对数函数说课稿(专业19篇)
在一本书籍或文章中,总结部分常常是对前文的归纳和概括。总结时可以加入个人的思考和建议,具有一定的独特性。看别人的总结范文可以帮助我们更好地组织思路和结构。
对数函数说课稿篇一
今天我说课的内容是人教版八年级上册第十四章一次函数第一课时,本节内容四个课时完成。我设计的是第一课时的教学,主要内容是一次函数概念。学生已经学过了正比列函数之后来学习一次函数。一次函数既为前面学过的正比列函数知识得以概括和升华,也为后面学习函数知识打下了坚实的基础,因此,一次函数的学习起到了承上启下的作用。
1.知识技能目标。
(1)掌握一次函数的概念和解析式的特点;
(2)知道一次函数和正比列函数的关系;
(3)会利用一次函数解决简单的数学问题。
2.过程和方法。
(1)通过登山问题和正比例函数的概念引出一次函数的概念,培养学生的探究能力;
(2)在教学过程中,让学生学会知识迁移、以及类比的思想。
3.情感和态度。
(1)通过“登山问题”的研究,体会建立函数模型思想;
(1)通过本节课的学习,向学生渗透数学和实践生活的紧密联系。
1.一次函数的定义和解析式的特点;
3.一次函数定义的应用以及解决相关的问题。
一次函数和正比列函数的关系以及一次函数的应用。
二、学情分析。
学生已经学过了正比列函数的相关知识,并结合实际的情境认识了正比例函数的意义、图像和性质以及一元一次方程等相关的知识。能利用正比列函数的思想解决简单的实际问题,为学生学习一次函数奠定了基础。
三、学法分析。
用观察、思考、概括、总结、归纳、类比、联想是学法指导的重点。
四、教法分析。
采用“引导------发现式”的教学法。
五、教学过程。
对数函数说课稿篇二
本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。
2、教学目标的确定及依据。
依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
(1)理解对数函数的概念、掌握对数函数的图象和性质。
(2)培养学生自主学习、综合归纳、数形结合的能力。
(3)培养学生用类比方法探索研究数学问题的素养;
(4)培养学生对待知识的科学态度、勇于探索和创新的精神。
(5)在民主、和谐的教学气氛中,促进师生的情感交流。
3、教学重点、难点及关键。
重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。
难点:底数a对对数函数的图象和性质的'影响;
关键:对数函数与指数函数的类比教学。
由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点。
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)启发引导学生思考、分析、实验、探索、归纳。
(2)采用"从特殊到一般"、"从具体到抽象"的方法。
(3)体现"对比联系"、"数形结合"及"分类讨论"的思想方法。
(4)投影仪演示法。
在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
(2)探究式学习法:学生通过分析、探索,得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
这样可发挥学生的主观能动性,有利于提高学生的各种能力。
在认真分析教材、教法、学法的基础上,设计教学过程如下:
(一)创设问题情景、提出问题。
在某细胞分裂过程中,细胞个数y是分裂次数x的函数,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。
问题一:这是一个怎样的函数模型类型呢?
设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念。
(二)意义建构:
同样,在前面提到的放射性物质,经过的时间x年与物质剩余量y的关系式为,我们也可以把它改为对数式,,其中x年也可以看作物质剩余量y的函数,()可见这样的问题在现实生活中还是不少的。
设计意图:前面的问题情景的底数为2,而这个问题情景的底数为0、84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。
但在习惯上,我们用x表示自变量,用y表示函数值。
问题一:你能把以上两个函数表示出来吗?
问题二:你能得到此类函数的一般式吗?(在此体现了由特殊到一般的数学思想)。
问题三:在中,a有什么限制条件吗?请结合指数式给以解释。
问题四:你能根据指数函数的定义给出对数函数的定义吗?
问题五:与中的x,y的相同之处是什么?不同之处是什么?
问题六:与中的x,y的相同之处是什么?不同之处是什么?
问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?
(提示学生进行类比学习)。
合作探究1;借助于计算器在同一直角坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求他们之间的关系。
合作探究2:当函数与的图象之间有什么关系?(在这儿体现"从特殊到一般"、"从具体到抽象"的方法)。
合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质。
(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。
问题1:对数函数()是否具有奇偶性,为什么?
问题2:对数函数(),当时,x取何值,y0,x取何值,y,当呢?
问题3:对数式的值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述。
(三)课堂小结。
由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等)。
对数函数说课稿篇三
各位老师,大家好!
