加法交换律教案(优质18篇)
教案是教师在备课过程中制定的一种详细的教学计划,它可以有效地指导教学的进行,提高教学质量。每一节课的教案都应该包括教学目标、教学内容、教学过程和教学评价等要素。教案的编写是教师教学工作的重要组成部分,也是教学质量的保证之一。教案的制定要考虑到学生的实际情况和学科特点,合理安排教学过程,确保教学目标的达成。编写教案时应充分考虑学生的学习特点和个体差异,保证教学的有效性。下面是小编为大家整理的一些教案参考资料,供大家参考和利用。
加法交换律教案篇一
加法的运算定律是运算体系中的普遍规律。为了让学生能够理解并掌握这一规律,以便为今后的应用服务。我在教学中从学生的已有知识经验的实际状态出发,通过抽象建模,大胆猜测,操作验证,合作总结这四个环节,让学生能够理解加法运算定律的含义,并从过程中体验成功的喜悦或失败的情感。
本课我把凑整简算的思想贯穿始终,让学生从学习中体验选择简便的方法是学习的最好途径。对于小学生来说,运算定律的理解与运用是培养和发展学生抽象的极好时机。本节课,我引导学生在知识的形成过程中提升学生的思维能力,在课堂上充分调动学生积极性,让孩子们大胆猜想,举例验证、得出结论。
1、在复习引用中,巩固学生的思维基础。
通过一组口算练习,让学生明确能够凑整十或整百数的两个数加起来比较简便,这个为后面学习结合律打下基础。
2、大胆猜想,自主探究,培养学生独立思考的能力。
在教授新课的过程中,我通过提问、设疑,让学生观察―猜测―举例―验证四个环节,同时通过小组合作得出结论。这样既培养了学生的抽象概括能力,同时让学生的思维得到了有效的训练和发展。
将本文的word文档下载到电脑,方便收藏和打印。
加法交换律教案篇二
教学内容:
北师大版小学数学四年级上册第三单元乘法探索与发现(三)加法交换律与结合律p47。
教学目标:
1、经历探索过程,推导出加法交换律和结合律,会用字母表示数。
2、会运用加法交换律和结合律对一些算式进行简便计算。
3、激发学生的学习兴趣,培养学生的思维能力和科学的学习方法。
教学重点:
引导学生探索概括出加法交换律和结合律,并初步理解运用、进行简便计算。
教学难点:
加法交换律教案篇三
“加法交换律和加法结合律”是国标版苏教版小学四年级上册第8单元中的内容。本节内容安排了三个例题,分5课时进行教学,今天是其中的第一课时。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。
(二)学情分析。
(三)目标定位。
根据学生的生活经验和知识背景及本课的知识特点,我预设如下教学目标:
(1)教学技能目标:通过利用学生身边的材料,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。
(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
(3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。
教学重点:使学生理解并掌握加法交换律和结合律,能用字母表示加法交换律和结合律。
教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。
教具学具:为了便于操作、交流和展示、及时与学生互动,本课准备多媒体一套。
二、说教学程序。
鉴于本课教学内容设定的目标及学生的认知规律和实际情况,预设如下四部分展开教学。
(一)探索加法交换律:
这部分分成4个环节进行。
1、在情境中初步感知规律。
课始从学校参加吴中区小学生运动会话题作为课堂信息,要求学生根据提供信息提出问题,从而导入新课,进行加法交换律的研究。
(设计意图:数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下而面的探究呈现素材,同时渗透思想品德教育。)。
2、在例举中验证规律。
(1)教师组织学生观察两个式子的特点,然后自己照样子仿写等式。
(2)运用自己字写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。
(设计意图:教师充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。)。
3、在反思中概括规律。
(1)自己仿写式子,独立思考或小组讨论,用自己喜欢的形式表示出来。
(设计意图:通过学生独立思考,小组讨论,师生交流的多种形式,帮助学生用自己的语言来表示加法交换律,培养学生运用数学语言表述和概括的能力)。
(2)用字母来表示加法交换律。
(设计意图:学生在充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用含有字母的式子表示规律,使学生体会到符号的简洁性,从而发展了学生的符号感。)。
4、练习。
(1)填空、(2)判断、(3)验算。
(设计意图:新课刚结束就配以填空、判断、验算多种形式的联系,既有利于概念的正确建立,同时也及时地巩固了新知。)。
整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。
1、在情境中感受规律。
以上面4、练习题为内容,让学生提问题过渡到下一环节,非常自然,
(1)学生一起解决“三个项目共得多少分?”
