高一数学教案必修一集合(优质12篇)
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。大家想知道怎么样才能写一篇比较优质的教案吗?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。
高一数学教案必修一集合篇一
【知识与能力】
1. 掌握数轴的三要素,能正确画出数轴。
2、会用数轴上的点表示有理数;;会求一个有理数的相反数;能利用数轴比较有理数的大小。
【过程与方法】 经历从现实情景抽象出数轴的过程,体会数学与现实生活的联系
【情感态度与价值观】 感受数形结合的思想方法;
【教学重点】会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。
【教学难点】利用数轴比较有理数的大小。
(一)创设情境,引入课题
(1)(出示投影1)问题:三个温度计所表示的温度是多少?
学生回答.
(2)在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
这种表示数的图形就是今天我们要学的内容―数轴(板书课题)
(二)得出定义,揭示内涵
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(教师示范画数轴,边说边画):
(1)画直线,取原点
(2)标正方向
(3)选取单位长度,标数(强调:负数从0向左写起)。
概念:规定了原点、正方向和单位长度的直线叫做数轴。
(三)强化概念,深入理解
1、下列图形哪些是数轴,哪些不是,为什么?
学生回答,相互纠正,理解数轴三要素,巩固数轴概念。
2、学生自己在练习本上画一个数轴。教师在黑板上画
(四)动手练习,归纳总结
1、在数轴上的点表示有理数。
一个学生在黑板上完成,其他同学在自己所画数轴上完成。
明确“任何一个有理数都可以用数轴上的一个点来表示”
2.指出数轴上a,b,c,d各点分别表示什么数。@师愿教育
3、通过数轴比较有理数的大小。观察类比温度计回答问题
(1)在数轴上表示的两个数,(右 ) 边的数总比 ( 左)边的数大;
(2)正数都(大于 )0,负数都(小于)0;正数(大于)一切负数。
例1、比较下列各数的.大小: -1.5 , 0.6, -3, -2
巩固所学知识
(五)、归纳小结,强化思想
师生总结本课内容。
1、数轴的概念,数轴的三要素
2、数轴上两个不同的点所表示的两个有理数大小关系
3、所有的有理数都可以用数轴上的点来表示
师:你感到自己今天的表现怎样?
习题2.2 1、2、3
选作第4题
高一数学教案必修一集合篇二
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
(2)一元二次不等式
会从实际情境中抽象出一元二次不等式模型.
通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.
会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
(3)二元一次不等式组与简单线性规划问题
会从实际情境中抽象出二元一次不等式组.
了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
(4)基本不等式:
了解基本不等式的证明过程.
高一数学教案必修一集合篇三
教学目标
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型.
教学重难点
.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
教学过程
一、练习讲解:《习案》作业十三的第3、4题
(精确到0.001).
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
四、作业《习案》作业十四及十五。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
高一数学教案必修一集合篇四
一)、培养良好的学习兴趣。
1、课前预习,对所学知识产生疑问,产生好奇心。
2、听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
3、思考问题注意归纳,挖掘你学习的潜力。
5、把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
二)、建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
三)、有意识培养自己的各方面能力。
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
高一数学教案必修一集合篇五
(1)掌握与()型的绝对值不等式的解法.
(2)掌握与()型的绝对值不等式的解法.
(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;
教学重点:型的不等式的解法;
教学难点:利用绝对值的意义分析、解决问题.
教学过程设计
教师活动
学生活动
设计意图
一、导入新课
【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明?
【概括】
口答
绝对值的概念是解与()型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫.
二、新课
【提问】如何解绝对值方程.
【质疑】的解集有几部分?为什么也是它的解集?
【练习】解下列不等式:
(1);
(2)
【设问】如果在中的,也就是怎样解?
【点拨】可以把看成一个整体,也就是把看成,按照的解法来解.
所以,原不等式的解集是
【设问】如果中的是,也就是怎样解?
【点拨】可以把看成一个整体,也就是把看成,按照的解法来解.
,或,
由得
由得
所以,原不等式的解集是
口答.画出数轴后在数轴上表示绝对值等于2的数.
画出数轴,思考答案
不等式的解集表示为
画出数轴
思考答案
不等式的解集为
或表示为,或
笔答
(1)
(2),或
笔答
笔答
根据绝对值的意义自然引出绝对值方程()的解法.
由浅入深,循序渐进,在型绝对值方程的基础上引出()型绝对值方程的解法.
针对解()绝对值不等式学生常出现的情况,运用数轴质疑、解惑.
落实会正确解出与()绝对值不等式的教学目标.
在将看成一个整体的关键处点拨、启发,使学生主动地进行练习.
继续强化将看成一个整体继续强化解不等式时不要犯丢掉这部分解的错误.
三、课堂练习
解下列不等式:
(1);
(2)
笔答
(1);
(2)
检查教学目标落实情况.
四、小结
的解集是;的解集是
解绝对值不等式注意不要丢掉这部分解集.