我是张苗,来自河北师范大学xxx级数信c班。今天我要说课的内容是正弦函数的图像与性质的第一课时的内容,此节内容是人教b版高中数学必修四《基本初等函数二》当中的第一章第三节第一小节的内容。下面我将从教学材料的分析、学生学情的分析、教学方法的选择、教学过程的设计、教学结果的反思五各方面来做教学说明。
在分析教学材料的时候我吧他们分为三个方面来讨论:。
(1)教材的地位及作用。初中的时候我们已经学习了一次函数、二次函数等一些简单的初等函数,今天学习的这个正弦函数是我们高中阶段最后的一类初等函数,它是刻画生活中周期现象问题的典型的函数模型,与教学大纲中的从实际出发相吻合。在初中的时候我们也学习了一些三角形及其诱导公式的知识,这些知识为我们的正弦函数的学习提供了良好的基础。今天我们要正式的学习正弦函数的图像及其性质。为以后学习余弦函数的图像及其性质打下坚实的基础。
(2)教学目标。数学课程标准在总体上把教学目标分解为“知识与技能”、“过程与方法”、“情感态度价值观”三个不可分割、相互交融、相互渗透的维度。接下来我将从这三个角度来说明我的教学目标。:我将会用正弦线画出正弦函数图像、用“五点法”画正弦函数简图作为知识与技能的目标,提升学生的观察能力与作图能力、渗透数形结合与转化划归的数学思想方法、培养学生自主探索和和合作的能力作为我们讲课时的过程与方法,最后通过作图,使学生感受波形曲线的流畅美、对称美。使学生体会事物周期变化的奥秘。
(3)教学的重点与难点。本节课是在教学生如何画正弦函数的图像,所以用五点作图法画函数的图像时本节课的重点。而引入正弦函数的图像时所用的正弦线对于学生来说,有些遗忘。吧正弦线重拾起来,并且将它引入正弦函数图像是本节课的难点。
作为教师,我们面对的是活生生的个体,个体存在着不确定性。所以面对这各种各样的不同层次的学生的时候,我们硬度他们进行全面的分析,并且准确的理解他们。(1)从学生知识层面看:通过初中正弦函数值相关知识的学习,学生具备了一定的知识经验和基础;通过必修一函数图像的学习,对作图也有了一定的认识。(2)从学生能力层面看:学生已有一定的分析、推理、概括能力,以及了解了一些抽象的理论知识,具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还待进一步加强。(3)从学生情感培养方面看:思维较活跃,对具体形象的实例比较感兴趣,具有一定的数学基础及解决问题的能力。但对学习抽象知识具有抵触情绪,缺乏主动性。
本课内容蕴含着数形结合等丰富的数学思想,是培养学生观察能力、概括能力、探究能力和创新意识的重要素材。所以我决定采用启发式教学与情景教学相结合的方式来进行我的教学活动,并使用多媒体辅助。
基于以上的种种,我决定设计以下的教学过程,将教学分成以下几个层次:1,创设情境、提出问题,2,问题驱动、探索新知,3,实战演练、巩固新知,4,总结反思、提高认识,5,任务延后、自主探究。
在创设情境、提出问题中,我通过给同学展示一个生活中见过的例子,让学生观察了解日常生活中的实际问题转化为数学问题,提高学生对数学的学习兴趣。问题驱动、探索新知,在这一方面我通过旧知识来引导学生学习新知识,了解新技能,从中发现问题并学会怎么解决新问题,通过学生的实践来获得新知识使他们印象深刻。并有我讲出本节课的重点“五点作图法”实战演练、巩固新知,学习了新知识后我们得通过实际演练,归纳总结,让学生迅速熟悉“五点作图法”在给与一些变式让同学自己动手去实践。接着总结反思、提高认识,在这部分内容中,我决定让学生自己去总结然后我去补充他们遗漏的那些内容,再次使学生明确教学内容以及教学的重点难点。任务延后、自主探究。在这块设计中就是给学生留一些课后习题,以及对于不同个程度的学生来说,不同难度的思考题,让他们依据自己自身的实际情况自主的增减练习。
本节课操作性较强,学生活动量较大新课从试验演示入手,形成图像的感知后,升级问题,探索正弦曲线的准确做法,形成理性认识,问题设置层层深入,引导学生发现问题,解决问题,并对方法进行归纳总结,体现了新课标以学生为主体,教师为主导的课堂教学理念,用多媒体课件可生动的表现出图像的变化过程,更好的突破难点。
本节课所画图像较多,能迅速准确的画出函数图像对学生来说是一个较高的要求,重在学生动手操作,不要怕学生出错,通过画图可以培养学生的动手能力,模仿能力。开始比较慢,尤其是五点法每个点都要准确的找到,然后画出图像。通过后面知识的学习实践证明,本教学设计科学、高效,教学目标达成度良好。
这位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,应随着学生与教师的灵性发挥随机应变。预设效果如何,最终还有待于课堂教学实践的检验。不足之处希望各位老师给与批评指正,谢谢。
对数函数说课稿篇四
本节是《反比例函数》的小结与复习课。函数本身是数学学习中的重要内容,而反比例函数又是基础函数。反比例函数是继一次函数学习之后又一类新的函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。通过本节课对本章知识的复习,让学生进一步体会反比例函数的意义,了解反比例函数的图象,能根据图象和解析式进一步探索并理解反比例函数的性质,能用反比例函数解决某些简单的实际问题。因此,本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过程。
根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:1、知识与能力目标:(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。
2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。
3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。
由于本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过程。可以帮助学生形成解决问题的一些基本策略,提高分析问题,解决问题的能力和发展他们的创新精神。所以我确定本节课的教学重点是进一步掌握反比例函数的概念、图像、性质并正确运用。教学难点是反比例函数性质的灵活运用。数形结合思想的应用。
根据教材特点及学生的年龄特点、心理特征和认知水平,我采用合作交流、集体探究的方法启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
主要说明本章的内容由反比例函数的意义;反比例函数的图象与性质;利用反比例函数解决实际问题三大块组成。
1、复习反比例函数概念及其等价形式。并设计了相应的配套练习:判断反比例函数并指出其中的k值;结合物理知识写函数关系式,体会数学知识来源于生活,考查学生对反比例函数系数及自变量的指数的掌握情况。
2、复习反比例函数的图象与性质,并用来解决问题。也设计了相应的配套练习:根据k值确定反比例函数所在象限及其一支(x0)的增减性,根据函数关系式和给定自变量(函数值)求函数值(自变量的值);由图像性质和k值的关系确定m的取值范围;用待定系数法求反比例函数解析式;根据函数增减性及所给函数图像上点的横坐标判断个点函数值的大小,难度较大,学生不易掌握。
3、综合运用:给出一次函数的图像y=ax+b与反比例函数y=相交的示意图及交点m(2,m)、n(—1,—4)两点。求反比例函数和一次函数的解析式并根据图像写出反比例函数的值大于一次函数的值的x的取值范围。此类题目在中考中常见。是一次函数和反比例函数的综合应用,主要用数形结合思想和待定系数法求解,可以提高学生的观察、分析、综合应用及合情推理能力。
贯穿于整个课堂教学中,具体内容见课件。
由学生总结本节课所学习的主要内容:
让学生通过知识性内容的小结,把课堂所学的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
1、在本课时的师生互动过程中,积极创造条件和机会,让学生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。
2、尽量体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力。
3、即时训练——巩固新知。为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把配套练习中的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
4、存在的问题:学生配合不够积极,积极回答问题的学生少,学生的积极性没有充分调动起来;对中下学生关注的太少;教师说的多,学生没有充分的时间讨论交流;课堂教学内容稍多,在规定时间内没有完成教学任务。
对数函数说课稿篇五
2、教学目标的确定及依据。
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用。
(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、
分析、归纳等逻辑思维能力.。
(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数。
学的精确和美妙之处,调动学生学习数学的积极性.。
3、教学重点与难点。
重点:对数函数的意义、图像与性质.。
难点:对数函数性质中对于在与两种情况函数值的不同变化.。
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生实验、观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透类比、数形结合、分类讨论等数学思想方法.。
2、教学手段:
计算机多媒体辅助教学.。
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)类比学习:与指数函数类比学习对数函数的图像与性质.。
(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,
(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,
使问题得以圆满解决.。
1、温故知新。
设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,
有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生。
分析问题的能力.。
2、探求新知。
设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过动手操作、
观察、联想、类比、思考、分析、探索,在此过程中,通过小组讨论,
协作构建起新的知识.这充分体现了基于建构主义学习理论的探究定。
向性学习和主动合作式学习.。
3、课堂研究,巩固应用。
设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充。
分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的。
解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.。
4、课外研究。
5、课堂小结。
引导学生进行知识回顾,使学生对本节课有一个整体把握.从三方面进行小结:
(2)掌握对数函数的图像与性质,体会类比、数形结合的思想方法;
(3)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的。
解法,体会分类讨论的思想方法.。
6、课外作业。
公式无法显示,完整word文档点击下载此文件。
对数函数说课稿篇六
函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点。
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标。
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明。
对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。
(一)感知身边数学。
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。
(二)享受探究乐趣。
1、探究一次函数与二元一次方程的关系。
[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。
2、探究一次函数与二元一次方程组的关系。
[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。
(三)乘坐智慧快车。
[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。
(四)体验成功喜悦。
1、抢答题。
2、旅游问题。
[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。
(五)分享你我收获。
在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?
[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。
(六)开拓崭新天地。
1、数学日记。
2、布置作业。
[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。
四、教学设计反思。
1、贯穿一个原则以学生为主体的原则。
2、突出一个思想数形结合的思想。
3、体现一个价值数学建模的价值。
4、渗透一个意识应用数学的意识。
《一次函数与二元一次方程(组)》教案。
教学目标。
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
教学重难点。
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
教学过程。
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
(二)进行新课。
1、探究一次函数与二元一次方程的关系。
填空:二元一次方程可以转化为________。
(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?
2、探究一次函数图像与二元一次方程组的关系。
此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。
进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。
3、列一元二次不等式。
解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。
解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。
注意:所画的函数图象都是射线。
4、习题。
(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。
(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。
5、旅游问题。
古城荆州历史悠久,文化灿烂。
对数函数说课稿篇七
各位专家,各位老师,大家好!