(2)交流学生各自列式,并让学生说清列式理由。
(3)选择两种不同列式,探索规律。
(设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)。
2、在计算中验证规律。
(1)教师出示两组题目,让学生观察结果是否相等,为学生接下来题目,探究打下基础。
(2)教师写出左边算式,让学生写出右边算式(与左边相等),使学生在教师的引导下,逐步感知加法结合律。
(3)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。
(设计意图:学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。
(1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?
(2)按照这种规律,你还能写出这样的算式吗?
(3)用字母表示这样的规律。
(设计意图:这里主要通过学生讨论、交流、汇报等环节,正直组学生一个自主的空间。由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)。
三、实践应用。
(设计意图:我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。
1、基础训练,分三个层次。
(1)想想做做1:运用了加法的什么定律?
通过寓教于乐的游戏方法进行练习,女生代表加法交换律,男生代表加法结合律,让学生体会在每个等式中应用了什么运算定律。
(2)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。
(3)想想做做5。
(设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)。
2、拓展练习,分二个层次。
(1)在方框里填上适当的数。通过用图形式字母表示数来巩固加法运算定律,有利于学生抽象思维的形成。
(2)应用加法运算定律使计算简便:30+28+70+45+72。通过该题训练把一般的规律推广到更多的数字计算中,有利于知识的深化和综合运用知识能力的提高。
四、评价鼓励。
(设计意图:及时评价总结,肯定学生的学习,以促进学生更加自觉主动地进行学习,使本课学习内容的理解提升到一个更高层面。)。
五、教法、学法。
以上是本人对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,新授和练习尽可能从贴近学生身边的素材撷取,激发学生学习兴趣,在学习过程中让学生经历动手实践,自主探究,合作交流的活动,使学生体会“做数学的乐趣。”
板书设计:
(设计意图:简明扼要的、纲领式的板书反映本课主要内容,体现本课知识的形成过程,知识性、系统性在整个板书中充分体现。)。
读书破万卷下笔如有神,以上就是为大家整理的2篇《《加法交换律和加法结合律》教案》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在。
加法交换律教案篇四
1、让学生在经历探索加法交换律和加法结合律的过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。
2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。
3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学重点。
理解加法的运算律。
教学难点。
概括加法的运算律,尝试用字母表示。
教学过程。
1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。
板书算式。
2、比较这两道算式有什么不同?
3、得数相同的算式我们可以用等号把它们连成等式。
4、举例:你能再说出几个这样的等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的?核实是否相等。
5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。
6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母。
学生思考,充分发表自己意见,教师给予肯定。
7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a.老师小结:
引出:加法交换律(板书)。
8、小练习:填数。
3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。
4、出示书上题目,说一说,算一算。
5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。
6、你能不能再举几个例子?学生举例。
8、小练习:填数。
2、课后练习:
(1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。
(2)比较体会运算律的作用,知道凑整百。
(3)凑整百小练习。
加法交换律教案篇五
教具准备:
ppt课件等。
教学过程:
一、复习导入,回忆旧知。
要求学生回忆一下上一节课学过的乘法的运算规律。
(我们上节课学习了《乘法交换律和乘法结合律》,那么,大家回忆一下,乘法交换律和乘法结合律的公式又是什么呢?)。
a×b=b×a。
(a×b)×c=a×(b×c)(黑板板书)。
(那么加法是否也有同样的规律呢?让我们现在来探讨一下)。
二、创设情境、操作体验。
1、由生活引入,通过对话的形式与学生共同探讨交换的含义。
数一数:本班男生的人数和本班女生的.人数,求本班一共有多少人?
