代数数是可数的,因此实数中不可数是因为超越数的存在。虽然超越数比较多,但要判定一个数是否为超越数却不是那么的简单。)至此,“三大难题”即“化圆为方、三等分角、二倍立方体”问题是用尺规不能作出的作图题。正十七边形可作,但其作法不易给出。高斯(gauss)在1719岁时,给出了正十七边形的尺规作图法,并作了详尽的讨论。为了表彰他的这一发现,他去世后,在他的故乡不伦瑞克建立的纪念碑上面刻了一个正十七边形。
几何中连续公理的引入。由欧氏公设、公理不能推出作图题中“交点”存在。因为,其中没有连续性(公理)概念。这就需要给欧氏的公理系统中添加新的公理――连续性公理。虽然19世纪之前费马与笛卡尔已经发现解析几何,代数有了长驱直入的进展,微积分进入了大学课堂,拓扑学和射影几何已经出现。但是,数学家对数系理论基础仍然是模糊的,没有引起重视。直观地承认了实数与直线上的点都是连续的,且一一对应。直到19世纪末叶才完满地解决了这一重大问题。从事这一工作的学者有康托(cantor)、戴德金(dedekind)、皮亚诺(peano)、希尔伯特(hilbert)等人。
当时,康托希望用基本序列建立实数理论,代德金也深入地研究了无理数理念,他的一篇论文发表在1872年。在此之前的1858年,他给学生开设微积分时,知道实数系还没有逻辑基础的保证。因此,当他要证明“单调递增有界变量序列趋向于一个极限”时,只得借助于几何的直观性。
实际上,“直线上全体点是连续统”也是没有逻辑基础的。更没有明确全体实数和直线全体点是一一对应这一重大关系。如,数学家波尔查奴(bolzano)把两个数之间至少存在一个数,认为是数的连续性。实际上,这是误解。因为,任何两个有理数之间一定能求到一个有理数。但是,有理数并不是数的全体。有了戴德金分割之后,人们认识至波尔查奴的说法只是数的稠密性,而不是连续性。由无理数引发的数学危机一直延续到19世纪。直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续20xx多年的数学史上的第一次大危机。
原本还研究了其它许多问题,如求两数(可推广至任意有限数)最大公因数,数论中的素数的个数无穷多等。
读几何原本读后感篇十一
《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果和精神于一身。既是数学巨著,也是哲学巨著,并且第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里,历经多次翻译和修订,自1482年第一个印刷本出版,至今已有一千多种不同版本。
除《圣经》以外,没有任何其他著作,其研究、使用和传播之广泛能够和《几何原本》相比。汉语的最早译本是由意大利传教士利玛窦和明代科学家徐光启于16合作完成的,但他们只译出了前六卷。证实这个残本断定了中国现代数学的基本术语,诸如三角形、角、直角等。日本、印度等东方国家皆使用中国译法,沿用至今。近百年来,虽然大陆的中学课本必提及这一伟大著作,但对中国读者来说,却无缘一睹它的全貌,纳入家庭藏书更是妄想。
徐光启在译此作时,对该书有极高的评价,他说:“能精此书者,无一事不可精;好学此书者,无一事不科学。”现代科学的奠基者爱因斯坦更是认为:如果欧几里得未能激发起你少年时代的科学热情,那你肯定不会是一个天才的科学家。由此可见,《几何原本》对人们理性推演能力的影响,即对人的科学思想的影响是何等巨大。在高等数学中,有正交的概念,最早的概念起源应该是毕达哥拉斯定理,我们称之为勾股定理,只是勾3股4弦5是一种特例,而毕氏定理对任意直角三角形都成立。并由毕氏定理,发现了无理数根号2。在数学方法上初步涉及演绎法,又在证明命题时用了归谬法(即反证法)。可能由于受丢番图(diophantus)对一个平方数分成两个平方数整数解的启发,350多年前,法国数学家费马提出了著名的费马大定理,吸引了历代数学家为它的证明付出了巨大的努力,有力地推动了数论用至整个数学的进步。1994年,这一旷世难题被英国数学家安德鲁威乐斯解决。
