高中数学对数函数说课稿(专业14篇)
总结是一个自我反思的机会,能够帮助我们找到改进的方向。写总结需要注意语言的简练和准确,避免使用太过复杂和晦涩难懂的词汇和表达方式。你可以通过阅读一些优秀的总结文章,获取灵感和写作技巧。
高中数学对数函数说课稿篇一
2、教学目标的确定及依据。
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用。
(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、
分析、归纳等逻辑思维能力.。
(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数。
学的精确和美妙之处,调动学生学习数学的积极性.。
3、教学重点与难点。
重点:对数函数的意义、图像与性质.。
难点:对数函数性质中对于在与两种情况函数值的不同变化.。
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生实验、观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透类比、数形结合、分类讨论等数学思想方法.。
2、教学手段:
计算机多媒体辅助教学.。
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)类比学习:与指数函数类比学习对数函数的图像与性质.。
(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,
(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,
使问题得以圆满解决.。
1、温故知新。
设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,
有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生。
分析问题的能力.。
2、探求新知。
设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过动手操作、
观察、联想、类比、思考、分析、探索,在此过程中,通过小组讨论,
协作构建起新的知识.这充分体现了基于建构主义学习理论的探究定。
向性学习和主动合作式学习.。
3、课堂研究,巩固应用。
设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充。
分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的。
解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.。
4、课外研究。
5、课堂小结。
引导学生进行知识回顾,使学生对本节课有一个整体把握.从三方面进行小结:
(2)掌握对数函数的图像与性质,体会类比、数形结合的思想方法;
(3)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的。
解法,体会分类讨论的思想方法.。
6、课外作业。
公式无法显示,完整word文档点击下载此文件。
高中数学对数函数说课稿篇二
(8)y=x4+2x2+1(可指出y是关于x2的二次函数)。
【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
(四)巩固练习。
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;。
(2)设这个直角三角形的面积为scm2,其中一条直角边为xcm,求s关。
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为scm2,体积为vcm3。
(1)分别写出s与x,v与x之间的函数关系式子;。
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
(1)分别写出c关于r;v关于r的函数关系式;。
【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。
4.篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.
【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够跳一跳,够得到。
(五)拓展延伸。
1.已知二次函数y=ax2+bx+c,当x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a、b、c,并写出函数解析式.
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。
2.确定下列函数中k的值。
【设计意图】此题着重复习二次函数的`特征:自变量的最高次数为2次,且二次项系数不为0.
(六)小结思考:
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。
(七)作业布置:
必做题:
2.在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。
选做题:
2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象。
【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。
以实现教学目标为前提。
以现代教育理论为依据。
以现代信息技术为手段。
贯穿一个原则以学生为主体的原则。
突出一个特色充分鼓励表扬的特色。
渗透一个意识应用数学的意识。
高中数学对数函数说课稿篇三
一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数以及对数函数的应用作好准备。
在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。但是从作业和课堂效果看来。同学们没有指数函数的性质和图象掌握的好。特反思如下:
1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。
2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。
3、在解有关求定义域的问题时,学生不能很好的掌握底数a的取值范围以及真数必修大于0.
4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。
高中数学对数函数说课稿篇四
我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。
1、教材的地位和作用。
函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
2、教学的重点和难点。
根据这一节课的内容特点以及学生的实际情况,学生对抽象的指数函数及其图象缺乏感性认识。为此,在教学过程中让学生自己去感受指数函数的生成过程以及图象和性质是这一堂课的突破口。因此,指数函数的图像、性质及其运用作为教学重点,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。
3、课前思考与准备。
高中数学对数函数说课稿篇五
合作探究2:当函数与的图象之间有什么关系?(在这儿体现"从特殊到一般"、"从具体到抽象"的方法)。
合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质。
(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。
问题1:对数函数()是否具有奇偶性,为什么?
问题2:对数函数(),当时,x取何值,y0,x取何值,y,当呢?
问题3:对数式的.值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述。
1.例题。
例1:求下列函数的定义域。
(2)()。
(该题主要考查对数函数的定义域这一限制条件根据函数的解析式求得不等式,解对应的不等式。同时通过本题也可让学生总结求函数的定义域应从哪些方面入手)。
例2:利用对数函数的性质,比较下列各组数中两个数的大小:
(1),。
(2),。
(3),。
(4),,。
(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)。
合作探究4:已知,比较m,n的大小(该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想。)。
本题可以从以下几方面加以引导点拨。
1.本题的难点在哪儿?
