余弦定理教学设计(模板23篇)
总结是一种思维整理和归纳的过程,有助于提高我们的思维能力和逻辑思维能力。真正的力量源于内心的坚持和勇气,我们应该相信自己的潜力和能力。每个人的总结风格和写作风格都有所不同,因此我们要保持个人特色。
余弦定理教学设计篇一
本课是在学生学习了三角函数、平面几何、平面向量、正弦定理的基础上而设置的教学内容,因此本课的教学有较多的处理办法。从解三角形的问题出发,提出解题需要,引发认知冲突,激起学生的求知欲望,调动了学生的学习积极性;在定理证明的教学中,引导学生从向量知识、坐标法、平面几何等方面进行分析讨论。在给出余弦定理的三个等式和三个推论之后,又对知识进行了归纳比较,发现特征,便于学生识记,同时也指出了勾股定理是余弦定理的特殊情形,提高了学生的思维层次。
命题的应用是命题教学的一个重要环节,学习命题的重要目的是应用命题去解决问题。所以,例题的精选、讲解是至关重要的。设计中的例1、例2是常规题,让学生应用数学知识求解问题,巩固余弦定理知识。例3是已知两边一对角,求解三角形问题,可用正弦定理求之,也可用余弦定理求解,通过比较分析,突出了正、余弦定理的联系,深化了对两个定理的理解,培养了解决问题的能力。本课在继承了传统数学教学模式优点,结合新课程的要求进行改进和发展,以发展学生的数学思维能力为主线,发挥教师的设计者,组织者作用,在使学生掌握知识的同时,帮助学生摸索自己的学习方法。
本课的教学应具有承上启下的目的。因此在教学设计时既兼顾前后知识的联系,又使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。
本课学生动手较多,会有很多新问题产生,因此显得课堂时间不足。今后教学要在这方面注意把握。
余弦定理教学设计篇二
本节课是高中数学教材北师大版必修5第二章《解三角形》余弦定理的第一课时内容,《课程标准》和教材把解三角形这部分内容安排在必修5,位置相对靠后,在此前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,使得这部分知识的处理有了比较多的工具,某些内容处理的更加简洁。学数学的最终目的是应用数学,可是比较突出的是,学生应用数学的意识不强,创造能力弱,往往不能把实际问题抽象成数学问题,不能把所学的知识应用到实际问题中去,尽管对一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的思维方法了解不够,针对这些情况,教学中要重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际问题(如测量等)的重要定理,它将三角形的边角有机的结合起来,实现了边与角的互化,从而使三角和几何有机的结合起来,为求与三角形有关的问题提供了理论依据。
教科书直接从三角形三边的向量出发,将向量等式转化为数量关系,得到余弦定理,言简意赅,简洁明快,但给人感觉似乎跳跃较大,不够自然,因此在创设问题情境中加了一个铺垫,即让学生想用向量方法证明勾股定理,再由特殊到一般,将直角三角形推广为任意三角形,余弦定理水到渠成,并与勾股定理统一起来,这一尝试是想回答:一个结论源自何处,是怎样想到的。正弦定理和余弦定理源于向量的加减法运算,其实向量的加减法的三角法则和平行四四边形法则从形上揭示了三角形的边角关系,而正弦定理与余弦定理是从数量关系上揭示了三角形的边角关系,向量的数量积则打通了三角形边角的数形联系,因此用向量方法证明正、余弦定理比较简洁,在证明余弦定理时,让学生自主探究,寻找新的证法,拓展思维,打通余弦定理与正弦定理、向量、解析几何、平面几何的联系,在比较各种证法后体会到向量证法的优美简洁,使知识交融、方法熟练、能力提升。
数学教学的主要目标是激发学生的潜能,教会学生思考,让学生变得聪明,学会数学的发现问题,具有创新品质,具备数学文化素养是题中之义,想一想,成人工作以后,有多少人会再用到余弦定理,但围绕余弦定理学生学到的发现方法、思维方式、探究创造与数学精神则会受用不尽。数学教学活动首先应围绕培养学生兴趣、激发原动力,让学生想学数学这门课,同时指导学生掌握数学学习的一般方法,具备终身学习的基础。教师要不断提出好的数学问题,还要教会学生提出问题,培养学生发现问题的意识和方法,并逐步将发现问题的意识变成直觉和习惯,在本节课中,通过余弦定理的发现过程,培养学生观察、类比、发现、推理的能力,学生在教师引导下,自主思考、探究、小组合作相互交流启发、思维碰撞,寻找不同的证明方法,既培养了学生学习数学的兴趣,同时掌握了学习概念、定理的基本方法,增强了学生的问题意识。其次,掌握正确的学习方法,没有正确的'学习方法,兴趣不可能持久,概念、定理、公式、法则的学习方法是学习数学的主要方法,学习的过程就是知其然,知其所以然、举一反三的过程,学习余弦定理的过程正是指导学生掌握学习数学的良好学习方法的范例,引导学生发现余弦定理的来龙去脉,掌握余弦定理证明方法,理解余弦定理与其他知识的密切联系,应用余弦定理解决其他问题。在余弦定理教学中,寻求一题多解,探究证明余弦定理的多种方法,指导一题多变,改变余弦定理的形式,如已知两边夹角求第三边的公式、已知三边求角的余弦值的公式,启发学生一题多想,引导学生思考余弦定理与正弦定理的联系,与勾股定理的联系、与向量的联系、与三角知识的联系以及与其他知识方法的联系,通过不断改变方法、改变形式、改变思维方式,夯实了数学基础,打通了知识联系,掌握了数学的基本方法,丰富了数学基本活动经验,激发了数学创造思维和潜能。
教学中也会有很多遗憾,有许多的漏洞,在创设情境,引导学生发现推导方法、鼓励学生质疑提问、猜想等方面有很多遗憾,比如:如何引入向量,解释的不够。最后,希望各位同仁批评指正。
余弦定理教学设计篇三
“余弦定理”是人教a版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。
2、教学重、难点。
重点:余弦定理的证明过程和定理的简单应用。
难点:利用向量的数量积证余弦定理的思路。