男生+女生:(26+17)人。
女生+男生:(17+26)人。
结果无论哪一种计算方法,计算出来的结果都是相等的。
再举书本上两个例子来说明。
26+17=17+26。
3+2=2+3。
15+20=20+15。
a+b=b+a(黑板板书)。
让学生列出不同的算式,分析比较两个算式的共同点和不同点。
突出强调“交换”的意思。结果表明:两个式子的加数交换了位置,但和不变。再要求学生自己举一两个例子来试试看。
方法一:先算跳绳的一共有多少人:28+17人,再算全部的人数:(28+17)+23人。
方法二:先算一下女生,再算一下他们加起来一共是多少人:28+(17+23)人。
那么得出:(28+17)+23=28+(17+23)整十。
(3+2)+5=3+(2+5)。
(19+12)+38=19+(12+38)整十。
(a+b)+c=a+(b+c)。
结果表明,计算出来的结果都是相等的。
3、再举书本中的例子来说明结合的两个数的条件和原因。
57+49。
=50+7+40+9。
=50+40+7+9。
=(50+40)+(7+9)因为50+40=90,90是一个整十数。
=90+16。
=106。
三、巩固练习,加深记忆。
1、书本p47(3)利用你发现的规律,计算下列各式。
2、想一想:下面的等式各应用了什么运算律?
82+0=0+82。
47+(30+8)=(47+30)+8。
(87+68)+32=84+(68+32)。
75+(48+25)=(75+25)+48。
3、比一比:谁算得又快又对!
38+76+24(88+45)+12。
四、布置作业。
五、板书设置。
加法交换律教案篇六
在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:
具体做法是:
一、学生经历有效地探索过程。
在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
二、注意数学学习方法的渗透。
加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
三、教学中注意沟通知识间的联系。
在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。
总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水平。
加法交换律教案篇七
教学内容:教科书第48―49页的内容,练习十一的第1―4题。
教学目的:
1.使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。
2、使学生理解并掌握加法交换律。
教具准备:小黑板。
教学过程:
教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。
1、加法的意义。
(1)教学例1。
教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。
137千米357千米。
北京天津济南。
然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,出就是要把137和357合并起来,所以要用加法计算。)教师边重述用加法算的理由,边板书出算式和答案。现进一步提问:
“加法是什么样的运算?”
在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。
(2)做练习十一的第1题。
要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的张数,要求小强和小明一共有多少张邮票,就要把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。
2.加法各部分的名称。
教师指着137+357=494,提问:
137和357在加法算式中叫什么数?(加数。)。
它们相加得到的结果494叫什么?(和。)。
然后教师联系的意义说明:相加的`两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:
137+357=494。
加数+加数=和。
提问:
“我们上面做的加法,两个加数是什么样的数?”(自然数。)。
“任何两个自然数相加得到的和都比加数怎样?”(大。)。
“一个自然数和0相加得到的和怎样呢?”(还得原数。)。
“你能举出一个自然数和0相加的几个例子吗?”
教师把学生举出的例子板书出来。(如,3+0=3,0+4=4,0+0=0)。
然后接着问:
“0和0相加会怎样?”(还得0。)。
“人上面的例子我们可以看出一个自然数和0相加还得这个自然数,0和0相加还得0,也就是说任何数和0相加都怎样?”(得原数。)。
教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。
1、结合例1的两种解法,引导学生比较它们的特点。
提问:
“上面”的例1,求北京到济南的铁路长是怎样列式计算的?”
“如果求济南到北京的铁路长该怎样列式计算?”(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)。
学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。
然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加)不同点是什么?(等号左边是137加357,等号右边是357加137。)。
引导学生回答后,教师归纳:137和357与357和137的得数一样,出就是和不变。
2.再出两组算式,引导学生比较,加以概括。
提出:能不能只从这一个例子就得出“相加的两个数交换位置,和不变”?
教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。下面我们观察一下这几组算式,看一看它们有什么样的关系。
教师板书出下面的算式:
18+1717+18。
124+235235+124。
让学生算一算,再提问:
“每组算式有什么关系?里应填什么?这几组算式有什么共同特点?你发现了什么规律?从这几组算式你能得出什么结论?”
3.比较三个等工,归纳出一般规律。
引导学生归纳,突出以下几点:
(1)这三个等式中,每组算式有几个加数?(两个加数)。
(2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第48页方框里的话。
学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a或b分别表示两个加数,怎样表示加法交换律?(同时说明a、b是拉丁字母,通常读作“ei”“bi”,不要按汉语拼音来读,并领读几遍。)。
学生回答后,教师板书:a+b=b+a。
说明:a和b可以表示0、1、2、3、……中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用“a+b=b+a,就可以表示任意两个数相加,交换加数的位置,和不变。比如,“a+b=b+a”可以表示2+1=1+2,137+357=357+137,18+17=17+18等等。
接着教师提问:
“想一想我们在以前学过的哪些计算中用到了加法交换律?”
