数学余弦定理说课稿(汇总16篇)
通过总结,我们可以更好地了解自己的价值和作用。在写总结时,我们要注意用词准确、简明扼要,避免冗长和啰嗦的表达。下面是一些总结的写作技巧和要点,希望能对大家有所启发。
数学余弦定理说课稿篇一
奇偶性是人教a版第一章集合与函数概念的第3节函数的基本性质的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。
2、学情分析。
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
3、教学目标。
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:
数学余弦定理说课稿篇二
《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:
1、已知两边及其夹角,求第三边和其他两个角。
2、已知三边求三个内角;
3、判断三角形的形状。以及相关的证明题。
本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的`激发了爱国主义精神。
在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。
1、任务驱动法。
教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。
2、引导发现法、观察法。
通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。
3、归纳总结法。
学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。
4、讲练结合法。
讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。
学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。
(一)知识目标。
2、使学生初步掌握应用余弦定理解斜三角形。
(二)能力目标。
1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。
2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。
(三)德育目标。
1、培养学生的爱国主义精神、及团结、协作精神。
2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。
分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。
教学中注重突出重点、突破难点,从五个层次进行教学。
创设情境、任务驱动;
引导探究、发现定理;
完成任务、应用迁移;
拓展升华、交流反思;
(一)导入。
1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。
2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。
(二)新课。
3、证明猜想,导出余弦定理及余弦定理的变形。
经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
4、解决二个任务。
5、操作演练,巩固提高。
6、小结:
通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。
7、作业:
板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。
数学余弦定理说课稿篇三
一、教材分析:(说教材)。
二、说教学思路。
本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。
三、说教法。
教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。
2.引导发现法、观察法。
通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。
3.归纳总结法。
学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。
4.讲练结合法。
讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。
四、说学法。
学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。
五、教学目标。
(一)知识目标。
2、使学生初步掌握应用余弦定理解斜三角形。
1
(二)能力目标。
1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。
2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。
(三)德育目标。
1、培养学生的爱国主义精神、及团结、协作精神。
2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。
六、教学重点。
教学重点是余弦定理及应用余弦定理解斜三角形;
七、教学难点。
教学中注重突出重点、突破难点,从五个层次进行教学。
创设情境、任务驱动;
引导探究、发现定理;
完成任务、应用迁移;
拓展升华、交流反思;
小结归纳、布置作业。
(一)、导入。
1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。
2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。
(二)、新课。
3.证明猜想,导出余弦定理及余弦定理的变形。
经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
4.解决二个任务。
5.操作演练,巩固提高。
6.小结:
通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。
7.作业:
九、板书设计。
板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。
十、课后反思。
在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。
数学余弦定理说课稿篇四
"余弦定理"是人教a版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。
2.教学重、难点。
难点:利用向量的数量积证余弦定理的思路。
知识目标:能推导余弦定理及其推论,能运用余弦定理解已知"边,角,边"和"边,边,边"两类三角形。
能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。
情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能暴露解决问题的思维。在本节教学中,我将遵循"提出问题、分析问题、解决问题"的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。
本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历"现实问题转化为数学问题"的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。
帮助学生从平面几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化方法吗?问题可转化为已知三角形两边长和夹角求第三边的问题,即:在中已知ac=b,ab=c和a,求a.
学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。将实际问题转化成数学问题,引导学生分析问题。在中已知a=5,b=7,c=8,求b.
学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。
让学生观察推论的特征,讨论该推论有什么用。
数学余弦定理说课稿篇五
《余弦定理》是全日制中等国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:
1)、已知两边及其夹角,求第三边和其他两个角。
2)、已知三边求三个内角;
3)、判断三角形的形状。以及相关的证明题。
本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。
在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。
1.任务驱动法。
教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。
2.引导发现法、观察法。
通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。
3.归纳总结法。
学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。
4.讲练结合法。
讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。
学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。
(一)知识目标。
2、使学生初步掌握应用余弦定理解斜三角形。
1
(二)能力目标。
1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。
2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。
(三)德育目标。
1、培养学生的爱国主义精神、及团结、协作精神。
2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。
教学重点是余弦定理及应用余弦定理解斜三角形;
教学中注重突出重点、突破难点,从五个层次进行教学。
创设情境、任务驱动;
引导探究、发现定理;
完成任务、应用迁移;
拓展升华、交流反思;
小结归纳、布置作业。
(一)、导入。
1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。
2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。
(二)、新课。
3.证明猜想,导出余弦定理及余弦定理的变形。
经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
4.解决二个任务。
5.操作演练,巩固提高。
6.小结:
通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。
7.作业:
板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。
在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。
数学余弦定理说课稿篇六
大家好!