2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系。
本题也可以从形的角度来思考。
p691,2,3。
由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等)。
高中数学对数函数说课稿篇六
1、教材的地位和作用。
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的.概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
1、从创设情境入手,通过知识再现,孕伏教学过程。
2、从学生活动出发,通过以旧引新,顺势教学过程。
3、利用探索、研究手段,通过思维深入,领悟教学过程。
(一)复习提问。
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)。
2.它们的形式是怎样的?
(y=kx+b,ky=kx,ky=,k0)。
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)。
例1、(1)圆的半径是r(cm)时,面积与半径之间的关系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:(1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课。
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c(a0,a,b,c为常数)的函数叫做二次函数。
1、强调形如,即由形来定义函数名称。二次函数即y是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在y=ax2+bx+c中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)。
3、为什么二次函数定义中要求a?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)。
4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;。
若c=0,则y=ax2+bx;。
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
高中数学对数函数说课稿篇七
本节课是《中等职业教育规划教材数学》第一册第四章第二节《指数函数》。本节课是学生在已掌握了函数的一般性质之后系统学习的第一个函数,通过学习可进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,也为今后进一步研究函数的性质特别是后面的对数函数打下坚实的基础,同时也培养了学生对函数的应用意识。因此本课有十分重要地位和作用,它对知识起到了承上启下的作用。
教学目标:
知识目标:
1、掌握指数函数的概念,并能根据定义判断一个函数是否为指数函数;
2、掌握指数函数的图像和性质;
3、能根据单调性解决比较大小的问题。
能力目标:
1、培养学生观察、分析、分类、归纳、探索发现解决问题的能力,体会从特殊到一般的研究方法和分类讨论思想。
2、提高学生运用现代信息化手段解决数学问题的能力。
情感目标。
1、通过问题的解决,树立学生的自信心,体会成功与快乐;
3、通过学习让学生感受到数学与现实生活的联系,让学生发现生活中的函数问题。
教材的重点和难点:
教学难点:如何由图像归纳指数函数的性质以及性质的应用。
根据这几年的教学我发现学生在后面学习中一遇到指对数问题就发蒙,原因是什么呢?问题就出在学生刚刚学完第三章函数的性质,应用的又是初中比较熟悉的一元二次函数。一下子出现了一个非常陌生的函数而且需要记很多性质,学生感觉很吃力。对于我任教的12财会班的学生整体理论知识水平参差不齐,学生缺乏自主探索、发现的意识。但是性格活泼、兴趣广泛,乐于实践。因此我在备课时以学生为本,以学生活动为主线,从兴趣出发,由xx年春节晚会的魔术引出本节课的'指数函数,让学生从特殊到一般去认识指数函数,然后通过多媒体课件的充分展示让学生分组讨论、归纳出指数函数的性质。
教学方法:启发、合作探究、讲练结合等教学方法。充分遵循“教师为主导,学生为主体”的教学原则,采用多媒体辅助教学手段,借助多媒体,演示指数函数的图像形成过程,便于总结函数的性质。
学习方法:采用自主探究、小组合作、观察归纳的学习方法。
教学流程:
教学流程设计。
1、创设情境,导入新课。
2、构建模型,形成概念。
3、深入探究,发现性质。
4、讲练结合,巩固提高。
5、课堂小结,构建体系。
6、作业布置,延伸课堂。
教学过程:
1、创设情境,导入新课。