今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节《一次函数图象的应用》第二课时,我将分以下几个方面进行分析:
新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数——研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:
(一)知识与技能目标。
1,经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。
2,经历函数图象信息的识别与应用过程,发展学生的形象思维能力。
3,更进一步培养学生的识图能力,即从“形”的方面解决问题。
(二)情感与态度目标。
1,进一步形成利用函数的观点认识现实世界的意识和能力。
2,通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用数学的兴趣,培养团队协作意识和关心时事的意识。
3,丰富学生数学学习的成功体验。
本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,
难点是富有挑战性的数学史料。
本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的“新意”。
教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。
评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针对个人和小组进行及时的赞赏和肯定。
为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。
(一)教学准备:1,提前一天了解“麦莎”的有关内容。
(二)教学过程。
全课分为五个教学环节。
1,情景引入学习新知。2分钟。
2,议一议探索新知。8分钟。
3,练一练巩固新知。10分钟。
4,试一试开阔思路。5分钟。
5,读一读培养兴趣。7分钟。
6,练一练巩固新知。8分钟。
7,想一想感悟收获。4分钟。
8,布置作业。1分钟。
具体过程如下:(多媒体课件)。
对数函数说课稿篇八
本次说课主要从五个部分进行,分别是教材分析、学情分析、教学目标分析、教学重难点分析和教学设计。
我所使用的教材选自人教20xx年版的《全日制普通高级中学教科书数学第一册(上)》,《反函数》函数部分的一个重难点,也是研究两个函数相互关系的重要内容,而反函数的概念又是其中的抽象难理解部分,因此反函数概念的学习有助于学生进一步加深对函数的认识和理解。
高一的学生在学习反函数之前,已经对函数的概念、表示法,映射等内容有了一定的认识和了解,那么有了这些储备知识,学生在本节课的学习中可以在教师的引导下进行思考和理解,从而能较好地完成对本节课的学习。
知识与技能:让学生学生了解反函数的概念;通过本节课的学习会求一些简单函数的反函数过程与方法:教学上使用引导、发现法,这主要通过从具体到抽象、从特殊到一般的过渡方式来实现。
情感与态度(也就是德育目标):通过本节课的学习,能使学生发现函数内部因素相互联系,从而培养他们善于发现分析的能力,使他们学会以发现分析的目光去关注数学,以联系发展的态度去学习数学。
本节课的教学重点放在反函数的概念、反函数的求法上,而由于反函数的概念相对抽象难理解,所以教学难点自然落在了反函数的概念理解。
下面我对第五部分的教学设计进行详细展开:我的整个教学过程分成五个环节。
一、新课引入。
由于反函数的概念比较抽象难理解,在概念讲解前先以具体例子入手逐步引导,这样比较符合学生的接受规律。
联系函数的三要素,通过给出的两对函数之间三要素变化的比较,让学生对反函数首先有了一个大概的认识,然后再对反函数下严格的定义并进行详细的讲解。
二、概念讲解。
由于教材中给出的反函数的概念较长且较抽象,会给学生在理解上产生一定的难度,故引导学生从另外的角度分三步完成对反函数概念的理解,这样较易于学生接受和理解。
1.由函数式yf(x)xayc,得到式子x(y)。
2.根据函数的概念去说明x(y)是一个函数,其中定义域为c,值域为a.
3.下结论说明函数x(y)是函数yf(x)的反函数,并记作xf1(y),一般互换x和y,写作yf1(x).
三、通过问题的讨论加深学生对反函数的认识和理解。
1.所有函数都有反函数吗?
通过两个具体的函数(在讲课的课件中有详细给出)的异同,引导分析发现并不是所有的函数都有反函数。
2.互为反函数的函数有什么关系?
通过引入部分例子分析,结合反函数的概念,引导学生从从函数的三要素出发去描述互为反函数的两函数之间的'关系:
(1)对应法则互逆(2)1(x)的反函数是什么?
1在回答了第二个问题的基础上,引导学生利用以上结论发现yf(x)的反函数恰好是yf(x),即有yf(x)与yf1(x)互为反函数。
四、例题、联系相结合,归纳求反函数的方法。
首先分析讲解例题中的(1)、(2),再让学生结合反函数概念的分步理解思考归纳,尝试从解题过程中总结出求已知函数反函数的一般方法。
1.找原函数的值域;
2.由原函数式解出x(y);
3.互换x和y的位置;
4.标注反函数的定义域。
简化为一句话:一找、二解、三换、四标。
本次课堂不再安排别的练习题,而让学生对照求法步骤,自行完成(3)、(4)的求解作为课堂练习。
五、课堂小结、布置作业。
本节课所布置的作业是求已知函数的反函数,主要为了巩固学生对本节课知识的学习并加强对反函数求法的使用。
本节课的整个课堂设计,希望能从从新课引入到概念讲解、从概念学习到深入学习理解,实现从从具体到抽象、从特殊到一般的过渡方式。我觉得这样的设计,符合学生学习的循序渐进的接受规律,在教学过程中可以贯穿着教师引导学生讨论学习的主线,体现了教师教学的辅助作用与学生学习的主体地位。
对数函数说课稿篇九
函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称;函数存在反函数的充要条件是,函数的定义域与值域是一一映射等。反函数性质:函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的`图形关于直线y=x对称;函数存在反函数的充要条件是,函数的定义域与值域是一一映射的。
对数函数说课稿篇十
(一)地位与作用:。
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,面积问题与最大利润学生易于理解和接受,故而在这儿作专题讲座。目的在于让学生通过掌握求面积、利润最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积、利润最大、运动中的二次函数、综合应用三课时,本节是第一课时。
(二)学情及学法分析。
对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
二、教学目标、重点、难点的确定。
对于函数知识来说它是从生活中广泛的实际问题中抽象出来的数学知识,所以它是解决实际问题中被广泛应用的工具。这部分知识的学习无论对提高学生在生活中应用函数知识的意识,还是对掌握运用函数知识的方法,都具有重要意义。
而二次函数的知识是九年级数学学习的重要内容之一。同样它也是从生活实际问题中抽象出的知识,又是在解决实际问题时广泛应用的数学工具。课程标准强调学生的应用意识的培养,让学生面对实际问题时,能尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。