知识目标:能推导余弦定理及其推论,能运用余弦定理解已知“边,角,边”和“边,边,边”两类三角形。
能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。
情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能暴露解决问题的思维。在本节教学中,我将遵循“提出问题、分析问题、解决问题”的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。
本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“现实问题转化为数学问题”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。
学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。
让学生观察推论的特征,讨论该推论有什么用。
余弦定理教学设计篇四
人教版《普通高中课程标准实验教科书必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。
本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。
新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。
继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。
教学重点是余弦定理的发现过程及定理的'应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。
本课的教学应具有承上启下的目的。因此在教学设计时既要兼顾前后知识的联系,又要使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。
余弦定理教学设计篇五
本节课是高中数学教材北师大版必修5第二章《解三角形》余弦定理的第一课时内容,《课程标准》和教材把解三角形这部分内容安排在必修5,位置相对靠后,在此前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,使得这部分知识的处理有了比较多的工具,某些内容处理的更加简洁。学数学的最终目的是应用数学,可是比较突出的是,学生应用数学的意识不强,创造能力弱,往往不能把实际问题抽象成数学问题,不能把所学的知识应用到实际问题中去,尽管对一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的思维方法了解不够,针对这些情况,教学中要重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际问题(如测量等)的重要定理,它将三角形的边角有机的结合起来,实现了边与角的互化,从而使三角和几何有机的结合起来,为求与三角形有关的问题提供了理论依据。
教科书直接从三角形三边的向量出发,将向量等式转化为数量关系,得到余弦定理,言简意赅,简洁明快,但给人感觉似乎跳跃较大,不够自然,因此在创设问题情境中加了一个铺垫,即让学生想用向量方法证明勾股定理,再由特殊到一般,将直角三角形推广为任意三角形,余弦定理水到渠成,并与勾股定理统一起来,这一尝试是想回答:一个结论源自何处,是怎样想到的。正弦定理和余弦定理源于向量的加减法运算,其实向量的加减法的三角法则和平行四四边形法则从形上揭示了三角形的边角关系,而正弦定理与余弦定理是从数量关系上揭示了三角形的边角关系,向量的数量积则打通了三角形边角的数形联系,因此用向量方法证明正、余弦定理比较简洁,在证明余弦定理时,让学生自主探究,寻找新的证法,拓展思维,打通余弦定理与正弦定理、向量、解析几何、平面几何的联系,在比较各种证法后体会到向量证法的优美简洁,使知识交融、方法熟练、能力提升。
数学教学的主要目标是激发学生的潜能,教会学生思考,让学生变得聪明,学会数学的发现问题,具有创新品质,具备数学文化素养是题中之义,想一想,成人工作以后,有多少人会再用到余弦定理,但围绕余弦定理学生学到的发现方法、思维方式、探究创造与数学精神则会受用不尽。数学教学活动首先应围绕培养学生兴趣、激发原动力,让学生想学数学这门课,同时指导学生掌握数学学习的一般方法,具备终身学习的基础。教师要不断提出好的数学问题,还要教会学生提出问题,培养学生发现问题的意识和方法,并逐步将发现问题的意识变成直觉和习惯,在本节课中,通过余弦定理的发现过程,培养学生观察、类比、发现、推理的能力,学生在教师引导下,自主思考、探究、小组合作相互交流启发、思维碰撞,寻找不同的证明方法,既培养了学生学习数学的兴趣,同时掌握了学习概念、定理的基本方法,增强了学生的问题意识。其次,掌握正确的学习方法,没有正确的'学习方法,兴趣不可能持久,概念、定理、公式、法则的学习方法是学习数学的主要方法,学习的过程就是知其然,知其所以然、举一反三的过程,学习余弦定理的过程正是指导学生掌握学习数学的良好学习方法的范例,引导学生发现余弦定理的来龙去脉,掌握余弦定理证明方法,理解余弦定理与其他知识的密切联系,应用余弦定理解决其他问题。在余弦定理教学中,寻求一题多解,探究证明余弦定理的多种方法,指导一题多变,改变余弦定理的形式,如已知两边夹角求第三边的公式、已知三边求角的余弦值的公式,启发学生一题多想,引导学生思考余弦定理与正弦定理的联系,与勾股定理的联系、与向量的联系、与三角知识的联系以及与其他知识方法的联系,通过不断改变方法、改变形式、改变思维方式,夯实了数学基础,打通了知识联系,掌握了数学的基本方法,丰富了数学基本活动经验,激发了数学创造思维和潜能。
教学中也会有很多遗憾,有许多的漏洞,在创设情境,引导学生发现推导方法、鼓励学生质疑提问、猜想等方面有很多遗憾,比如:如何引入向量,解释的不够。最后,希望各位同仁批评指正。
余弦定理教学设计篇六