使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。
5.做第48页的“做一做”。
第1题,让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。
第2题,验算的竖式可以直接写在原始的右边。
三、巩固练习。
做练习十一的第2―4题。
1.第2题,要注意让学生清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解,对于运算定律的表述,只要求表达得清楚没有错误,不要求学生一字不差地背下来。
2.第3题,让学生根据运算定律来判断每个等式是不是符合运算定律的要求。如230+370=380+220,虽然左右两边的得数相等,但由于两边的加数不同,所以不符合加法交换律。又如,30+50+40=50+30+40,虽然是三个数相加,但是前两个加数交换了位置,加得的和不变,还是符合加法交换律的。
四、小结。
加法交换律教案篇八
1、上课做到条理清晰,层次分明。我认真研读了教材,在尊重教材的基础上精心设计课堂教学过程。这节课教学目标明确,结构层次清晰,重点突出,教学方法灵活,也很恰当,体现了新课程的理念。
2、培养了学生探究精神。教学成功的重要前提之一就是要激活学生参与热情,打开思维的闸门,在“多向互动”和“动态生成”的教学过程中凸显知识的活性。
3、精心设计练习。教学中学生有一定的练习量,除了完成课本上的相关练习,我还补充设计了“填空题”,在教学加法交换律结合律之后,都安排了一组练习题强化概念。
加法交换律教案篇九
教师在课堂上充分以学生为主体,精心设计丰实有效的细节,多给学生提供机会,经常通过启发性的语言,使学生感受到自己是学习的主人,增强参与的主动性,不断的思考、探索讨论、交流,在经历知识的形成过程中,不断体验成功的快乐。
82+50=50+82。
47+(30+8)=(47+30)+8。
(84+68)+32=84+(68+32)。
75+(48+25)=(75+25)+48。
【说明】:在教学中,我发现学生对三个加数进行的交换律和结合律大部分学生都存在知识空白或混淆或含糊的现象,针对这一现状,我进行了这一预设。
学生1:我发现只有两个加数的是加法交换律,有3个加数的才是加法结合律。
学生2:我发现加法结合律都有括号,而加法交换律没有括号。
【说明】:事实上,学生都是带着各自的数学现实走进课堂的。激活学生的已有认知,唤起学生的学习心向从知识的原点出发,有利于激发学生的认知热情。
讨论完毕我话峰一转将评价权抛给了学生,现在再看此题你有什么话要说?
学生1:我明白了只要有位置变了,就是加法交换律。这题虽然有三个加数,但只有48和25交换了位置,所以是运用了加法的交换律。
学生2:只要有运算顺序的改变就是加法结合律。这个等式的两边在外形上尽管都有括号,但都是先算后两个数,并没有改变运算的顺序,所以没有应用加法的交换律。
【说明】:我尽可能多给学生机会,指导思想就是立足过程,注重发展,培养学生的自信心。通过多次互动,引导学生认识自我,建立自信,激发其内在的发展动力,促进学生改进、完善学习过程,促进学生发展。
这时我再将书上的那题出示给学生做,百分之九十的同学能一下子看出,此题既有加法的交换律又有加法的结合律,且能讲出理由。既快又准地实现了双基到思维拓展的一次飞跃,避免了思维定势,形成举一反三的能力。
【反思】:本节课我凭借自己课前的巧妙的预设,将课堂的潜价值最大化――珍视预设引发的精彩生成。
怎样使学生的思维品质得到提升?怎样把个别学生的思维成果转化为全班的共同财富?开始我并没有给学生下泛泛的、肤浅的结论,而是通过由表及里、由此及彼的引导把学生的思维引向“开阔地带”。把单向的言说变成了多元的对话,在全班学生的互动中完成了对定律的阐释与理解。
加法交换律教案篇十
教学内容:教科书第59页的例1和第59、60页的乘法交换律,完成“做一做”中的题目和练习十三的第1―5题。
教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。
加法交换律教案篇十一
本节课的知识点相对来说比较简单,因此从课堂效果来看学生掌握的还是比较好的。本节课设计了一个让学生自己用喜欢的方式表示加法交换律,两个班的学生在本节课中都能充分的表达自己的意愿,想到了好多不同的方法来表示交换律,这期间当然也有我想要的字母表达式。教学任务全部完成,同时也体现了小组合作和动手操作,这也是本节课我在教学的过程中希望能够完成的教学目标。
本节课的可取之处仍然是我们继续使用了小组合作的方法,让学生在讨论中得出想要的结果,而且还能得到充分的锻炼,锻炼孩子们能用完整的话表达自己的想法,锻炼他们用标准的数学语言来描述规律等等。本节课中最大的亮点就是这项工作了。
然而,教学总是有缺憾的,今天的课安排的不是很充实,课程上完了还有将近五分钟的时间,我的设计意图也是这样,想利用这五分钟的时间跟学生一起做一下今天的作业,一方面他们回家以后作业就没有那么多了,另一方面作业中的一些稍难一点的题我也能够做一下指导。但是从另一个侧面又能说明本节课设计的还是不够充实,没有拓展方面的题让学生在课上训练,尤其是对于五班的同学来说,这节课几乎是吃个半饱,如果本节课能针对五班学生的特点再加入一些提高性训练的话,这节课应该会上的更完美,换句话说,本节课中分层教学又体现的不是很充分了。
总之,如果再次教学本课的时候,应该针对本节课知识点简单的特点有针对性的加入一些拓展的题让学生充分掌握和巩固的,这不仅是要体现分层教学,更重要的是让那一部分“没吃饱”的同学得到满足!教学就是教师在打仗,每一场下来都要总结自己的经验为下一场战役做准备,希望能达到百战百胜的目的!