通过春节的撕报纸的魔术调动学生的兴趣,教师接着引导学生分析撕报纸得到的分数与撕报纸的次数之间的函数关系,分析出撕报纸得到的每一分小报纸的面积与撕报纸的次数之间得到的函数关系,从而建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。
2、构建模型,形成概念。
通过两个具体的指数函数模型,给出指数函数概念,让学生体会由特殊到一般的思想,并通过练习一判断一个函数是否是指数函数,加深学生对指数函数概念的理解。
3、深入探究,发现性质。
在这个环节,函数图像的性质是本节课的重点也是难点,我准备采用多媒体技术辅助教学突破重点、难点,这一环节关键是弄清楚底数a的变化对函数图像及性质的影响,利用多媒体动感显示,通过颜色的区别,加深感性认识,非常直观形象地演示a的变化与图像的变化规律,突破静态思维,使难点迎刃而解。
华罗庚先生曾说:“数缺形时少直观,形缺数时难入微。”探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图像突破,体会数形结合的思想。通过两个指数函数的作图过程巩固学生作图能力,让学生初步发现图像规律。紧接着同时通过软件让学生举出4个指数函数,通过软件快速画出四个具体的指数函数图像,充分引导学生通过观察图像发现指数函数的图像规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。
4、讲练结合,巩固提高。
教师通过对例题一比较两个函数值的大小、例题二求函数的定义域引导学生如何使用函数的性质解决问题,同时通过学生进行一些巩固练习使学生对函数能进行较为基本的应用。
5、课堂小结,构建体系。
小结环节,让学生自己总结函数的概念和性质,让学生建立研究函数的知识体系。
6、作业布置,延伸课堂。
作业布置环节必做题巩固学生上课内容,选做题“古莲子年龄之谜”的问题为学习能力较强的同学更大的发挥空间,因材施教,分层作业,巩固提高,为后续的学习奠定基础,同时也拓展学生的知识视野。
高中数学对数函数说课稿篇八
教材是课程标准的具体化,是课堂知识呈现的载体,对于教材的深入理解是上好一堂课前提。本课选自人教版,高中数学必修一第二章第六节。在漫长的高中数学学习的过程中,函数的学习贯穿始终。从教材的书写逻辑上看,之前的教材内容已经对于函数的一般性质进行了排布。而本节课指数函数的学习则对接下来对数函数等复杂函数的深入学习奠定了坚实的基础。可以说,指数函数的学习对于高中函数的学习起到了承上启下的重要作用。
新的学生观告诉我们,我们要在课堂中充分发挥学生的主体地位,因此对于学生的情况了解也是十分重要的。从思维层面上看,高中的学生已经具备了比较成熟的抽象逻辑思维能力,有着较强的理解力,这对于我们课堂的开展是十分有帮助的。而这个阶段的学生好胜心比较强,容易产生负面情绪,这对于我们课堂的教学也带来了一定的挑战。从经验上看,在之前的学习中,学生已经对于“指数”“函数”等概念有了深刻的认识,为本节课程的开展提供了帮助,而指数函数相对比较抽象,对于学生的学习、老师的教授都提出了较高的要求,因此合理的教法学法选择显得尤为重要。
教学目标是教育教学活动的出发点和依据,结合新课改的思想和新课标的要求,本节课我所制定的三维教学目标如下:
知识与技能目标:掌握指数函数的概念,图像性质;能够利用指数函数的概念解决实际问题。
过程与方法目标:通过分组讨论参与发现的过程,培养学生观察,联想,类比,猜测,归纳的能力。
情感态度与价值观目标:通过教学互动,促进师生情感,激发学生的学习兴趣,提高学生的抽象概括,分析,综合的能力,培养学生联系观点看问题,领会数学科学的应用价值。
而本节课,我将重难点确立为:指数函数的图像和性质,以及它与底数a的关系。
正如苏霍姆林斯基所说:只有能够激发学生去进行自我教育的教育,才是真正的教育。在满足学习者需求的基础之上,我将制定适合本阶段学生的教法来展开教学,以体现教师的主导性。分别以图片展示、讨论、讲授、参与练习等相结合的方式进行教学。同时我将采用诱思探究和自主学习相结合的方式,以激发学生的学习主动性,充分地体现学生的主体地位。
以上所有的准备都是为了更好的呈现我的课堂,下面来谈一谈我对于教学过程的设计。
首先创设情境,导入新课我将用电脑展示两个实例:计算机价格下降问题和生物中细胞分裂的例子。我会请同学们仔细观察并分组讨论,分别写出计算机价格y与经过月份x的关系以及细胞个数y与分裂次数x的关系,用所学知识结合探究法,分析出指数函数底数讨论的必要性以及分类方法。通过这样的实例,可以很好地激发学生的学习兴趣,培养学生思维的主动性,为接下来的学习做好准备。
