高中数学教案全套必修一(优质10篇)
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。
高中数学教案全套必修一篇一
高中化学必修二教案(人教版)
引用:本文《高中化学必修二教案(人教版)》来源于师库网,由师库网博客摘录整理,以下是的详细内容:开发利用金属矿物和海水...《基本营养物质》教案化学反应的速率和限度化学能与热能化学与资源综合利用、环...最简单的有机化合物dd...《生活中两种常见的'有机...来自石油和煤的两种基本...引用:师库网温馨提示本篇内容来源于师库网,旨在用于课件制作交流,非盈利性质,仅供参考,针对本文的问题如需了解更详细,可留言或者联系客服tags:教案、课件、师库网、教案网、课件网高中数学教案全套必修一篇二
初中新课程中数学知识点删了很多要求,如“立方和、立方差”公式,“韦达定理”,“十字相乘法分解因式”等。虽然初中新课程对这些知识点不作要求,但是从高中数学教学的实践来看,学生掌握了这些知识点对学习新的知识有一定的促进作用,因此,建议教师可根据学生和教学的实际情况,做适当的补充,同时,初中学习的有理数乘方及运算性质和二次函数,这些知识也要进行必要的复习等,这样有利于后期的教学。
2、思维能力和运算能力的进一步强化
初中新课程的内容倾向于基础性、普及性、应用性和直观性,学生的实践能力很强,但学生的数学思维能力有所欠缺,尤其是抽象思维能力较弱,这对高中数学学习的影响很大。因此,教师要逐渐培养学生的抽象思维能力。同时,由于初中大量使用计算器,学生的计算能力很弱,这与高中数学要求学生要有较强的化简、变形、推理及运算能力有一定的差距,从教学的实践来看,学生作业中出现的大量错误与计算能力较弱有很大关系。因此,建议教师可根据学生的实际情况,从高一开始就要切实提高学生的运算能力。
3、抓住学科特点,做好顺利过渡
高中数学知识量大,理论性、综合性强,同时高中课时少,学生基础差等,知识的难度和对学生能力的要求和初中相比都有较大的提高(如“集合”、“映射”、“函数”等都比较抽象,难度大,“函数”等知识综合性较强)。学好高中数学需要学生具有较强的阅读能力、运算能力、逻辑推理能力、抽象思维能力及分析问题、解决问题的综合能力,这与初中数学知识点较少,难度较低,形成较大的差距。因此,教师要能够根据实际情况及时调整教学方法和教学过程,使学生能顺利进入高中并能尽快适应高中的数学学习。
高中数学教案全套必修一篇三
一、教学目标:
知识与技能:了解直线参数方程的条件及参数的意义
过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:
教学重点:曲线参数方程的定义及方法
教学难点:选择适当的参数写出曲线的参数方程.
三、教学方法:
启发、诱导发现教学.
四、教学过程
(一)、复习引入:
1.写出圆方程的标准式和对应的参数方程。
圆参数方程(为参数)
(2)圆参数方程为:(为参数)
2.写出椭圆参数方程.
(二)、讲解新课:
如果已知直线l经过两个定点q(1,1),p(4,3),
那么又如何描述直线l上任意点的位置呢?
2、教师引导学生推导直线的参数方程:
(1)过定点倾斜角为的直线的
参数方程
(为参数)
【辨析直线的参数方程】:设m(x,y)为直线上的任意一点,参数t的几何意义是指从点p到点m的位移,可以用有向线段数量来表示。带符号.
(2)、经过两个定点q,p(其中)的'直线的参数方程为。其中点m(x,y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点m分有向线段的数量比。当时,m为内分点;当且时,m为外分点;当时,点m与q重合。
(三)、直线的参数方程应用,强化理解。
1、例题:
学生练习,教师准对问题讲评。反思归纳:
1)求直线参数方程的方法;
2)利用直线参数方程求交点。
2、巩固导练:
补充:
1)直线与圆相切,那么直线的倾斜角为(a)
a.或b.或c.或d.或
2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则.