五、作业
1.阅读课本含绝对值不等式解法.
2.习题2、3、4
课堂教学设计说明
1.抓住解型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础.
2.在解与绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的.
3.针对学生解()绝对值不等式容易出现丢掉这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力.
高一数学教案必修一集合篇六
(一) 知识定位及复习策略
集合这部分的主要内容是集合的概念、表示方法和集合之间的关系和运算。纵观近几年高考题,集合的考查以选择题、填空题为主要题型。集合的概念和基本运算是本章的重点内容,也是高考的必考内容。 复习中首先要把握基础知识,深刻理解本章的基础知识点,重点掌握集合的概念和运算。 本章常用的数学思想方法主要有:数形结合的思想,如常借助于维恩图、数轴解决问题;分类讨论的思想,如一元二次方程根的讨论、集合的包含关系等。复习时要重视对基本思想方法的渗透,逐步培养用数学思想方法来分析问题、解决问题的能力。
(二) 规律方法总结
1、集合中元素的互异性是集合概念的重点考查内容。一般给出两个集合,并告知两个集合之间的关系,求集合中某个参数的范围或值的时候,要特别验证是否符合元素之间互异性。 2、考查集合的运算和包含关系,解题中常用到分类讨论思想,分类时注意不重不漏,尤其注意讨论集合为空集的情况。 3、新定义的集合运算问题是以已知的集合或运算为背景,引出新的集合概念或运算,仔细审题,弄清新定义的意义才是关键。
基本初等函数
(一) 知识定位及复习策略
基本初等函数的内容是函数的基础,也是研究其他较复杂函数的转化目标,掌握基本初等函数的图象和性质是学习函数知识的必要的一步。与指数函数、对数函数有关的试题,大多以考查基本初等函数的性质为依托,结合运算推理来解题。所以这部分内容更注重通过函数图象读取各种信息,从而研究函数的性质,熟练掌握函数图象的各种变换方式,培养运用数形结合思想来解题的能力。
(二) 规律方法总结
1、指数函数多与一次函数、二次函数、反比例函数等知识结合考查综合应用知识解决函数问题的能力。指数方程的求解常利用换元法转化为一元二次方程求解。由指数函数和二次函数、反比例函数结合成的函数的单调性的判定注意底数与1的关系的判定。
2、解对数方程(或不等式)就是将对数方程(或不等式)化为有理方程(或不等式)。要注意转化必须是等价的,特别要考虑到对数函数定义域。
高一数学教案必修一集合篇七
(一)两角和与差公式
(二)倍角公式
2cos2α=1+cos2α2sin2α=1-cos2α
注意:倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。
注:(1)两角和与差的三角函数公式能够解答的三类基本题型:求值题,化简题,证明题。
(2)对公式会“正用”,“逆用”,“变形使用”;
(3)掌握“角的演变”规律,
(4)将公式和其它知识衔接起来使用。
重点难点
重点:几组三角恒等式的应用
难点:灵活应用和、差、倍角等公式进行三角式化简、求值、证明恒等式
高一数学教案必修一集合篇八
根据德国心理学家艾宾浩斯绘制的遗忘曲线,学生对知识的遗忘遵从先快后慢的规律,有效的回忆可以加深对知识的理解,掌握知识的内在联系,延缓知识的遗忘。教师要采用不同的形式,整理阶段的基础知识,使内容条理化、清晰化地呈现在同学的面前,从而完成由厚到薄的过程,对重难点和关键点,进行重点的、有针对性的讲解。配以适当的练习,提高学生对基本知识和基本方法的深刻性和准确性的理解掌握。促进学生科学合理的知识结构的形成,使知识系统化和网络化。
旧知检测
要想有效的提高课堂的复习效率,就须克服“眼高手低”的毛病。很多同学上课时处于一种混沌的状态,一听就懂,一做就错;一听就会,一到自己做就不会了。为避免这样的情况,就必须让学生更好地了解自己知识的掌握情况。可以设置几个基础的填空和一个左右的解答题,通过解答的过程让学生“自知自明”。激发起兴趣,有效地提高复习的效率。
精选精讲
精心的选择适量的典型例题,分析解决这些问题应该是一堂复习课的核心内容。解题的目的绝不是仅仅解决这个问题本身,而是要给出通性通法,揭示解决问题的一般规律,熟练掌握数学思想方法,提高学生分析问题、解决问题的能力。
高一数学教案必修一集合篇九
函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。
1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
3.函数方程思想的几种重要形式
(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
高一数学教案必修一集合篇十
立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。
二、立足课本,夯实基础
学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
三、培养空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
四、“转化”思想的应用
解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
(2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
(3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
五、建立数学模型
新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。
从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。
高一数学教案必修一集合篇十一
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱柱的性质
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形
2、棱锥
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形
3、正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(2)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
高一数学教案必修一集合篇十二
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,
教学过程
等比数列性质请同学们类比得出.
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.
2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数
a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决.
【示范举例】
例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为 .
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1= ,q= .
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.