1.本节课的教学过程大体上可以分为四个阶段,一是复习旧知识(余弦定理的内容是什么?定理有什么特点?),二是推导余弦定理的推论,三是余弦定理及其推论的简单运用和应用,四是总结归纳解斜三角形的一般思路、一般方法。
2.学生课堂表现非常积极,思维比较活跃,兴趣比较高,形成了一个比较好的上课氛围。就是本人给予学生的鼓励和肯定不足,今后的教学中多给学生鼓励和支持。
3.教学目标明确,能有效的对学生具有启发性、思考性、发展性的培养;多媒体的使用比较得当,既形象直观又提高了效率;板书设计比较规范,但自己的字体不好,今后多多训练。
4.我对本节课的课堂认知从教学效果看,应该说达到了预期的教学目标。学生在已有知识的基础上,自主得出了余弦定理的推论与应用;能较好地运用新知识分析问题和解决问题;通过练习的训练加强对知识的理解。
5.仍感到困惑的地方:
(1)自主学习时间与课堂容量;
(2)在课堂教学中如何关注学生的差异。
余弦定理教学设计篇七
1、余弦定理是解三角形的重要依据,要给予足够重视。本节内容安排两节课适宜。第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用。
2、本节课的重点首先是定理的证明,其次才是定理的应用。我们传统的.定理概念教学往往采取的是“掐头去尾烧中断”的方法,忽视了定理、概念的形成过程,只是一味的教给学生定理概念的结论或公式,让学生通过大量的题目去套用这些结论或形式,大搞题海战术,加重了学生的负担,效果很差。学生根本没有掌握住这些定理、概念的形成过程,不能明白知识的来龙去脉,怎么会灵活的应用呢?事实上已经证明,这种生搬硬套、死记硬背式的教学方法和学习方法已经不能适应新课标教育的教学理念。新课标课程倡导:强调过程,重视学生探索新知识的经历和获得的新知的体会,不能再让教学脱离学生的内心感受,把“发现、探究知识”的权利还给学生。
余弦定理教学设计篇八
人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。
二、学生学习情况分析。
本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。
三、设计思想。
新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。
四、教学目标。
继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。
五、教学重点与难点。
教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。
六、教学过程:
七、教学反思。
本课的教学应具有承上启下的目的。因此在教学设计时既要兼顾前后知识的联系,又要使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。
余弦定理教学设计篇九
《余弦定理》选自人教a版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
知识与技能:1、理解并掌握余弦定理和余弦定理的推论。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。三、教学重难点。
重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
四、教学用具。
普通教学工具、多媒体工具(以上均为命题教学的准备)。
余弦定理教学设计篇十
随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。
1教学目标的制定。
制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。
2教法学法的制定。
制定教法学法应结合各层次学生的具体情况而定,如对a层学生少讲多练,注重培养其自学能力;对b层学生,则实行精讲精练,注重课本上的例题和习题的处理;对c层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。
3教学重难点的制定。
教学重难点的制定也应结合各层次学生的具体情况而定。
4教学过程的设计。
4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。
4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。
4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的b层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。
5练习与作业的设计。
教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使a层学生有练习的机会,b、c两层学生也有充分发展的余地。
分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。
将本文的word文档下载到电脑,方便收藏和打印。
余弦定理教学设计篇十一
《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:1)、已知两边及其夹角,求第三边和其他两个角。2)、已知三边求三个内角;3)、判断三角形的形状。以及相关的证明题。
本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。
教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。
2、引导发现法、观察法。
通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。
3、归纳总结法。
学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。