解:直线化为普通方程是,
该直线的斜率为,
直线(为参数)化为普通方程是,
该直线的斜率为,
则由两直线垂直的充要条件,得,。
(四)、小结:
(1)直线参数方程求法;
(2)直线参数方程的特点;
(3)根据已知条件和图形的几何性质,注意参数的意义。
(五)、作业:
补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为
【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。
解析:由题直线的普通方程为,故它与与的距离为。
五、教学反思:
高中数学教案全套必修一篇四
集合这部分的主要内容是集合的概念、表示方法和集合之间的关系和运算。纵观近几年高考题,集合的考查以选择题、填空题为主要题型。集合的概念和基本运算是本章的重点内容,也是高考的必考内容。 复习中首先要把握基础知识,深刻理解本章的基础知识点,重点掌握集合的概念和运算。
本章常用的数学思想方法主要有:数形结合的思想,如常借助于维恩图、数轴解决问题;分类讨论的思想,如一元二次方程根的讨论、集合的包含关系等。复习时要重视对基本思想方法的渗透,逐步培养用数学思想方法来分析问题、解决问题的能力。
函数
函数是高中数学的核心内容,函数的思想方法贯穿了高中数学的始终。近几年高考试题函数热点之一是考查函数的定义域、值域、单调性、奇偶性以及函数的图象。函数、方程、不等式关系密切,要学会对具体问题抽象概括、分析探索、透彻理解,从而构造函数,借助方程、不等式的知识,最终解决问题。实现函数、方程、不等式的沟通与转化,是高考的又一热点。考查函数内容的同时,用函数的思想观点研究问题,以及数形结合思想、分类讨论思想的灵活熟练应用,也是高考的一个重点。
规律方法总结
求函数解析式时,针对条件的特点可选用换元法、待定系数法、凑项法、列方程组法等进行求解。其中换元法是常用的方法,但要特别注意正确确定中间变量的取值范围,否则就不能正确确定函数的定义域。 判断函数单调性主要的方法有定义法、导数法、图象法。
高中数学教案全套必修一篇五
各位老师大家好!
我说课的内容是人教版a版必修2第三章第一节直线的倾斜角与斜率第一课时。
(一)教材分析
本节课选自必修2第三章(解析几何的第一章)第一节直线的倾斜角与斜率第一课时,直线的倾斜角和斜率解析几何的重要概念;是刻画直线倾斜程度的几何要素与代数表示;学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以解析法的方式来研究直线相关性质,而本节课直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节课也初步向学生渗透解析几何的基本思想和基本方法。因此,本课有着开启全章、渗透方法,承前启后的作用。
(二)学情分析
本节课的教学对象是高二学生,这个年龄段的学生天性活泼,求知欲强,并且学习主动,在知识储备上知道两点确定一条直线,知道点与坐标的关系,实现了最简单的形与数的转化;了解刻画倾斜程度可用角和正切值;具备了一定的数形结合的能力和分类讨论的思想。但根据学生的认知规律,还没有形成自觉地把数学问题抽象化的能力。所以在教学设计时需从学生的最近发展区进行探究学习,尽量让不同层次的学生都经历概念的形成、巩固和应用过程。
(三)教学目标
1.理解直线的倾斜角和斜率的概念,理解直线的倾斜角的唯一性和斜率的存在性;
2.掌握过两点的直线斜率的计算公式;
3.通过经历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括能力;
生严谨求简的数学精神。
重点:斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
难点:直线的倾斜角与斜率的概念的形成,斜率公式的构建。
(四)教法和学法
课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情景,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效的渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的教学原则,考虑到学生首次接触解析几何的内容及研究方法,所以我采用设置问题串的形式,启发引导学生类比、联想,产生知识迁移;通过几何画板演示实验、探索交流相结合的教学方法激发学生观察、实验,体验知识的形成过程;由此循序渐进,使学生很自然达到本节课的学习目标。
(五)教学过程
环节1.指明研究方向(3min)
简介17世纪法国数学家笛卡尔和费马的数学史。
高中数学教案全套必修一篇六
教学目标
1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;
2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;
归纳——猜想——证明的数学研究方法;
3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点
重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;
难点:等比数列的性质的探索过程。
教学过程
教学过程:
1、 问题引入:
前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?