其次启发诱导,探求新知我会给出两个简单的指数函数,并要求学生画出它们的图像,并在准备好的小黑板上规范地画出这两个指数函数的图像,同时板书出指数函数的性质。同学们通过动手,促进学生对本课内容的理解学习,并借助小黑板演示其规范性。利用多媒体将指数函数的图像加以展示,利于观察图像总结所学知识的性质,也能对于接下来的知识点导入起到自然结合的作用。当然学生通过我的引导交流讨论会很快画出两个简单的指数函数,归纳出函数的性质涉及方面,总结出它的性质。
接着巩固新知,反馈回授我会板书出例一及例二第一问,并介绍相关考古知识,本着实践为主的原则,完成学生学习:实践到认识再到实践的过程。通过练习实现教师的再指导和学生的渐进式提高。这个环节介绍的化学知识在考古中的应用,这样的设计既开拓了学生的视野,又为下一步学习:计算分期付款的利率等问题埋下伏笔,因此学生能够了解解题的规范步骤,并完成例题,拓展视野体会数学的应用价值。紧接着我会带领学生进行归纳,总结升华我会将同学们进行分组讨论、探究,引导学生对指数函数的知识进行梳理和深化认知。知识与技能目标设置分组pk机制,引导学生对课堂知识进行分类讨论、数形结合等数学方法的归纳。最后我会布置课后作业以帮助学生巩固练习,温故而知新。
当然一堂完整的课程离不开简洁明了的板书设计,我的板书设计如下:在黑板中间的正上方,我会写下今天的课题:指数函数,我会在黑板的中间摆上小黑板以展示其规范性。在黑板的左面,我会在练习过程中写下今天练习的,计算步骤。黑板的右面,我会写下例题一以及例题二的第一问。这样的设计,可以帮助学生更好地学习本课的内容。以上就是我所有的授课内容,感谢各位老师的聆听。
高中数学对数函数说课稿篇九
本课内容是北师大版九年级(上)数学第五章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(二)、本课题的教学目标:
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:
1、知识目标。
(1)通过对实际问题的探究,理解反比例函数的实际意义。
2、能力目标。
(1)通过两个实际问题,培养学生勤于思考和分析归纳能力。
(2)在思考、归纳过程中,发展学生的合情说理能力。
3、情感目标。
(1)通过创设情境让学生经历在实际问题中探索数量关系的过程,体验数学活动与人类的生活的密切联系,养成用数学思维方式解决实际问题的习惯。
(2)理论联系实际,让学生有学有所用的感性认识。
4、本课题的重点、难点和关键。
关键:如何由实际问题转化为数学模型。
本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。
由于学生在前面已学过“变量之间的关系”和“一次函数”的内容,对函数已经有了初步的认识。因此,在教这节课时,要注意和一次函数,尤其是正比例函数一反比例的类比。引导学生从函函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。
对于所设置的两个问题为学生熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。
课堂,只有宝贵的四十分钟,有相当一部分学生注意力不能集中。针对这种情况,从学生身边的生活和已有的知识出发创设情境,目的是让学生感受到生活中处处有数学,激发学生对数学的兴趣和愿望,同时也为抽象反比例函数概念做好铺垫。让学生自己举例,讨论总结规律,抽象概念,便于学生理解和掌握反比例函数的概念,同时,培养和提高了学生的总结归纳能力和抽象能力。
为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。
在本课时的师生互动过程中,积极创造条件和机会,关注个体差异,让学困生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。
教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到理论来自于实践,而理论又反过来指导实践的哲学思想。从而培养和提高学生分析问题和解决问题的能力。
1、复习引入:
师生共同回忆前一阶段所学知识,再次强调函数和重要性,同时启开新的课题——反比例函数(教师板书)。
(一)创设情景,激发热情。
我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。
因而用两个最贴近学生生活实例引出反比例函数的概念;从而让学生感受数学与生活的紧密联系。
多媒体课件展示。
(问题1)我校车棚工程已经启动,规划地基为36平方米的矩形,设连长为x(米),则另一连长y(米)与x(米)的函数关系式。
让学生分析变量关系,然后教师总结:依矩形面积可得。
xy=36即y=36/x。
(问题2)昨天在放学回家时,小明的车胎爆了。第二天,小明的爸爸骑摩托车送小明来学校。中午放学小明不得不走回家。(小明家距学校2000米)。
(1)、在这个故事中,有几种交通工具?