4、讲练结合法。
讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。
学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。
(一)知识目标。
1、使学生掌握余弦定理及其证明。
2、使学生初步掌握应用余弦定理解斜三角形。
1
(二)能力目标。
1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。
2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。
(三)德育目标。
1、培养学生的爱国主义精神、及团结、协作精神。
2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。
教学重点是余弦定理及应用余弦定理解斜三角形;
分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。
教学中注重突出重点、突破难点,从五个层次进行教学。
创设情境、任务驱动;
引导探究、发现定理;
完成任务、应用迁移;
拓展升华、交流反思;
小结归纳、布置作业。
(一)、导入。
1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。
2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。
(二)、新课。
3、证明猜想,导出余弦定理及余弦定理的变形。
经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
4、解决二个任务。
5、操作演练,巩固提高。
6、小结:
通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。
7、作业:
板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。
在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。
余弦定理教学设计篇十二
本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。
创设数学情境是“情境。应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。
从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材第一章1。3正弦、余弦定理应用的例1。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。
“情境。应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。
2、培养学生自主学习、合作学习、研究(探究)性学习的学习方式。
(1)新教材与一期教材相比,有一个很大的变化就是在课本中增加了若干“探究与实践”的研究性课题,这些课题往往有着一定的实际生活情景,如出租车计价问题,测量建筑高度,邮资问题,“雪花曲线”等等,这些课题除了增强学生的数学应用能力之外,还有一个重要作用就是改变学生以往的学习方式。
在教学实践中,我对不同内容采取了不同的处理方式,像用单位圆中有向线段表示三角比;组合贷款中的数学问题主要在课堂引导学生完成;像邮件与邮费问题、上海出租车计价问题、声音传播问题、测建筑物的高度则采取课内介绍、布置、检查,学生主要在课外完成的方法。学生通过调查、上网收集数据,集体研究讨论,实践动手操作,无形之中使自己学习的主动性得以大大提高,自学能力也有所长足发展,从而有效的培养学生自主获取知识的能力,以适应未来社会发展的需要。
由此可见,新课程突出了“以学生发展为本”的素质教育理念与目标,强调素质的动态性和发展性,揭示了素质教育的本质,把学生素质的发展作为适应新世纪需要的培养目标和根本所在。因此,在教学实践中必须确立学生的主体地位。
(2)从培养学生的学习兴趣着手,变被动接受性学习为主动学习、自主学习、合作学习、研究(探究)性学习。根本改变重教法而轻学法的状况,使学生真正做到不但“知其然”,而且“知其所以然”,教师不仅要授之于“鱼”,更应该授之于“渔”,把本来应该让学生分析、总结、归纳、解决的问题由学生自己来解决。对学习有困难的学生,教师要多给予及时的关照与帮助,鼓励他们主动参与数学学习活动,尝试用自己的方式解题,敢于发表自己的看法,对出现的问题要帮助他们分析产生的原因,并鼓励他们自己去改正,从而增强学习数学的信心和兴趣。对于学有余力并对数学有兴趣的学生,教师可以为他们提供一些有价值的材料,指导他们阅读,发展他们的数学才能。
余弦定理教学设计篇十三
各位老师大家好!
今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。教学目标的确定。教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:
基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:
1、创设情境,引入课题。
利用多媒体引出如下问题:
a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
2、探索研究、构建新知。
(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形()时考虑。此时使用勾股定理,得。
(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形()中。
通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。