(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)
2、新课:
1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。
师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
公式的推导:(师生共同完成)
若设等比数列的公比为q和首项为a1,则有:
方法一:(累乘法)
3)等比数列的性质:
下面我们一起来研究一下等比数列的性质
通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。
问题4:如果{an}是一个等差数列,它有哪些性质?
(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:
3、例题巩固:
例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。
答案:1458或128。
例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3 …a20 =_ 10 ____.
(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)
1、 小结:
今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习
我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。
2、 作业:
p129:1,2,3
教学设计说明:
1、 教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。
2、 教学设计过程:本节课主要从以下几个方面展开:
1) 通过复习等差数列的定义,类比得出等比数列的定义;
2) 等比数列的通项公式的推导;
3) 等比数列的性质;
有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧
知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。
在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。
通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。
等比性质的研究是本节课的高潮,通过类比
关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。
高中数学教案全套必修一篇七
1、知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2、过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3、情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简单几何体、简单组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:观察、动手实践、讨论、类比。
四、教学过程
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的。投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本p15练习1、2;p20习题1.2[a组]2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本p20习题1.2[a组]1。
高中数学教案全套必修一篇八
学生全面认识数学的科学价值、应用价值和文化价值。
2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。
教学重点:
如何建立实际问题的目标函数是教学的重点与难点。
教学过程:
一、问题情境
问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?
问题3做一个容积为256l的方底无盖水箱,它的高为多少时材料最省?
二、新课引入
导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
1。几何方面的应用(面积和体积等的最值)。
2。物理方面的应用(功和功率等最值)。
3。经济学方面的应用(利润方面最值)。
三、知识建构
说明1解应用题一般有四个要点步骤:设——列——解——答。
说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极
值及端点值比较即可。
例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才
能使所用的材料最省?
说明1这种在定义域内仅有一个极值的函数称单峰函数。
说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:
s1列:列出函数关系式。
s2求:求函数的导数。
s3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。
例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为
多大时,才能使电功率最大?最大电功率是多少?
说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。
例4强度分别为a,b的两个光源a,b,它们间的距离为d,试问:在连接这两个光源的线段ab上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。
例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。
(1)设,生产多少单位产品时,边际成本最低?
(2)设,产品的单价,怎样的定价可使利润最大?
四、课堂练习
1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。
2。在半径为r的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。
4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面abcd的面积为定值s时,使得湿周l=ab+bc+cd最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。
五、回顾反思
(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。
(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。
(3)相当多有关最值的实际问题用导数方法解决较简单。
六、课外作业
课本第38页第1,2,3,4题。
高中数学教案全套必修一篇九
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一。基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。
二。问题讨论
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。
思维点拨::三角形中的三角变换,应灵活运用正、余弦定理。在求值时,要利用三角函数的有关性质。
例6:在某海滨城市附近海面有一台风,据检测,当前台
风中心位于城市o(如图)的东偏南方向
300km的海面p处,并以20km/h的速度向西偏北的
方向移动,台风侵袭的范围为圆形区域,当前半径为60km,
并以10km/h的速度不断增加,问几小时后该城市开始受到
台风的侵袭。
一。小结:
1、利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3、边角互化是解三角形问题常用的手段。
三。作业:p80闯关训练
高中数学教案全套必修一篇十
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2、过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3、情感态度与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
重点、难点:用斜二测画法画空间几何值的直观图。
1、学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2、教学用具:三角板、圆规
(一)创设情景,揭示课题
1、我们都学过画画,这节课我们画一物体:圆柱
把实物圆柱放在讲台上让学生画。
2、学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知
1、例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2、例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3、探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4、平行投影与中心投影
投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5、巩固练习,课本p16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1、书画作业,课本p17练习第5题
2、课外思考课本p16,探究(1)(2)