加法交换律教案篇十二
在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:
具体做法是:
一、学生经历有效地探索过程。
在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
二、注意数学学习方法的渗透。
加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
三、教学中注意沟通知识间的联系。
在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。
总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水平。
加法交换律教案篇十三
1、教学内容。
“加法交换律和乘法交换律”是北师大版《义务教育课程标准实验教课书》四年级上册第四单元的内容。书中把两部分内容编排在一起。在备课过程中,根据教学内容和学情我先引导学生观察发现加法交换律,然后在学生掌握加法交换律的基础上迁移过来。让孩子们大胆猜想,进而验证,得出乘法交换律。
本单元所学习的几条运算定律,不仅适用于整数的加法和乘法,也适用于有理数的加法和乘法。随着数的范围的进一步扩展,在实数甚至复数的加法和乘法中,它们仍然成立。因此,这些运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。而加法、乘法交换律又是这数学大厦基石中的基石。
加法、乘法交换律的内容比较简单,学生在以前的学习过程中都有过浅显的认知基础,只是没有明确的概括,本节课的教学很大程度上是要将学生以前比较零散的感性认识经过整理、明晰后上升为理性认识,因此,学生学起来比较容易。但是用符号或字母表示加法交换律,则是学生认识上的一个难点,因为这是学生第一次接触从研究确定的数到用字母表示一般的数,比较抽象,理解起来也比较困难。再有,学习方法比学习知识更为重要。不要简单地让孩子们学习运算定律,而是重在渗透给他们去猜想、验证并得出结论的数学研究的方法。
所以在设计本节课时我更多的想的是,如何让学生主动地去思考,去验证,经历得出结论的过程。自然地经历由用数到用字母表示的知识形成的过程,让学生在理解、感悟、体验中感受字母表示的优越性,从而为后面的其他运算定律的教学,以及正式教学“用字母表示数”打下基础。
3、教学目标。
有了上面的思考,我把本课的教学目标定为:
(1)使学生经历探索加法、乘法交换律的过程,理解并掌握加法交换律。
(2)使学生感受数学与现实生活的联系,培养学生根据具体情况,选择算法的意识与能力。
(3)经历加法交换律逐步符号化,形式化的过程,使学生初步感受用字母表示运算定律的优越性,培养学生的符号感。
(4)渗透给学生用“举例验证法”来验证规律存在的真实性数学学习方法。
4、教学重点:使学生理解并掌握加法、乘法交换律。
5、教学难点:会用个性化的符号或字母表示加法、乘法交换律。能根据加法运算定律展开猜想,并能进行举例验证。
设计本节课时,我一直在思考:教师怎么引导学生去探究、发现、总结规律?