今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。目标的确定。方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
本节内容是江苏出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:
基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:
1、创设情境,引入课题。
利用多媒体引出如下问题:
a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
2、探索研究、构建新知。
(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形()时考虑。此时使用勾股定理,得。
(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形()中。
通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。
在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。
根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:
(1)已知三边,求三个角;
(2)已知三角形两边及其夹角,求第三边和其他两个角。
3、例题讲解、巩固练习。
本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。
例题讲解:
例1在中,
(1)已知,求;
(2)已知,求。
【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。
例2对于例题1(2),求的大小。
【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。
例3使用余弦定理证明:在中,当为锐角时;当为钝角时,
【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的'推广”这一思想,进一步加深了对余弦定理的认识和理解。
课堂练习:
练习1在中,
(1)已知,求;
(2)已知,求。
【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。
练习2若三条线段长分别为5,6,7,则用这三条线段()。
a、能组成直角三角形。
b、能组成锐角三角形。
c、能组成钝角三角形。
d、不能组成三角形。
【设计意图】与例题3相呼应。
练习3在中,已知,试求的大小。
【设计意图】要求灵活使用公式,对公式进行变形。
4、课堂小结,布置作业。
先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:
(3)余弦定理的可以解决的两类解斜三角形的问题。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。
布置作业。
必做题:习题1、2、1、2、3、5、6;
选做题:习题1、2、12、13。
【设计意图】。
作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。
数学余弦定理说课稿篇七
《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:
1、已知两边及其夹角,求第三边和其他两个角。
2、已知三边求三个内角;
3、判断三角形的形状。以及相关的证明题。
本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。
在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。
1、任务驱动法。
教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。
2、引导发现法、观察法。
通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。
3、归纳总结法。
学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。
4、讲练结合法。
讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。
学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。
(一)知识目标。
2、使学生初步掌握应用余弦定理解斜三角形。
(二)能力目标。
1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。
2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
3、通过对余弦定理的.推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。
(三)德育目标。
1、培养学生的爱国主义精神、及团结、协作精神。
2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。
分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。
教学中注重突出重点、突破难点,从五个层次进行教学。
创设情境、任务驱动;
引导探究、发现定理;
完成任务、应用迁移;
拓展升华、交流反思;
(一)导入。
1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。
2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。
(二)新课。
3、证明猜想,导出余弦定理及余弦定理的变形。
经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
4、解决二个任务。
5、操作演练,巩固提高。
6、小结:
通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。
7、作业:
板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。
在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。
(一)一、教材分析1.地位及作用“余弦定理”是人教a版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定......
数学余弦定理说课稿篇八
引例:
例2:
例3:
4:
小结:
教学评价分析。
诊断性评价:
1.按常规,学生很可能想到先探究两角和的正弦公式,怎样想到先研究两角差的余弦公式是一个难点(但非重点),教学时可以直接提出研究两角差的余弦公式。但后面补充老教材的证明方法,让学生明白和与差内在的联系性与统一性,努力让学习过程自然。
2.尽管教材在前面的习题中,已经为用向量法证明两角差的余弦公式做了铺垫,多数学生仍难以想到.教师需要引导学生,联想到向量的数量积公式和单位圆上点的坐标特点,努力使数学思维显得自然、合理。
3.用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨的错误,教学时需要引导学生搞清楚两角差与相应向量的夹角的联系与区别。
预期效果:。
1、让学生在掌握两角差的余弦公式探究方法的基础上,能够自我总结形成公式探究的一般方法。
2、激发学生的探究欲望,能够独立或合作提出推导其它三角恒等式的方案,形成对三角恒等变换的本质认识,加深对灵活运用公式的理解。
3、培养学生的“问题意识”,在探索的过程中学会将“知识问题化”,大胆、合理地提出猜测,通过证明、完善,最终达到将“问题知识化”的目的.