(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?
(二)观察归纳——形成概念。
由实例xy=36即y=36/x和t=2000/v两个式子教师引导学生概括总结出本课新的知识点:
一般地,形如y=k/x或xy=k(k是常数,k不为0)的函数叫做反比例函数。
(三)讨论研究——深化概念。
学生通过对例1的观察、讨论、交流后更进一步理解和掌握反比例函数的概念。
多媒体课件展示、
(4)某乡粮食总产量m吨,那么该乡每人平均粮食y(吨)与该乡人口数x的函数关系。
学生回答后教师给出正确答案。
四、即时训练——巩固新知。
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把课本的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
多媒体课件展示。
(巩固练习:)。
y=5/xy=0.4/xy=x/2xy=2。
5)y=-1/x(给学困生发表见解的机会,激发他们的学习兴趣)。
学生回答后教师给出正确答案。
高中数学对数函数说课稿篇十
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点。
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行。
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交。
二面角。
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直。
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
直线和平面垂直。
直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(1)制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。学然后知不足,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
(4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由懂到会。
(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由会到熟。
(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由熟到活。
(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由活到悟。
(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
高中数学对数函数说课稿篇十一
各位领导教师同仁:
我说课的内容是正切函数的性质和图像。
教材理解分析。
学习目标。
1、掌握正切函数的性质及其应用。
2、理解并掌握作正切函数图象的方法;。
3、体会类比、换元、数形结合等思想方法。
学情分析。
由于我们文科平行班基础不太好加之学习函数的图像及性质又是一个难点,自主学习必然会出现困难。加之教学时间紧,任务重,前面地学习也不是很好。
根据教材结构和学情我对具体地教学过程和设计作如下说明:
一、复习引入。
(1)画出下列各角的正切线。
(2)复习相关诱导公式。
二、探究新知。
探究二正切函数的图像。
三、新知运用。
例1求函数的定义域、周期和单调区间.
四、课堂练习。
1、求函数y=tan3x的定义域,值域,单调增区间。
2、观察正切曲线,写出满足下列条件x的范围:
(1);(2);(3)。
五.小结与课后作业。
高中数学对数函数说课稿篇十二
(一)地位与作用:。
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,面积问题与最大利润学生易于理解和接受,故而在这儿作专题讲座。目的在于让学生通过掌握求面积、利润最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积、利润最大、运动中的二次函数、综合应用三课时,本节是第一课时。
(二)学情及学法分析。
对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
二、教学目标、重点、难点的确定。
对于函数知识来说它是从生活中广泛的实际问题中抽象出来的数学知识,所以它是解决实际问题中被广泛应用的工具。这部分知识的学习无论对提高学生在生活中应用函数知识的意识,还是对掌握运用函数知识的方法,都具有重要意义。
而二次函数的知识是九年级数学学习的重要内容之一。同样它也是从生活实际问题中抽象出的知识,又是在解决实际问题时广泛应用的数学工具。课程标准强调学生的应用意识的培养,让学生面对实际问题时,能尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。