多少年来,千千万万人(著名的有牛顿(newton)、阿基米德(archimedes)等)通过欧几里得几何的学习受到了逻辑的训练,从而迈入科学的殿堂。
读几何原本读后感篇十二
也许这算不上是个谜。稍具文化修养的人都会告诉你,欧几里德《几何原本》是明末传入的,它的译者是徐光启与利玛窦。但究竟何时传入,在中外科技史界却一直是一个悬案。
著名的科技史家李约瑟在《中国科学技术史》中指出:“有理由认为,欧几里德几何学大约在公元1275年通过阿拉伯人第一次传到中国,但没有多少学者对它感兴趣,即使有过一个译本,不久也就失传了。”这并非离奇之谈,元代一位老穆斯林技术人员曾为蒙古人服务,一位受过高等教育的叙利亚景教徒爱萨曾是翰林院学士和大臣。波斯天文学家札马鲁丁曾为忽必烈设计过《万年历》。欧几里德的几何学就是通过这方面的交往带到中国的。14世纪中期成书的《元秘书监志》卷七曾有记载:当时官方天文学家曾研究某些西方着作,其中包括兀忽烈的的《四季算法段数》15册,这部书于1273年收入皇家书库。“兀忽烈的”可能是“欧几里德”的另一种音译,“四擘”
是阿拉伯语“原本”的音译。著名的数学史家严敦杰认为传播者是纳西尔·丁·土西,一位波斯著名的天文学家的。
有的外国学者认为欧几里德《几何原本》的任何一种阿拉伯译本都没有多于13册,因为一直到文艺复兴时才增辑了最后两册,因此对元代时就有15册的欧几里德的几何学之说似难首肯。
有的史家提出原文可能仍是阿拉伯文,而中国人只译出了书名。也有的认为演绎几何学知识在中国传播得这样迟缓,以后若干世纪都看不到这种影响,说明元代显然不存在有《几何原本》中译本的可能性。也有的学者提出假设:皇家天文台搞了一个译本,可能由于它与的中国数学传统背道而驰而引不起广泛的兴趣的。
读几何原本读后感篇十三
早起忽然下起雨来了。
雨水下得浓重浓重的,只硬生生地冲击着伞面,我常常感到手里的伞在微微地晃动,似乎有吹得散了架的危险。我急步走着,又竭力躲开地面薄薄的积水。地面上拥着的'雨水如同一面镜子,晃出些亮堂堂的人影来,还有我的深红色的伞,统统映照在地上。
雨中的风景熟悉而亲切,即便是现在患了感冒,我却依旧可以从空气中敏锐地嗅到一两丝的旧时候。那些自以为埋藏在心底极深的情愫,却在雨水中显露无遗。如同泛泛的尘埃,只零星的变动,便会不安地吹起所有的故事。如烟花一样灿烂而转瞬即逝,在巨响中绽放出最耀眼的花枝,又消融在一片黯然的蓝色。
夏日的时候,放学时常常会忽然聚起一场暴雨。倾盆而下,敲打着窗镜,而那明媚的日光也随白云掩去,只留下反复响着的雨水。学校并不让我们在大雨中自己归家的,于是便一个个地等待着家长。整个教学楼投入了一种急乱的不安之中,混乱的脚步声,家长的吵嚷声。教室里也便是炸了一样的喧嚣着。这时候,大家便是自由的了。前前后后的几个同学聚在一起,玩些尽兴的游戏,嬉笑着闹成一片。阴郁的天气在如此的情境里,却也再没有令人忧愁的魔力。我们在一起“打手”,而我常常是输了被打手的那个,又因为不够机敏,几回合下来手便是通红通红地涨着了。或者是摇晃着我的小骰子,猜着点数,玩些幸运型的游戏。我总是离开的最晚的那个——因为父母都不在这边,只有年迈的奶奶可以接我。在大家统统离开,只留下空空的椅子的时候,我会微蹙着眉,怔怔地望着窗外。这时候,教室又沉浸在一种少有的沉静,浓重浓重地沉寂着。我惧怕老师忽然同我说些什么,便往往做出在想事情的样子,其实,又有些什么呢,只是脑子里混沌的一片罢了。到奶奶来接我的时候,天便约莫放晴了。我只和奶奶在校园里走,听那些零星拉长的雨声。