本节课是学生在学习了二次函数的概念、图像和性质后进一步学习二次函数的应用。学生有了一定的二次函数的知识,并且在前两节课已经接触到运用二次函数的知识解决函数的最值问题,而本节课需要利用建模的思想,将实际问题转化为二次函数的问题,从而使问题得到解决。建立二次函数关系对学生而言比较困难,尤其是关注实际问题中自变量的取值范围,需要学生经历分析、讨论、对比等过程,进而得出结论。本节课的问题均来自学生的日常生活,学生会感到很有兴趣,愿意去探究。但学生基础比较薄弱,对学习数学还是有一些畏难的情绪,因此需要教师进行适当引导、分散难点。
根据上述教学背景分析,特制订如下教学目标:
1.知识与技能:学会将实际问转化为数学问题;学会用二次函数的知识解决有关的实际问题.2.过程与方法:经历实际问题转化成数学问题利用二次函数知识解决问题利用求解的结果解释问题的过程体会数学建模的思想,体会到数学来源于生活,又服务于生活。
3.情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。
利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题,就是本节课的教学重点;由于学生理解问题的能力和知识储备情况的不同,那么从现实问题中建立二次函数模型。就是本节课的一个难点。
新课程标准强调动手实践、自主探索与合作交流应该是学生学习数学的重要方式。教师应该是学生数学学习的组织者、引导者、合作者。同时,我认为教学方法与学习方法应该是相辅相成的不应该是割裂开来的,而且在一节课中教学方法和学习方法不可能是单一的而是多种方式方法并存的,因此根据本节课的内容和学生的实际情况,同时也为了突出本节课的重点并突破学习难点我确定本节课的教法与学法有启发法、探究法、试验法、课堂讨论法、练习法等。
三、教学方法与手段的选择。
四、教学设计分析。
首先创设问题情境,激发学生的学习兴趣。数学课程的内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、验证、推理与交流。而20世纪下半叶数学的一个最大进展是它的广泛应用,数学的价值观因此发生了深刻的变化。最直接的一个结论就是数学教育要重视应用意识和应用能力的培养。数学应用意识的孕育数学建模能力的培养联系学生的日常生活并解决相关的问题等方面的要求越来越处于突出的地位。所以我以养鸡场问题、商品销售利润问题为例,提出问题,引起学生的兴趣,同时也让学生切实体会到数学来源于生活。针对学生基础比较薄弱,解题能力较差的现状,我紧接着先给出几道关于二次函数的练习题,巩固二次函数最值的求法,为后面解决实际问题扫清障碍。
接下来就是解决最开始提出的商品何时利润最大问题,在解决商品利润问题时我先让学生做了几道关于利润的计算题,回忆一下有关利润的公式。
由于有了前面例子的认知基础,因此引导学生考虑能否利用二次函数的知识来解决,这时学生能想到要列出函数关系式。由于获得最大利润的方式有很两种,因此采用小组合作探究的方式分组讨论实施。这是为了给学生提供充分从事数学活动的机会,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。由于学生的基础比较薄弱,因此教师作为引导者与合作者参与到学生的讨论中。这里要给学生充分的时间进行探究。在各小组充分讨论后进行全班交流,归纳出全班哪种办法求解起来最简便,作出优劣的判断。接着由所得到的结论继续提出新问题,再次体会数学来源于生活又服务于生活。
最后是归纳总结、加深印象环节。在小结中,引导学生总结出从数学的角度解决实际问题的过程:有实际问题抽象转化成数学问题,然后运用所学的数学知识得到问题的解,再由结论反过来解释或解决新的实际问题。
最后是课堂测评。
对于作业的处理,针对学生的实际情况,作业分为必做题与选做题。对于基础比较薄弱的学生只需完成课堂中的巩固练习即可;对于学有余力的学生补充两道选做题。
对数函数说课稿篇十一
1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。
2、教学目标的确定及依据。
a、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:
1)已知一个角的一个三角函数值能求这个角的其他三角函数值;
2)证明简单的三角恒等式。
b、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
c、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点。
重点:同角三角函数基本关系式的推导及应用。
难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。
学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。
1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。
2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。
例2、设计意图:
(1)分子、分母是正余弦的一次(或二次)齐次式,注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以,将分子、分母转化为的代数式;还可以利用商数关系解决。
如此设计教学过程,既复习了上一节的内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了&qut教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展&qut的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑正负号,而正负号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。
由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的'情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。
对数函数说课稿篇十二
在前一段我讲了30度、45度、60度特殊角的三角函数值,它是北师大版九年级数学下册的一节课,在前一节刚讲过正弦、余弦、正切三角函数的定义和求法。现把我对本节课的做法和想法与大家交流一下,希望能得到同行和专家的指点,以期取得更大的进步。
1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理。进一步体会三角函数的意义;能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小。
2、发展学生观察、分析、发现的能力;培养学生把实际问题转化为数学问题的能力。
3、积极参与数学活动,对数学产生好奇心。培养学生独立思考问题的习惯。
在引入时我采用创设情境法,“为了测量一棵大树的高度,准备了如下测量工具:(1)含30、60度角的直角三角尺(2)皮尺。请你设计一个方案,来测量一棵大树的高度。这样会增强学生的学习欲望,使学生对本节内容更感兴趣。
1、让学生自主研习,独立探究。
(1)观察一副三角尺,其中有几个锐角?他们分别等于多少度?