本节课是学生在学习了二次函数的概念、图像和性质后进一步学习二次函数的应用。学生有了一定的二次函数的知识,并且在前两节课已经接触到运用二次函数的知识解决函数的最值问题,而本节课需要利用建模的思想,将实际问题转化为二次函数的问题,从而使问题得到解决。建立二次函数关系对学生而言比较困难,尤其是关注实际问题中自变量的取值范围,需要学生经历分析、讨论、对比等过程,进而得出结论。本节课的问题均来自学生的日常生活,学生会感到很有兴趣,愿意去探究。但学生基础比较薄弱,对学习数学还是有一些畏难的情绪,因此需要教师进行适当引导、分散难点。
根据上述教学背景分析,特制订如下教学目标:
1、知识与技能:学会将实际问转化为数学问题;学会用二次函数的知识解决有关的实际问题。
2、过程与方法:经历实际问题转化成数学问题利用二次函数知识解决问题利用求解的结果解释问题的过程体会数学建模的思想,体会到数学来源于生活,又服务于生活。
3、情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。
利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题,就是本节课的教学重点;由于学生理解问题的能力和知识储备情况的不同,那么从现实问题中建立二次函数模型。就是本节课的一个难点。
新课程标准强调动手实践、自主探索与合作交流应该是学生学习数学的重要方式。教师应该是学生数学学习的组织者、引导者、合作者。同时,我认为教学方法与学习方法应该是相辅相成的不应该是割裂开来的,而且在一节课中教学方法和学习方法不可能是单一的而是多种方式方法并存的,因此根据本节课的内容和学生的实际情况,同时也为了突出本节课的重点并突破学习难点我确定本节课的教法与学法有启发法、探究法、试验法、课堂讨论法、练习法等。
三、教学方法与手段的选择。
本节课我采用的是导学案的教法,
四、教学设计分析。
首先创设问题情境,激发学生的学习兴趣。数学课程的内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、验证、推理与交流。而20世纪下半叶数学的一个最大进展是它的广泛应用,数学的价值观因此发生了深刻的变化。最直接的一个结论就是数学教育要重视应用意识和应用能力的培养。数学应用意识的孕育数学建模能力的培养联系学生的日常生活并解决相关的问题等方面的要求越来越处于突出的地位。所以我以养鸡场问题、商品销售利润问题为例,提出问题,引起学生的兴趣,同时也让学生切实体会到数学来源于生活。针对学生基础比较薄弱,解题能力较差的现状,我紧接着先给出几道关于二次函数的练习题,巩固二次函数最值的求法,为后面解决实际问题扫清障碍。
接下来就是解决最开始提出的商品何时利润最大问题,在解决商品利润问题时我先让学生做了几道关于利润的计算题,回忆一下有关利润的公式。
由于有了前面例子的认知基础,因此引导学生考虑能否利用二次函数的知识来解决,这时学生能想到要列出函数关系式。由于获得最大利润的方式有很两种,因此采用小组合作探究的方式分组讨论实施。这是为了给学生提供充分从事数学活动的机会,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。由于学生的基础比较薄弱,因此教师作为引导者与合作者参与到学生的讨论中。这里要给学生充分的时间进行探究。在各小组充分讨论后进行全班交流,归纳出全班哪种办法求解起来最简便,作出优劣的判断。接着由所得到的结论继续提出新问题,再次体会数学来源于生活又服务于生活。
最后是归纳总结、加深印象环节。在小结中,引导学生总结出从数学的角度解决实际问题的过程:有实际问题抽象转化成数学问题,然后运用所学的数学知识得到问题的解,再由结论反过来解释或解决新的实际问题。
最后是课堂测评。
对于作业的处理,针对学生的实际情况,作业分为必做题与选做题。对于基础比较薄弱的学生只需完成课堂中的巩固练习即可;对于学有余力的学生补充两道选做题。
高中数学对数函数说课稿篇十三
尊敬的评委老师,大家好,我是今天的5号考生,今天我说课的题目是《指数函数》。
教材分析。
教材是课程标准的具体化,是课堂知识呈现的载体,对于教材的深入理解是上好一堂课前提。本课选自人教版,高中数学必修一第二章第六节。在漫长的高中数学学习的过程中,函数的学习贯穿始终。从教材的书写逻辑上看,之前的教材内容已经对于函数的一般性质进行了排布。而本节课指数函数的学习则对接下来对数函数等复杂函数的深入学习奠定了坚实的基础。可以说,指数函数的学习对于高中函数的学习起到了承上启下的重要作用。
学情分析。
新的学生观告诉我们,我们要在课堂中充分发挥学生的主体地位,因此对于学生的情况了解也是十分重要的。从思维层面上看,高中的学生已经具备了比较成熟的抽象逻辑思维能力,有着较强的'理解力,这对于我们课堂的开展是十分有帮助的。而这个阶段的学生好胜心比较强,容易产生负面情绪,这对于我们课堂的教学也带来了一定的挑战。从经验上看,在之前的学习中,学生已经对于“指数”“函数”等概念有了深刻的认识,为本节课程的开展提供了帮助,而指数函数相对比较抽象,对于学生的学习、老师的教授都提出了较高的要求,因此合理的教法学法选择显得尤为重要。