交换两个加数的位置,和不变,学生在一年级的时候就会,只是比较零散,没有系统的表达。知识点本身的学习并不应“浓墨重彩”去渲染,我们的小学数学教学不仅应该关注“是什么”和“怎样做”,还应该引导学生去猜想、去探究“为什么”和“为什么这样做”,这样才能够凸显出“数学是思维的体操”这一学科特色。教师应该带领学生经历从现象到本质的探究过程,给学生一个问题模式,让学生“知道怎样思维”,让学生感悟一些数学研究的一般方法。
因此我在设计本课教学的基本思想是:
一是紧密联系学生的生活实际,引导学生在已有经验的基础上发现和归纳出运算定律。
二是重视让学生在探索中经历运算定律的发现过程,大致应该经过以下几步:观察、猜测、举例、验证,得到规律。
三是给学生提供机会经历“具体事物——学生个性化的符号表示——学会数学地表示”这一逐步符号化、形式化的过程。
本节课分三部分教学。
我以为,教学运算律主要让学生经历不完全归纳的过程,只注意让学生举出实例进行验证,而忽视了能否找到反例的问题。对于不完全归纳法来说,举出的正例越多,则意味着结论的可靠性越大;但若发现了一个反例,则可推翻结论。因此,我预设了“刚才老师和同学们举了这么多例子,有没有不符合这个规律的例子?”这个问题,学生通过无法找到反例,加深了对结论可靠性的认识。在这个过程中,学生不仅获得了数学结论,更重要的是学到了获得数学结论的思想方法和体悟到科学研究方法的严谨性。
(三)巩固练习,深入理解交换律。
从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论。
猜想一:减法中,交换被减数和减数的位置差不变?
猜想二:乘法中,交换两个因数的位置积不变?
猜想三:除法中,交换被除数和除数的位置商不变?
选择一个你感兴趣的,用合适的方法试着验证。使学生经历“形成猜想、举例验证”的完整、真实的过程,感悟数学研究的一般方法。
加法交换律教案篇十四
加法交换律是一节概念课,是在学生已经掌握四则运算的基础上进行教学的。本节课的教学设计有意识地让学生运用已有经验,亲身经历“提出猜想—举例验证—得出结论—总结规律”这一探究过程,同时注重学习方法的渗透,为高年级的学习打下基础。
1、创设问题情景,激发学生学习兴趣。本节课以成语故事“朝三暮四”为切入点,吸引了大部分学生的注意力,自然而然地激发了学生学习的兴趣。同时,为学生进行教学活动创设了良好的氛围,这样设计,让学生在快乐的氛围中主动思考,发现规律,为举例验证埋下伏笔。
2、本节课让学生经历数学知识发生、发展和形成的过程,同时注重数学思想和方法的渗透,通过猜想、验证、类比、归纳,提升学生的理性思维,提高学生应用数学思想方法解决实际问题的能力。
加法交换律教案篇十五
义务教育数学课程标准指出:教师要用教材教,而不是教教材,也就是让我们教师要把握教材的编写意图,根据学生实际,创造性地使用教材。根据这一指导思想我结合本班学生善于动脑,乐于推理,勤于总结的特点,将教材例1和例2合并成一节课展开学习活动。纵观本节课有以下几个特点:
课堂上我从口算a、b两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算b组题的速度明显比a组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么b组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中来,激发了学生强烈的探究欲望。
教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。
数学课标指出:在数学教学过程中,教师应注重发展学生模型思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。
本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。
加法交换律教案篇十六
整个教学过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。
1.注重教学目标的整合化。
根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。
2.注重教学内容的现实性。
新课标里曾指出,教学时应从学生熟悉的情境和已有的知识出发进行,开展教学活动。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。
来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变。
加法交换律教案篇十七
学生根据模仿,学会了根据结果相等,将两个算式写成恒等的方法,这对于他们来说是一个新知识,其实也就是在经历等量代换的过程。而这一数学方法对接下来要学习其它各种运算定律,及运用定律进行简便运算,列方程解应用题等都十分重要。
学生在独立举例后,在全班范围内交流发现的规律,得出结论:不管两个加数的位置怎么交换,它们的和都不会改变。师引导:同学们所举的所有例子都能写出这样的结论,可见我们的四则运算中有一个规律,谁能把这个规律准确地概括一下?……从个别到一般,把对特例的发现上升为具有普遍意义的规律和性质,这就是小学阶段的“不完全归纳法”,让学生经历这一归纳过程,体验结论的科学性。
本节课的不足之处就是对处理“用字母表示定律”这一环节有些不足。在学生例举字母表示定律后总结出用a+b=b+a公式来表示定律后,没有进一步拓展,如问:三个数可以怎样表示呢?这个规律还适用吗?这样环节设计,会让学生对字母表示运算定律更为熟悉,从而培养数学思想,更能强化目标。