也许,此时此刻雨幕中的我又会成为未来的我的过去。于是,此时此刻的风景,又将成为那时候的故事。
读几何原本读后感篇十四
《几何原本》作为数学的圣经,第一部系统的数学著作,牛顿,爱因斯坦,就是以这种形式写的《自然哲学的数学原理》和《相对论》,斯宾诺莎写出哲学著作《伦理学》,伦理学可以作为哲学与社会科学以及心理学的接口,都是推理性很强。
几何原本总共13卷,研究前六卷就可以了,因为后边的都是应用前边的理论,应用到具体的领域,无理数,立体几何等领域,几何原本我认为最精髓的就是合理的假设,对点线面的抽象,这样才得以使得后面的定理成立,其中第五个公设后来还被推翻了,以点线面作为基础,以欧几里得工具作为工具,进行了各种几何现象的严密推理,我认为这些定理成立的条件必须是在,对几条哲学原则默许了之后,才能成立。主要是最简单的几何形状,从怎么画出来,画出来也是有根据的,再就是各种形状的性质,以及各种形状之间关系的定理,都是一步一步推理出来的。
在几何原本后续的有阿波罗尼奥斯的《圆锥截线论》,牛顿的《自然哲学的数学原理》,算是比较系统的数学著作,也都是用欧几里得工具进行证明的,后来的微积分工具的出现,我认为是圆周率的求解过程,无限接近的思想,才使得微积分工具产生,现代数学看似阵容豪华,可是并没有新的工具的出现,只是对微积分工具在各个形状上进行应用,数学主要是在空间上做文章,现在数学能干的活看似挺多,但是也要得益于物理学的发展,数学一方面往一般性方面发展,都忘了,细想数学思想是比较没什么,只是脑力劳作比较大,特别是只是纯数学研究,不做思想的人,很累也做不出有意义的工作。
看完二十世纪数学史,发现里面的人的著作,我一本也不想看,太虚。
读几何原本读后感篇十五
望月怀古,登楼问心。古往今来,多少文人墨客,登楼凭栏眺,眼所见,心就到;眼未见,心也到。
谢朓楼,宣城名楼,李白在秋高气爽的日子里登上此楼,顺口吟出:。
江城如画里,山晚望晴空。
两水夹明镜,双桥落彩虹。
人烟寒橘柚,秋色老梧桐。
谁念北楼上,临风怀谢公。
此时,眼中是满满的秋色。首联大处落笔,概述眼中所见景色之美。接着,颔联和颈联就“如画里”“望晴空”进行了具体的描绘。如此美景,诗人怀念起了建成这个登览圣地的谢朓公。如果,此刻,他也在此,一同作诗唱和,这秋色则会更加不同。
这首诗语言清浅,音韵流畅,朗读时画面呈现在眼前,美得简单澄澈,无豪情无幽怨,闲适轻松。
同样是登楼远眺,人人可见之景,却因心境的不同,表现形式不同,意味则大不相同。被称为词中千中数一的《菩萨蛮(平林漠漠烟如织)》和刚才李白的《秋登宣城谢脁北楼》便是截然不同。这首词据传也是李白所作,但是浦江清先生考证认为非李白所作。全词如下:。
平林漠漠烟如织,寒山一带伤心碧。暝色入高楼,有人楼上愁。玉梯空佇立,宿鸟归飞急。何处是归程,长亭连短亭。
在这首词里,登的是什么楼已经不重要了。词的中心放到了词人自己的身上。词人登楼,看到整齐的一排排树林,看到升起的雾霭,直至夜色浸入高楼。词人的愁绪也随着夜色布满,然后叹息自问:“何处是归程?”
上阙提到“有人楼上愁”,下阙点明原因,更重要的看不到的归程被词人借用庾信《哀江南赋》:“十里五里,长亭短亭”表达出来,心里的感受更重于眼里的感受,那么漫长的归家路在哪里?在这同时,打开了读者的思绪,增添读者的想象,使这首词词变得余味无穷。
前者《秋登宣城谢脁北楼》更多描述眼中之景,巧妙的比喻足见诗人刻画的功力。落点在景,但无余味。后者重在讲求炼字刻画,沉浸于“我”之中。落点在人,寻求共鸣。此为我见二者异矣。