在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。
根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:
(1)已知三边,求三个角;
(2)已知三角形两边及其夹角,求第三边和其他两个角。
3、例题讲解、巩固练习。
本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。
例题讲解:
例1在中,
(1)已知,求;
(2)已知,求。
【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。
例2对于例题1(2),求的大小。
【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。
例3使用余弦定理证明:在中,当为锐角时;当为钝角时,
【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。
课堂练习:
练习1在中,
(1)已知,求;
(2)已知,求。
【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。
练习2若三条线段长分别为5,6,7,则用这三条线段()。
a、能组成直角三角形。
b、能组成锐角三角形。
c、能组成钝角三角形。
d、不能组成三角形。
【设计意图】与例题3相呼应。
练习3在中,已知,试求的大小。
【设计意图】要求灵活使用公式,对公式进行变形。
4、课堂小结,布置作业。
先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:
(3)余弦定理的可以解决的两类解斜三角形的问题。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。
布置作业。
必做题:习题1、2、1、2、3、5、6;
选做题:习题1、2、12、13。
作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。
余弦定理教学设计篇十四
《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:
1、已知两边及其夹角,求第三边和其他两个角。
2、已知三边求三个内角;
3、判断三角形的形状。以及相关的证明题。
本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。
在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。
1、任务驱动法。
教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。
2、引导发现法、观察法。
通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。
3、归纳总结法。
学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。
4、讲练结合法。
讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。
学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。
(一)知识目标。
2、使学生初步掌握应用余弦定理解斜三角形。
(二)能力目标。
1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。
2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
3、通过对余弦定理的.推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。
(三)德育目标。
1、培养学生的爱国主义精神、及团结、协作精神。
2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。
分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。
教学中注重突出重点、突破难点,从五个层次进行教学。
创设情境、任务驱动;
引导探究、发现定理;
完成任务、应用迁移;
拓展升华、交流反思;
(一)导入。
1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。
2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。
(二)新课。
3、证明猜想,导出余弦定理及余弦定理的变形。
经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
4、解决二个任务。
5、操作演练,巩固提高。
6、小结:
通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。
7、作业:
板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。
在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。
(一)一、教材分析1.地位及作用“余弦定理”是人教a版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定......
余弦定理教学设计篇十五
-6。
-5。
-4。
-3。
1
2
3
4
5
6
-1。
-1.2。
-1.5。
-2。
6
3
2
1.5。
1.2。
1
1
1.2。
1.5。
2
-6。
-3。
-2。
-1.5。
-1.2。
1
一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线.