(2)sin30度等于多少呢?你是怎样得到的?cos30度呢,tan30度呢?
2、让学生合作学习、生生互动。
(1)请同学们完成下表:30°、45°、60°角的三角函数值(表格略)。
(3)同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况。
3、精讲细评,师生合作(先由学生独立完成)。
(1)计算:sin30°+cos45°;sin260°+cos260°—tan45°。
(2)钟表上的钟摆长度为25cm,当钟摆向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差。(结果精确到0。1cm)。
分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力。
4、延伸迁移,形成技能。
(1)计算:sin60°—tan45°;cos60°+tan60°;
(2)某商场有一自动扶梯,其倾斜角为30°。高为7m,扶梯的长度是多少?
讲课后我让学生自主小结本节收获,并给他们提出困惑的时间和机会。
在本节课中我感觉学生整体来说收获不小,有百分之八十的学生都会进行计算,只是对这些三角函数值的记忆还有欠缺,课下还需时间加以巩固。课堂中学生积极性也很高,能体会到数学在生活中的应用广泛,学习数学对解决实际生活问题的帮助,体会到学习数学的重要性。
对数函数说课稿篇十三
本课的内容是华师大版八年级数学下册第18章第3节第2课时,一次函数在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本章中关于一次函数的知识结构如图:
本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习"用函数观点看方程(组)与不等式"的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习"数形结合"这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。
(二)教学目标。
基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:
知识目标:
1、理解直线y=kx+b与y=kx之间的位置关系;
2、会利用两个合适的点画出一次函数的图象;
能力目标。
2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。
情感态度目标:
2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
(三)教学重点难点。
教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。
1、教学方法。
1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导。
1、应用自主探究,培养学生独立思考能力,阅读能力和自主探究的学习习惯。
2、指导学生观察图象,分析材料。培养观察总结能力。
(一)、创设情境,导入新课。
活动1:观察:
展示学生作的函数图象(课本p41做一做),强调列表及图象上的点的对应关系。
1.课前让两名学生将图像画到黑板上,以备上课时应用。
2、课上展示学生函数图像作业,既为学生完成作业情况检查,又为本节课打下基础。
这样安排的目的:
1、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。
2、教师对学生有了更深层次的了解,能更好地把握课堂。
(二)尝试探索、体验新知:
活动2、观察探索:
比较两个函数图象的相同点与不同点?
第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。
目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。
目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。
活动3:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。
目的:进一步巩固两点作图法,为探究一次函数的性质作准备。
活动4:展示"上下坡"材料,解决象限问题。(多媒体展示)。
目的:让学生触发漫画中"上下坡"的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。
活动5:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。
目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。
(三)课堂小结。
引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。
目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。
(四)。作业布置。
加强"教、学"反思,进一步提高"教与学"效果,
做课本42页44页习题。
对数函数说课稿篇十四
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x)。则y=f(x)的反函数为y=f^-1(x)。
存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。
(1)互为反函数的两个函数的图象关于直线y=x对称;。
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;。
(3)一个函数与它的反函数在相应区间上单调性一致;。
(4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(6)一段连续的函数的单调性在对应区间内具有一致性;。
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。
(9)定义域、值域相反对应法则互逆(三反)。
(10)原函数一旦确定,反函数即确定(三定)。
例:y=2x-1的反函数是y=0.5x+0.5。
y=2^x的反函数是y=log2x。
例题:求函数3x-2的反函数。
解:y=3x-2的定义域为r,值域为r.
由y=3x-2解得。
x=1/3(y+2)。
将x,y互换,则所求y=3x-2的反函数是。
y=1/3(x+2)。
对数函数说课稿篇十五
(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=c(其中c是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{c},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(5)一段连续的`函数的单调性在对应区间内具有一致性;
(6)严增(减)的函数一定有严格增(减)的反函数;
(7)反函数是相互的且具有唯一性;
(8)定义域、值域相反对应法则互逆(三反);
(10)y=x的反函数是它本身。
对数函数说课稿篇十六
各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:
(一)本节内容在教材中的地位和作用。
本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。
(二)说教学目标。
基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:
知识技能:
1、理解直线y=kx+b与y=kx之间的位置关系;
2、会利用两个合适的点画出一次函数的图象;
数学思考:
2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。
情感态度:
2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
(三)说教学重点难点。
教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。
1、教学方法。
依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:
1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导。
做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。
1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。
2、指导学生观察图象,分析材料。培养观察总结能力。
(一)、创设情境,导入新课。
活动1:观察:
展示学生作图作品(书p28例2),强调列表及图象上的点的对应关系。
课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。
目的有四:
2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。
3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。
4、令教师对学生有了更深层次的了解,能更好地把握课堂。
(二)尝试探索、体验新知:
活动1、观察探索:
比较两个函数图象的相同点与不同点?