数学余弦定理说课稿篇九
今天我说课的课题是《勾股定理》。本课选自九年义务教育人教版八年级数学下册第十八章第一节的第一课时。
一、教学背景分析。
1、教材分析。
本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过20xx年国际数学家大会的会徽图案,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,在实际生活中用途很大。勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。
2、学情分析。
通过前面的学习,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过拼图来证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用直观教具、多媒体等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
3、教学目标:
根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:
过程与方法目标:通过创设情境,导入新课,引导学生探索勾股定理,并应用它解决问题,运用了观察、演示、实验、操作等方法学习新知。
情感态度价值观目标:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。
4、教学重点、难点。
二、教材处理。
根据学生情况,为有效培养学生能力,在教学过程中,以创设问题情境为先导,运用直观教具、多媒体等手段,激发学生学习兴趣,调动学生学习积极性,并开展以探究活动为主的教学模式,边设疑,边讲解,边操作,边讨论,启发学生提出问题,分析问题,进而解决问题,以达到突出重点,攻破难点的目的。
三、教学策略。
1、教法。
“教必有法,而教无定法”,只有方法恰当,才会有效。根据本课内容特点和八年级学生思维活动特点,我采用了引导发现教学法,合作探究教学法,逐步渗透教学法和师生共研相结合的方法。
2、学法。
“授人以鱼,不如授人以渔”,通过设计问题序列,引导学生主动探究新知,合作交流,体现学习的自主性,从不同层次发掘不同学生的不同能力,从而达到发展学生思维能力的目的,发掘学生的创新精神。
3、教学模式。
根据新课标要求,要积极倡导自主、合作、探究的学习方式,我采用了创设情境——探究新知——反馈训练的教学模式,使学生获取知识,提高素质能力。
四、教学过程。
(一)创设情境,引入新课。
利用多媒体课件,给学生出示20xx年国际数学家大会的场面,通过观察会徽图案,提出问题:你见过这个图案吗?你听说过勾股定理吗?从现实生活中提出赵爽弦图,激发学生学习的热情和求知欲,同时为探索勾股定理提供背景材料,进而引出课题。
(二)引导学生,探究新知。
1、初步感知定理:这一环节选择教材的图片,讲述毕达哥拉斯到朋友家做客时发现用砖铺成的地面,其中含有直角三角形三边的数量关系,创设感知情境,提出问题:现在也请你观察,看看有什么发现?教师配合演示,使问题更形象、具体。适当补充等腰直角三角形边长为1、2时,所形成的规律,使学生再次感知发现的规律。
2、提出猜想:在活动1的基础上,学生已发现一些规律,进一步通过活动2进行看一看,想一想,做一做,让学生感受不只是等腰直角三角形才具有这样的性质,使学生由浅到深,由特殊到一般的提出问题,启发学生得出猜想,直角三角形的两直角边的平方和等于斜边的平方。
3、证明猜想:是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.通过活动3,充分引导学生利用直观教具,进行拼图实验,在动手操作中放手让学生思考、讨论、合作、交流,探究解决问题的多种方法,鼓励创新,小组竞赛,引入竞争,教师参与讨论,与学生交流,获取信息,从而有针对性地引导学生进行证法的探究,使学生创造性地得出拼图的多种方法,并使学生在学习的过程中,感受到自我创造的快乐,从而分散了教学难点,发现了利用面积相等去证明勾股定理的方法。培养了学生的发散思维、一题多解和探究数学问题的能力。
4、总结定理:让学生自己总结定理,不完善之处由教师补充。在前面探究活动的基础上,学生很容易得出直角三角形的三边数量关系即勾股定理,培养了学生的语言表达能力和归纳概括能力。
(三)反馈训练,巩固新知。
学生对所学的知识是否掌握了,达到了什么程度?为了检测学生对本课目标的达成情况和加强对学生能力的培养,设计一组有坡度的练习题:a组动脑筋,想一想,是本节基础知识的理解和直接应用;b组求阴影部分的面积,建立了新旧知识的联系,培养学生综合运用知识的能力。c组议一议,是一道实际应用题型,给学生施展才智的机会,让学生独立思考后,讨论交流得出解决问题的方法,增强了数学来源于实践,反过来又作用于实践的应用意识,达到了学以致用的目的。
(四)归纳小结,深化新知。
本节课你有哪些收获?你最感兴趣的地方是什么?你想进一步研究的的问题是什么?通过小结,使学生进一步明确掌握教学目标,使知识成为体系。
(五)布置作业,拓展新知。
让学生收集有关勾股定理的证明方法,下节课展示、交流.使本节知识得到拓展、延伸,培养了学生能力和思维的深刻性,让学生感受数学深厚的文化底蕴。
(六)板书设计,明确新知。
本节课的板书设计分为三块:一块是拼图方法,一块是勾股定理;一块是例题解析。它突出了重点,层次清楚,便于学生掌握,为获得知识服务。
数学余弦定理说课稿篇十