在今后的数学中,注意强化本节课的重难点,并针对重难点进行数学思想的渗透与拓展,尤其对稍差的学生更应该重复强化,尽量让每一个孩子都学会。
加法交换律教案篇十八
世界著名数学家和数学教育家弗赖登塔尔指出,数学的学习方法是实行再创造,也就是由学生本人把要学习的东西发现或创造出来。根据这个指导思想,我认为数学教学在关注知识和技能的同时更应注重学生“亲历性”、落实教学“主体性”,关注学生“学数学”、“做数学”的过程。以上教学过程打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。
1.注重教学目标的整合化。
根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。
在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。
2.注重教学内容的现实性。
教学时,应根据学生的年龄特征和教学要求,从学生熟悉的情境和已有的知识出发进行调适,开展教学活动”。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。
(1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别安排在第七册和第八册,而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。
(3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。本节课在教学材料的处理时,改变了把课本当作“圣经”的现象,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。另外在材料呈现的顺序上,本节课改变了教材编排的顺序:在第七册教学加法交换律,在第八册教学乘法交换律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的'有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。
3、注重教学过程的探索性。
在“教学要求”中,增加了“通过观察、操作、猜测等方式,培养学生的探索意识”的内容;在“教学应注意的几个问题”中,专门把“重视学生的探索意识和实践能力”作为一个问题进行论述,要求教师“依据学生的年龄特征和认知水平,设计探索性和开放性的问题,给学生提供自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,理解数学问题的提出,数学概念的形成和数学结论的获得,以及数学知识的应用”,“形成初步的探索和解决问题的能力”
在交换律这节课中,教师鼓励学生根据自己的“数学现实”理解情景,发现数学,打破封闭式的教学过程,构建“问题——探究——应用——新问题——再探究”的开放式学习过程,体现学生是学习的主人,教师是教学活动的组织者、引导者和参与者。
(1)创设生活情境,激励探究欲望。本节课,首先引导学生用“变与不变”的眼光观察身边的教学环境,进而采撷现实生活中的一种有趣现象,让学生初步感知问题,从而引起认知冲突,激发学生探究欲望。这样安排,既帮助学生消除了思维上的心理障碍,为新知的获得切实做好了心理和知识、能力的双重准备,又达到了激活学生原有知识、引起注意期待、诱发学生参与意识的目的,使教学始终处于学生思维的最近发展区之中。
(2)引导学生探索,开发创造潜能。教师巧妙地利用生活原型,激活与新知学习有关的旧知,引导学生从原来的知识库中提取有效的信息,通过自组算式,整理、观察、分类、交流,逐步抽象概括、形成结论,并进行应用。在这个过程中,通过学生探索与创造、观察与分析、归纳与验证、矫正与调换等一系列数学活动,自主发现、自主探索加法交换律和乘法交换律,使学生感受到数学问题的探索性和挑战性,并从中认识到数学思考过程的条理性和数学结论的确定性。
(3)反思探索过程,体验成功情感。问题解决后,引导学生对探究学习的活动过程进行反思:面对一个实际问题,我们是怎样来解决的?从中提炼出解决问题、获得新知的数学思想方法和有效策略,并自觉地将思维指向数学思想方法和学习策略上,从中获得积极的情感体验。
(4)提倡教学相长,鼓励开拓创新。在本节课的最后,教师有意识的空出一定时间让学生来质疑问难。一方面让学生对本节课不懂的知识提出疑问,在师生帮助下及时解决;另一方面,让学生提出有价值的问题,既培养了学生提问题的能力,又能使学生的认知心理产生新的“不协调”,形成一个再探究的氛围。
总之,本节课在教学过程中,突出了知识的系统性,学生的亲历性,尽量培养学生的主体意识,问题让学生自己去揭示,方法让学生自己去探究,规律让学生自己去发现,知识让学生自己去获得。课堂上给学生以充足的思考时间和活动空间,同时给学生表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。
篇1:今天完成了加法交换律的教学,由于借班上课,上完后感觉自己前半节课发挥得不如后半节课,不过学生对交换律的理解和应用以及对交换律对减法、和加减混合的......
范文(精选4篇)作为一名到岗不久的老师,课堂教学是重要的任务之一,我们可以把教学过程中的感悟记录在教学反思中,那么教学反思应该怎么写才合适呢?以下是小编为......