第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。
目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。
目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(—b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。
活动2:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。
目的:进一步巩固两点作图法,为探究一次函数的性质作准备。
活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)。
目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。
活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。
目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。
(三)课堂小结。
引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。
目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。
(四)作业布置。
加强“教、学”反思,进一步提高“教与学”效果。
采用了如下板书,要点突出,简明清晰。
正比例函数图像的画法:确定两点为(0,0)和(1,k)一次函数选择的两点为:(0,k)和(—bk,0)。
对数函数说课稿篇十七
各位评委、老师们:
大家好!
今天能有这个展示的机会,得到各位评委、老师的指导,感到非常荣幸、
基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为:
1.理解一次函数与二元一次方程(组)的关系、
3.通过现实化的实际问题背景,反映祖国科技和经济的发展、
本课的教学过程分为五个环节完成、首先请看“创设情境,提出问题”的教学过程、(插入录像1)。
设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望、(插入录像2)。
1、进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习、本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程、(插入录像3)。
2、下面请看学生如何“研究一次函数与二元一次方程组的关系”、(插入录像4)。
为了帮助学生加深对所学内容的理解,我设计了下面的例题、(插入录像5)。
下面请看第四个环节“解决问题,加深认识”的教学过程、(插入录像6)。
这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进、谢谢!
对数函数说课稿篇十八
1.使学生了解反函数的概念,初步掌握求反函数的方法.
2.通过反函数概念的学习,培养学生分析问题,解决问题的能力及抽象概括的能力.
3.通过反函数的学习,帮助学生树立辨证唯物主义的世界观.
教学重点,难点。
重点是反函数概念的形成与认识.
难点是掌握求反函数的方法.
教学用具。
投影仪。
教学方法。
自主学习与启发结合法。
教学过程。
一.揭示课题。
今天我们将学习函数中一个重要的概念----反函数.
(一)反函数的概念(板书)。
二.讲解新课。
教师首先提出这样一个问题:在函数中,如果把当作因变量,把当作自变量,能否构成一个函数呢?(让学生思考后回答,要讲明理由)可以根据函数的定义在的允许取值范围内的任一值,按照法则都有唯一的与之相对应.(还可以让学生画出函数的图象,从形的角度解释“任一对唯一”)。
学生很快会意识到是的反函数,教师可再引申为与是互为反函数的.然后利用问题再引申:是不是所有的函数都有反函数呢?如果有,请举出例子.在教师启发下学生可以举出象这样的函数,若将当自变量,当作因变量,在允许取值范围内一个可能对两个(可画图辅助说明,当时,对应),不能构成函数,说明此函数没有反函数.
通过刚才的例子,了解了什么是反函数,把对的反函数的研究过程一般化,概括起来就可以得到反函数的定义,但这个数学的抽象概括,要求比较高,因此我们一起阅读书上相关的内容.
1.反函数的定义:(板书)(用投影仪打出反函数的定义)。
为了帮助学生理解,还可以把定义中的换成某个具体简单的函数如解释每一步骤,如得,再判断它是个函数,最后改写为.给出定义后,再对概念作点深入研究.
2.对概念得理解(板书)。
教师先提出问题:反函数的“反”字应当是相对原来给出的函数而言,指的是两者的关系你能否从函数三要素的角度解释“反”的含义呢?(仍可以与为例来说)。
学生很容易先想到对应法则是“反”过来的,把与的位置换位了,教师再追问它们的互换还会带来什么变化?启发学生找出另两个要素之间的关系.最后得出结论:的定义域和值域分别由的值域和定义域决定的.再把结论从特殊发展到一般,概括为:反函数的三要素是由原来函数的三要素决定的.给出的函数确定了,反函数的三要素就已经确定了.简记为“三定”.
(1)“三定”(板书)。
最后教师进一步明确“反”实际体现为“三反”,“三反”中起决定作用的是与的位置的反置,正是由于它的反置,才把它的范围也带走了,引起了另外两“反”.
(2)“三反”(板书)。
此时教师可把问题再次引向深入,提出:如果一个函数存在反函数,应怎样求这个反函数呢?下面我给出两个函数,请同学们根据自己对概念的理解来求一下它们的反函数.
例1.求的反函数.(板书)。
(由学生说求解过程,有错或不规范之处,暂时不追究,待例2解完之后再一起讲评)。
解:由得,所求反函数为.(板书)。
例2.求,的反函数.(板书)。
解:由得,又得,。
求完后教师请同学们作评价,学生之间可以讨论,充分暴露表述中得问题,让学生自行发现,自行解决.最后找代表发表意见,指出例2中问题,结果应为,.