3、观察图象,归纳、总结出反比例函数的性质。
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)。
(1)的图象在第一、三象限.可以扩展到k0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
的讨论与此类似.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
(2)函数的图象,在每一个象限内,y随x的增大而减小;
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小.
同样可以推出的图象的性质.
(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的`数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.
5、布置作业 习题13.8 1-4。
余弦定理教学设计篇十六
《余弦定理》选自人教a版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
知识与技能:1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。 过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验 解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。 三、教学重难点
重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
四、教学用具
普通教学工具、多媒体工具 (以上均为命题教学的准备)
余弦定理教学设计篇十七
"余弦定理"是人教a版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。
2.教学重、难点。
难点:利用向量的数量积证余弦定理的思路。
知识目标:能推导余弦定理及其推论,能运用余弦定理解已知"边,角,边"和"边,边,边"两类三角形。
能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。
情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能暴露解决问题的思维。在本节教学中,我将遵循"提出问题、分析问题、解决问题"的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。
本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历"现实问题转化为数学问题"的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。
帮助学生从平面几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化方法吗?问题可转化为已知三角形两边长和夹角求第三边的问题,即:在中已知ac=b,ab=c和a,求a.
学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。将实际问题转化成数学问题,引导学生分析问题。在中已知a=5,b=7,c=8,求b.
学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。
让学生观察推论的特征,讨论该推论有什么用。
余弦定理教学设计篇十八
各位老师大家好!
今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。教学目标的确定。教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析。
本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定。
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:
三、教学方法的选择。
基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
四、教学过程的设计。
为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:
1、创设情境,引入课题。
利用多媒体引出如下问题:
a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
2、探索研究、构建新知。
(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形()时考虑。此时使用勾股定理,得。
(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形()中。
通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。
在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。
根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:
(1)已知三边,求三个角;
(2)已知三角形两边及其夹角,求第三边和其他两个角。
3、例题讲解、巩固练习。
本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。
例题讲解:
例1在中,
(1)已知,求;
(2)已知,求。
【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。
例2对于例题1(2),求的大小。
【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。
例3使用余弦定理证明:在中,当为锐角时;当为钝角时,
【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。
课堂练习:
练习1在中,
(1)已知,求;
(2)已知,求。
【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。
练习2若三条线段长分别为5,6,7,则用这三条线段()。
a、能组成直角三角形。
b、能组成锐角三角形。
c、能组成钝角三角形。
d、不能组成三角形。
【设计意图】与例题3相呼应。
练习3在中,已知,试求的大小。
【设计意图】要求灵活使用公式,对公式进行变形。
4、课堂小结,布置作业。
先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:
(3)余弦定理的可以解决的两类解斜三角形的问题。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。
布置作业。
必做题:习题1、2、1、2、3、5、6;
选做题:习题1、2、12、13。
【设计意图】。
作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。
余弦定理教学设计篇十九
《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:
1)、已知两边及其夹角,求第三边和其他两个角。
2)、已知三边求三个内角;
3)、判断三角形的形状。以及相关的证明题。
本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。
在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。
1.任务驱动法。
教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。
2.引导发现法、观察法。
通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。
3.归纳总结法。
学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。
4.讲练结合法。
讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。
学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。
(一)知识目标。
2、使学生初步掌握应用余弦定理解斜三角形。
(二)能力目标。
1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。
2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。
(三)德育目标。
1、培养学生的爱国主义精神、及团结、协作精神。
2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。
教学重点是余弦定理及应用余弦定理解斜三角形;
分析勾股定理的'结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。
教学中注重突出重点、突破难点,从五个层次进行教学。
创设情境、任务驱动;
引导探究、发现定理;
完成任务、应用迁移;
拓展升华、交流反思;
小结归纳、布置作业。
(一)、导入。
1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。
2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。
(二)、新课。
3.证明猜想,导出余弦定理及余弦定理的变形。
经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
4.解决二个任务。
5.操作演练,巩固提高。
6.小结:
通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。
7.作业:
余弦定理教学设计篇二十
教学目标:
1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;
2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力.