教学目标。
教学目标是教育教学活动的出发点和依据,结合新课改的思想和新课标的要求,本节课我所制定的三维教学目标如下:
知识与技能目标:掌握指数函数的概念,图像性质;能够利用指数函数的概念解决实际问题。
过程与方法目标:通过分组讨论参与发现的过程,培养学生观察,联想,类比,猜测,归纳的能力。
情感态度与价值观目标:通过教学互动,促进师生情感,激发学生的学习兴趣,提高学生的抽象概括,分析,综合的能力,培养学生联系观点看问题,领会数学科学的应用价值。
而本节课,我将重难点确立为:指数函数的图像和性质,以及它与底数a的关系。
教学教法。
正如苏霍姆林斯基所说:只有能够激发学生去进行自我教育的教育,才是真正的教育。在满足学习者需求的基础之上,我将制定适合本阶段学生的教法来展开教学,以体现教师的主导性。分别以图片展示、讨论、讲授、参与练习等相结合的方式进行教学。同时我将采用诱思探究和自主学习相结合的方式,以激发学生的学习主动性,充分地体现学生的主体地位。
教学过程。
以上所有的准备都是为了更好的呈现我的课堂,下面来谈一谈我对于教学过程的设计。
首先创设情境,导入新课我将用电脑展示两个实例:计算机价格下降问题和生物中细胞分裂的例子。我会请同学们仔细观察并分组讨论,分别写出计算机价格y与经过月份x的关系以及细胞个数y与分裂次数x的关系,用所学知识结合探究法,分析出指数函数底数讨论的必要性以及分类方法。通过这样的实例,可以很好地激发学生的学习兴趣,培养学生思维的主动性,为接下来的学习做好准备。
其次启发诱导,探求新知我会给出两个简单的指数函数,并要求学生画出它们的图像,并在准备好的小黑板上规范地画出这两个指数函数的图像,同时板书出指数函数的性质。同学们通过动手,促进学生对本课内容的理解学习,并借助小黑板演示其规范性。利用多媒体将指数函数的图像加以展示,利于观察图像总结所学知识的性质,也能对于接下来的知识点导入起到自然结合的作用。当然学生通过我的引导交流讨论会很快画出两个简单的指数函数,归纳出函数的性质涉及方面,总结出它的性质。
接着巩固新知,反馈回授我会板书出例一及例二第一问,并介绍相关考古知识,本着实践为主的原则,完成学生学习:实践到认识再到实践的过程。通过练习实现教师的再指导和学生的渐进式提高。这个环节介绍的化学知识在考古中的应用,这样的设计既开拓了学生的视野,又为下一步学习:计算分期付款的利率等问题埋下伏笔,因此学生能够了解解题的规范步骤,并完成例题,拓展视野体会数学的应用价值。紧接着我会带领学生进行归纳,总结升华我会将同学们进行分组讨论、探究,引导学生对指数函数的知识进行梳理和深化认知。知识与技能目标设置分组pk机制,引导学生对课堂知识进行分类讨论、数形结合等数学方法的归纳。最后我会布置课后作业以帮助学生巩固练习,温故而知新。
板书设计。
当然一堂完整的课程离不开简洁明了的板书设计,我的板书设计如下:在黑板中间的正上方,我会写下今天的课题:指数函数,我会在黑板的中间摆上小黑板以展示其规范性。在黑板的左面,我会在练习过程中写下今天练习的,计算步骤。黑板的右面,我会写下例题一以及例题二的第一问。这样的设计,可以帮助学生更好地学习本课的内容。以上就是我所有的授课内容,感谢各位老师的聆听。
高中数学对数函数说课稿篇十四
地位及重要性。
函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内,函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。
教学目标。
(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;。
(2)了解能用图形语言正确表述具有单调性的函数的图象特征;。
(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。
教学重难点。
重点是对函数单调性的有关概念的本质理解,
二.说教法。
根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的.模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。
三.说学法。
在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。
四.说过程。
通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。
设置问题情景。
[引例]学校准备建造一个矩形花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。
写出y与x的函数表达式;。
(用多媒体出示问题,并让学生思考)。