加法交换律教案(精选15篇)
教案是教师在备课过程中编写的一份详细指导教学的书面记录。教案的编写需要注意语言的简明扼要,避免使用过于复杂的词语和句式。如果你想了解一些好的教案范例,可以看看以下的参考资料。
加法交换律教案篇一
“加法交换律和加法结合律”是国标版苏教版小学四年级上册第8单元中的内容。本节内容安排了三个例题,分5课时进行教学,今天是其中的第一课时。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。
(二)学情分析。
(三)目标定位。
根据学生的生活经验和知识背景及本课的知识特点,我预设如下教学目标:
(1)教学技能目标:通过利用学生身边的材料,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。
(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
(3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。
教学重点:使学生理解并掌握加法交换律和结合律,能用字母表示加法交换律和结合律。
教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。
教具学具:为了便于操作、交流和展示、及时与学生互动,本课准备多媒体一套。
二、说教学程序。
鉴于本课教学内容设定的目标及学生的认知规律和实际情况,预设如下四部分展开教学。
(一)探索加法交换律:
这部分分成4个环节进行。
1、在情境中初步感知规律。
课始从学校参加吴中区小学生运动会话题作为课堂信息,要求学生根据提供信息提出问题,从而导入新课,进行加法交换律的研究。
(设计意图:数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下而面的探究呈现素材,同时渗透思想品德教育。)。
2、在例举中验证规律。
(1)教师组织学生观察两个式子的特点,然后自己照样子仿写等式。
(2)运用自己字写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。
(设计意图:教师充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。)。
3、在反思中概括规律。
(1)自己仿写式子,独立思考或小组讨论,用自己喜欢的形式表示出来。
(设计意图:通过学生独立思考,小组讨论,师生交流的多种形式,帮助学生用自己的语言来表示加法交换律,培养学生运用数学语言表述和概括的能力)。
(2)用字母来表示加法交换律。
(设计意图:学生在充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用含有字母的式子表示规律,使学生体会到符号的简洁性,从而发展了学生的符号感。)。
4、练习。
(1)填空、(2)判断、(3)验算。
(设计意图:新课刚结束就配以填空、判断、验算多种形式的联系,既有利于概念的正确建立,同时也及时地巩固了新知。)。
整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。
1、在情境中感受规律。
以上面4、练习题为内容,让学生提问题过渡到下一环节,非常自然,
(1)学生一起解决“三个项目共得多少分?”
(2)交流学生各自列式,并让学生说清列式理由。
(3)选择两种不同列式,探索规律。
(设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)。
2、在计算中验证规律。
(1)教师出示两组题目,让学生观察结果是否相等,为学生接下来题目,探究打下基础。
(2)教师写出左边算式,让学生写出右边算式(与左边相等),使学生在教师的引导下,逐步感知加法结合律。
(3)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。
(设计意图:学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。
(1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?
(2)按照这种规律,你还能写出这样的算式吗?
(3)用字母表示这样的规律。
(设计意图:这里主要通过学生讨论、交流、汇报等环节,正直组学生一个自主的空间。由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)。
三、实践应用。
(设计意图:我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。
1、基础训练,分三个层次。
(1)想想做做1:运用了加法的什么定律?
通过寓教于乐的游戏方法进行练习,女生代表加法交换律,男生代表加法结合律,让学生体会在每个等式中应用了什么运算定律。
(2)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。
(3)想想做做5。
(设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)。
2、拓展练习,分二个层次。
(1)在方框里填上适当的数。通过用图形式字母表示数来巩固加法运算定律,有利于学生抽象思维的形成。
(2)应用加法运算定律使计算简便:30+28+70+45+72。通过该题训练把一般的规律推广到更多的数字计算中,有利于知识的深化和综合运用知识能力的提高。
四、评价鼓励。
(设计意图:及时评价总结,肯定学生的学习,以促进学生更加自觉主动地进行学习,使本课学习内容的理解提升到一个更高层面。)。
五、教法、学法。
以上是本人对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,新授和练习尽可能从贴近学生身边的素材撷取,激发学生学习兴趣,在学习过程中让学生经历动手实践,自主探究,合作交流的活动,使学生体会“做数学的乐趣。”
板书设计:
(设计意图:简明扼要的、纲领式的板书反映本课主要内容,体现本课知识的形成过程,知识性、系统性在整个板书中充分体现。)。
读书破万卷下笔如有神,以上就是为大家整理的2篇《《加法交换律和加法结合律》教案》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在。
加法交换律教案篇二
教学内容:教科书第59页的例1和第59、60页的乘法交换律,完成“做一做”中的题目和练习十三的第1―5题。
教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。
加法交换律教案篇三
教学内容:教科书第48―49页的内容,练习十一的第1―4题。
教学目的:
1.使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。
2、使学生理解并掌握加法交换律。
教具准备:小黑板。
教学过程:
教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。
1、加法的意义。
(1)教学例1。
教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。
137千米357千米。
北京天津济南。
然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,出就是要把137和357合并起来,所以要用加法计算。)教师边重述用加法算的理由,边板书出算式和答案。现进一步提问:
“加法是什么样的运算?”