教学重点:
结合图象分析总结出反比例函数的性质;
教学难点:描点画出反比例函数的图象。
教学用具:直尺。
教学方法:小组合作、探究式。
教学过程:
1、从实际引出反比例函数的概念。
我们在小学学过反比例关系.例如:当路程s一定时,时间t与速度v成反比例。
即vt=s(s是常数);
当矩形面积s一定时,长a与宽b成反比例,即ab=s(s是常数)。
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(s是常数)。
(s是常数)。
一般地,函数(k是常数,)叫做反比例函数.。
在现实生活中,也有许多反比例关系的`例子.可以组织学生进行讨论.下面的例子仅供。
2、列表、描点画出反比例函数的图象。
一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线.
3、观察图象,归纳、总结出反比例函数的性质。
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)。
(1)的图象在第一、三象限.可以扩展到k0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
的讨论与此类似.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
(2)函数的图象,在每一个象限内,y随x的增大而减小;
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小.
同样可以推出的图象的性质.
(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.
余弦定理教学设计篇二十一
本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:
基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:
1、创设情境,引入课题
利用多媒体引出如下问题:
a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
2、探索研究、构建新知
(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形( )时考虑。此时使用勾股定理,得。
(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形( )中。
通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。
在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。
根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:
(1)已知三边,求三个角;
(2)已知三角形两边及其夹角,求第三边和其他两个角。
3、例题讲解、巩固练习
本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。
例题讲解:
例1在中,
(1)已知,求;
(2)已知,求。
【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。
例2对于例题1(2),求的大小。
【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。
例3使用余弦定理证明:在中,当为锐角时;当为钝角时,
【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。
课堂练习:
练习1在中,
(1)已知,求;
(2)已知,求。
【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。
练习2若三条线段长分别为5,6,7,则用这三条线段()。
a、能组成直角三角形
b、能组成锐角三角形
c、能组成钝角三角形
d、不能组成三角形
【设计意图】与例题3相呼应。
练习3在中,已知,试求的大小。
【设计意图】要求灵活使用公式,对公式进行变形。
4、课堂小结,布置作业
先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:
(1)余弦定理的内容和公式;
(2)余弦定理实质上是勾股定理的推广;
(3)余弦定理的可以解决的两类解斜三角形的问题。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。
布置作业
必做题:习题1、2、1、2、3、5、6;
选做题:习题1、2、12、13。
作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。
余弦定理教学设计篇二十二
今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。教学目标的确定。教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:
基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:
1、创设情境,引入课题
利用多媒体引出如下问题:
a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
2、探索研究、构建新知
(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形()时考虑。此时使用勾股定理,得。
(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形()中。
通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。
在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。
根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:
(1)已知三边,求三个角;
(2)已知三角形两边及其夹角,求第三边和其他两个角。
3、例题讲解、巩固练习
本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。
例题讲解:
例1在中,
(1)已知,求;
(2)已知,求。
【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。
例2对于例题1(2),求的大小。
【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。
例3使用余弦定理证明:在中,当为锐角时;当为钝角时,
【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。
课堂练习:
练习1在中,
(1)已知,求;
(2)已知,求。
【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。
练习2若三条线段长分别为5,6,7,则用这三条线段()。
a、能组成直角三角形
b、能组成锐角三角形
c、能组成钝角三角形
d、不能组成三角形
【设计意图】与例题3相呼应。
练习3在中,已知,试求的大小。
【设计意图】要求灵活使用公式,对公式进行变形。
4、课堂小结,布置作业
先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:
(1)余弦定理的内容和公式;
(2)余弦定理实质上是勾股定理的推广;
(3)余弦定理的可以解决的两类解斜三角形的问题。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。
布置作业
必做题:习题1、2、1、2、3、5、6;
选做题:习题1、2、12、13。
【设计意图】
作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。
余弦定理教学设计篇二十三
《余弦定理》选自人教a版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。
1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。
1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。
3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
1、在交流合作的过程中增强合作探究、团结协作精神,体验 解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。
重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
普通教学工具、多媒体工具 (以上均为命题教学的准备)