教师可先明知故问,与,有什么不同?让学生明确指出两个函数定义域分别是和,所以它们是不同的函数.再追问从何而来呢?让学生能从三定和三反中找出理由,是从原来函数的值域而来.
在此基础上,教师最后明确要求,由于反函数的定义域必是原来函数的值域,而不是从自身解析式出发寻求满足的条件,所以求反函数,就必须先求出原来函数的值域.之后由学生调整刚才的求解过程.
解:由得,又得,。
又的值域是,。
(可能有的学生会提出例1中为什么不求原来函数的值域的问题,此时不妨让学生去具体算一算,会发现原来函数的值域域求出的函数解析式中所求定义域时一致的,所以使得最后结果没有出错.但教师必须指出结论得一致性只是偶然,而不是必然,因此为规范求解过程要求大家一定先求原来函数的值域,并且在最后所求结果上注明反函数的定义域,同时让学生调整例的表述,将过程补充完整)。
最后让学生一起概括求反函数的步骤.
3.求反函数的步骤(板书)。
(1)反解:。
(2)互换。
(3)改写:。
对以上环节教师可稍作解释,然后提出再通过下面的练习来检验是否真正理解了.
三.巩固练习。
练习:求下列函数的反函数.
(1)(2).(由两名学生上黑板写)。
解答过程略.
教师可针对学生解答中出现的问题,进行讲评.(如正负的选取,值域的计算,符号的使用)。
四.小结。
1.对反函数概念的认识:。
2.求反函数的基本步骤:。
五.作业。
课本第68页习题2.4第1题中4,6,8,第2题.
六.板书设计。
1.定义。
2.对概念的理解例2.
(1)三定(2)三反。
(1)反解(2)互换(3)改写。
对数函数说课稿篇十九
一、说教材:
《猫》是老舍先生写的一篇状物抒情的散文。文章条理晰,以风趣亲切的语言,把大猫的古怪性格和小猫的淘气可爱描述的栩栩如生,字里行间流露出作者对猫的喜爱之情。学习这篇课文,可以让学生试着比较课文在表达上的不同特点以及和本单元前两篇课文写作手法上的不同之处,其目的,一是让学生感受人与动物和谐相处的美好意境,体会作者对生活的热爱;二是引导学生感受“语言大师”写作的精妙手法。通过个性解读、多元感悟课文“人爱猫,猫亲人”的感情主线,从而体会人与猫之间相互信任,和谐相处的美好境界。
二、说学生:
《语文课程标准》强调教学目标三个维度的有机整合,根据小学四年级素质教育的要求(着重进行篇的训练,加强深入理解课文内容、概括中心思想、理清层次的训练,重视培养观察、分析事物和连段成篇的能力。根据四年级学生有了一定的理解、分析课文的能力,我要求学生合作交流,自主探究,理清文章脉络,了解老舍笔下猫的特点,并是从哪些方面,用什么写作方法来表现猫的性格的。也使学生感受到主人与猫之间那份和谐、美好。
三、说目标:
1、掌握13个生字,理解“无忧无虑、任凭、丰富多腔、遭殃、责打、枝折花落”等词语。有感情地朗读课文。
2、理解课文内容。了解大花猫的古怪和它小时候的可爱。背自己喜欢的段落。
3、学习作者抓住猫的特点描写的方法,体会对猫的喜爱之情。
(本课的教学重点:学习作者抓住猫的特点进行描写的方法。
教学难点:从描写中体会对猫的喜爱之情。)。
四、说教法、学法:
凭借本课教材特点、教学重难点,采用多媒体创设情境法,展示不同形态的猫,激发学生学习的兴趣,活跃课堂气氛;通过讲读、自读,合作交流等方式,锻炼学生自学和解决疑难的能力;“自读,感悟、合作、探究”的学习方式是架设文本与学生间的交流平台,是使阅读教学成为学生、教师、文本之间对话的桥梁。
五、说教学流程:
(一)情趣谈话,揭示课题。
t:同学们,从你们带来的照片来看,大家都非常喜欢小动物,老师也带来了一位动物朋友,你们想见识一下吗?(出示猫的图片)这小朋友,大家一定不陌生吧?来,让我们一起来呼唤它(教师板书课题)。
(通过学生喜闻乐见的话题入手,激发学生学习的兴趣)。
(二)初读课文,领悟感情。
t:读过阅读课文后,大家有什么感受,老舍笔下的这只猫有什么特点?和同桌说说。
(经同学间合作交流后,大致能感受到这只猫淘气可爱,性格古怪,作者喜爱猫的特点。而这些恰好是文章的中心和重点。)。
t:今天我们先来走进大花猫,看看它究竟古怪在哪呢?
(三)重点研读第1dd3自然段。
(通过讲读第一自然段,自学二、三自然段的方法,让学生掌握抓重点句“猫的性格实在有些古怪”的方法来建构学习。教师通过引导,加强对学生学法的迁移。并在朗读中体会猫的性格特点,培养学生的概括能力。)。
阅读后完成填空练习:猫的性格实在有些古怪,既()又();既()又();既()又()。
将本文的word文档下载到电脑,方便收藏和打印。