《余弦定理》选自人教a版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。
1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。
1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。
3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。
重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
普通教学工具、多媒体工具(以上均为命题教学的准备)。
数学余弦定理说课稿篇十一
两角差的余弦公式是推导其它十个公式的基础,所以我想着重讲这一小节,本节课的重点和难点是两角差的余弦公式的推导,所以在备课阶段,我研究了教材和教师用书,并且还在网上下载了许多这节课的教学设计。同时我根据我们班学生对知识理解的快慢,把两角差余弦公式的几何证明方法舍去了,想只讲它的向量的方法,有两方面的考虑,第一是刚结束平面向量的学习,对数量积还有印象,第二是从另一个方面让学生去体会向量作为一种工具的应用,从而使学生能对数学有那么一点点兴趣。
在我准备好之后,我又问了其他的数学老师,她们也同意只讲向量的证明方法,另一个方法对学生连提都不提,另外我还问了一下如何引入这一节的内容,并提了我的引入方法——将教材上的例题进行适当的改编,降低了难度,但是老师告诉我就直接点明主题就行了,加入引入的话会把学生绕晕的。我自己也想了想上次课讲数量积的时候对文科生用功的例子引入,结果可以想象,开头学生就觉得好难,等到讲数量积定义的时候学生完全听不进去了,那节课算是失败的。这一次我想了想采取了保守的策略——直接进入主题。
刚开始的时候效果还是不错的,通过让学生猜测15度《两角差的余弦公式》的`教学反思——潘红亚的余弦值引起了学生的兴趣,很自然的进入了公式的推导,但是我没有想到会在写角的终边与单位圆交点坐标时遇到了困难,学生一点想不起来三角函数是如何定义的,再加上当时快下课了,我没有进一步引导,而只是按照我自己的进度讲完推导过程,最后学生迷茫的表情让我很有挫败感,我就带着学生一块记忆公式,并告诉他们只要会用公式做题就可以了,听不懂就算了。
这节课过后,我自己静下心来想了想,我犯了数学课的大忌,一味地讲公式,套解法是最快得分的捷径,但它也是扼杀思考的最有效的管道。数学的根基在于理解而非公式或解法。通过最近的讲课,我发现张硕老师对我们讲的有关数学教学的理论我都没用上,所以我想等到讲必修五的时候,我需要的是花大量的时间备课,适当应用一些新的教学理论,改变一下数学课堂,实习就是将自己学到的理论应用于实践。
数学余弦定理说课稿篇十二
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
数学余弦定理说课稿篇十三
本课是在学生学习了三角函数、平面几何、平面向量、正弦定理的基础上而设置的教学内容,因此本课的教学有较多的处理办法。从解三角形的问题出发,提出解题需要,引发认知冲突,激起学生的求知欲望,调动了学生的学习积极性;在定理证明的教学中,引导学生从向量知识、坐标法、平面几何等方面进行分析讨论。在给出余弦定理的三个等式和三个推论之后,又对知识进行了归纳比较,发现特征,便于学生识记,同时也指出了勾股定理是余弦定理的特殊情形,提高了学生的思维层次。
命题的应用是命题教学的一个重要环节,学习命题的重要目的是应用命题去解决问题。所以,例题的精选、讲解是至关重要的。设计中的例1、例2是常规题,让学生应用数学知识求解问题,巩固余弦定理知识。例3是已知两边一对角,求解三角形问题,可用正弦定理求之,也可用余弦定理求解,通过比较分析,突出了正、余弦定理的联系,深化了对两个定理的理解,培养了解决问题的能力。本课在继承了传统数学教学模式优点,结合新课程的要求进行改进和发展,以发展学生的数学思维能力为主线,发挥教师的设计者,组织者作用,在使学生掌握知识的同时,帮助学生摸索自己的学习方法。
本课的教学应具有承上启下的目的。因此在教学设计时既兼顾前后知识的联系,又使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。
本课学生动手较多,会有很多新问题产生,因此显得课堂时间不足。今后教学要在这方面注意把握。
数学余弦定理说课稿篇十四
本节课是高中数学教材北师大版必修5第二章《解三角形》余弦定理的第一课时内容,《课程标准》和教材把解三角形这部分内容安排在必修5,位置相对靠后,在此前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,使得这部分知识的处理有了比较多的工具,某些内容处理的更加简洁。学数学的最终目的是应用数学,可是比较突出的是,学生应用数学的意识不强,创造能力弱,往往不能把实际问题抽象成数学问题,不能把所学的知识应用到实际问题中去,尽管对一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的思维方法了解不够,针对这些情况,教学中要重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际问题(如测量等)的重要定理,它将三角形的边角有机的结合起来,实现了边与角的互化,从而使三角和几何有机的结合起来,为求与三角形有关的问题提供了理论依据。
教科书直接从三角形三边的向量出发,将向量等式转化为数量关系,得到余弦定理,言简意赅,简洁明快,但给人感觉似乎跳跃较大,不够自然,因此在创设问题情境中加了一个铺垫,即让学生想用向量方法证明勾股定理,再由特殊到一般,将直角三角形推广为任意三角形,余弦定理水到渠成,并与勾股定理统一起来,这一尝试是想回答:一个结论源自何处,是怎样想到的。正弦定理和余弦定理源于向量的加减法运算,其实向量的加减法的三角法则和平行四四边形法则从形上揭示了三角形的边角关系,而正弦定理与余弦定理是从数量关系上揭示了三角形的边角关系,向量的数量积则打通了三角形边角的数形联系,因此用向量方法证明正、余弦定理比较简洁,在证明余弦定理时,让学生自主探究,寻找新的证法,拓展思维,打通余弦定理与正弦定理、向量、解析几何、平面几何的联系,在比较各种证法后体会到向量证法的优美简洁,使知识交融、方法熟练、能力提升。
数学教学的主要目标是激发学生的潜能,教会学生思考,让学生变得聪明,学会数学的发现问题,具有创新品质,具备数学文化素养是题中之义,想一想,成人工作以后,有多少人会再用到余弦定理,但围绕余弦定理学生学到的发现方法、思维方式、探究创造与数学精神则会受用不尽。数学教学活动首先应围绕培养学生兴趣、激发原动力,让学生想学数学这门课,同时指导学生掌握数学学习的一般方法,具备终身学习的基础。教师要不断提出好的数学问题,还要教会学生提出问题,培养学生发现问题的意识和方法,并逐步将发现问题的意识变成直觉和习惯,在本节课中,通过余弦定理的发现过程,培养学生观察、类比、发现、推理的能力,学生在教师引导下,自主思考、探究、小组合作相互交流启发、思维碰撞,寻找不同的证明方法,既培养了学生学习数学的兴趣,同时掌握了学习概念、定理的基本方法,增强了学生的问题意识。其次,掌握正确的学习方法,没有正确的'学习方法,兴趣不可能持久,概念、定理、公式、法则的学习方法是学习数学的主要方法,学习的过程就是知其然,知其所以然、举一反三的过程,学习余弦定理的过程正是指导学生掌握学习数学的良好学习方法的范例,引导学生发现余弦定理的来龙去脉,掌握余弦定理证明方法,理解余弦定理与其他知识的密切联系,应用余弦定理解决其他问题。在余弦定理教学中,寻求一题多解,探究证明余弦定理的多种方法,指导一题多变,改变余弦定理的形式,如已知两边夹角求第三边的公式、已知三边求角的余弦值的公式,启发学生一题多想,引导学生思考余弦定理与正弦定理的联系,与勾股定理的联系、与向量的联系、与三角知识的联系以及与其他知识方法的联系,通过不断改变方法、改变形式、改变思维方式,夯实了数学基础,打通了知识联系,掌握了数学的基本方法,丰富了数学基本活动经验,激发了数学创造思维和潜能。
教学中也会有很多遗憾,有许多的漏洞,在创设情境,引导学生发现推导方法、鼓励学生质疑提问、猜想等方面有很多遗憾,比如:如何引入向量,解释的不够。最后,希望各位同仁批评指正。
数学余弦定理说课稿篇十五
一、教材分析:。
(一)、本节课在教材中的地位作用。
“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。
(二)、教学目标:。
根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
知识技能:
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形。
过程与方法:
2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用。
3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:
(三)、学情分析:
尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
关键:辅助线的添法探索。
二、教学过程:
(一)、复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。
(二)、创设问题情境。
一开课我就提出了与本节课关系密切、学生用现有的'知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。
(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)。
因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。
在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。
(四)、组织变式训练。
数学余弦定理说课稿篇十六
1.本节课的教学过程大体上可以分为四个阶段,一是复习旧知识(余弦定理的内容是什么?定理有什么特点?),二是推导余弦定理的推论,三是余弦定理及其推论的简单运用和应用,四是总结归纳解斜三角形的一般思路、一般方法。
2.学生课堂表现非常积极,思维比较活跃,兴趣比较高,形成了一个比较好的上课氛围。就是本人给予学生的鼓励和肯定不足,今后的教学中多给学生鼓励和支持。
3.教学目标明确,能有效的对学生具有启发性、思考性、发展性的培养;多媒体的使用比较得当,既形象直观又提高了效率;板书设计比较规范,但自己的字体不好,今后多多训练。
4.我对本节课的课堂认知从教学效果看,应该说达到了预期的教学目标。学生在已有知识的基础上,自主得出了余弦定理的推论与应用;能较好地运用新知识分析问题和解决问题;通过练习的训练加强对知识的理解。
5.仍感到困惑的地方:
(1)自主学习时间与课堂容量;
(2)在课堂教学中如何关注学生的差异。