在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。
(2)做练习十一的第1题。
要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的张数,要求小强和小明一共有多少张邮票,就要把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。
2.加法各部分的名称。
教师指着137+357=494,提问:
137和357在加法算式中叫什么数?(加数。)。
它们相加得到的结果494叫什么?(和。)。
然后教师联系的意义说明:相加的`两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:
137+357=494。
加数+加数=和。
提问:
“我们上面做的加法,两个加数是什么样的数?”(自然数。)。
“任何两个自然数相加得到的和都比加数怎样?”(大。)。
“一个自然数和0相加得到的和怎样呢?”(还得原数。)。
“你能举出一个自然数和0相加的几个例子吗?”
教师把学生举出的例子板书出来。(如,3+0=3,0+4=4,0+0=0)。
然后接着问:
“0和0相加会怎样?”(还得0。)。
“人上面的例子我们可以看出一个自然数和0相加还得这个自然数,0和0相加还得0,也就是说任何数和0相加都怎样?”(得原数。)。
教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。
1、结合例1的两种解法,引导学生比较它们的特点。
提问:
“上面”的例1,求北京到济南的铁路长是怎样列式计算的?”
“如果求济南到北京的铁路长该怎样列式计算?”(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)。
学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。
然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加)不同点是什么?(等号左边是137加357,等号右边是357加137。)。
引导学生回答后,教师归纳:137和357与357和137的得数一样,出就是和不变。
2.再出两组算式,引导学生比较,加以概括。
提出:能不能只从这一个例子就得出“相加的两个数交换位置,和不变”?
教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。下面我们观察一下这几组算式,看一看它们有什么样的关系。
教师板书出下面的算式:
18+1717+18。
124+235235+124。
让学生算一算,再提问:
“每组算式有什么关系?里应填什么?这几组算式有什么共同特点?你发现了什么规律?从这几组算式你能得出什么结论?”
3.比较三个等工,归纳出一般规律。
引导学生归纳,突出以下几点:
(1)这三个等式中,每组算式有几个加数?(两个加数)。
(2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第48页方框里的话。
学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a或b分别表示两个加数,怎样表示加法交换律?(同时说明a、b是拉丁字母,通常读作“ei”“bi”,不要按汉语拼音来读,并领读几遍。)。
学生回答后,教师板书:a+b=b+a。
说明:a和b可以表示0、1、2、3、……中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用“a+b=b+a,就可以表示任意两个数相加,交换加数的位置,和不变。比如,“a+b=b+a”可以表示2+1=1+2,137+357=357+137,18+17=17+18等等。
接着教师提问:
“想一想我们在以前学过的哪些计算中用到了加法交换律?”
使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。
5.做第48页的“做一做”。
第1题,让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。
第2题,验算的竖式可以直接写在原始的右边。
三、巩固练习。
做练习十一的第2―4题。
1.第2题,要注意让学生清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解,对于运算定律的表述,只要求表达得清楚没有错误,不要求学生一字不差地背下来。
2.第3题,让学生根据运算定律来判断每个等式是不是符合运算定律的要求。如230+370=380+220,虽然左右两边的得数相等,但由于两边的加数不同,所以不符合加法交换律。又如,30+50+40=50+30+40,虽然是三个数相加,但是前两个加数交换了位置,加得的和不变,还是符合加法交换律的。
四、小结。
加法交换律教案篇四
“加法交换律和加法结合律”是国标版苏教版小学四年级上册第8单元中的内容。本节内容安排了三个例题,分5课时进行教学,今天是其中的第一课时。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。
(二)学情分析。
(三)目标定位。
根据学生的生活经验和知识背景及本课的知识特点,我预设如下教学目标:
(1)教学技能目标:通过利用学生身边的材料,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。
(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
(3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。
教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。
教具学具:为了便于操作、交流和展示、及时与学生互动,本课准备多媒体一套。
二、说教学程序。
鉴于本课教学内容设定的目标及学生的认知规律和实际情况,预设如下四部分展开教学。
(一)探索加法交换律:
这部分分成4个环节进行。
1、在情境中初步感知规律。
课始从学校参加吴中区小学生运动会话题作为课堂信息,要求学生根据提供信息提出问题,从而导入新课,进行加法交换律的研究。
(设计意图:数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下而面的探究呈现素材,同时渗透思想品德教育。)。
2、在例举中验证规律。
(1)教师组织学生观察两个式子的特点,然后自己照样子仿写等式。
(2)运用自己字写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。
(设计意图:教师充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。)。
3、在反思中概括规律。
(1)自己仿写式子,独立思考或小组讨论,用自己喜欢的形式表示出来。
(设计意图:通过学生独立思考,小组讨论,师生交流的多种形式,帮助学生用自己的语言来表示加法交换律,培养学生运用数学语言表述和概括的能力)。
(2)用字母来表示加法交换律。
(设计意图:学生在充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用含有字母的式子表示规律,使学生体会到符号的简洁性,从而发展了学生的符号感。)。
4、练习。
(1)填空、(2)判断、(3)验算。
(设计意图:新课刚结束就配以填空、判断、验算多种形式的联系,既有利于概念的正确建立,同时也及时地巩固了新知。)。
整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。
1、在情境中感受规律。
以上面4、练习题为内容,让学生提问题过渡到下一环节,非常自然,
(1)学生一起解决“三个项目共得多少分?”
(2)交流学生各自列式,并让学生说清列式理由。
(3)选择两种不同列式,探索规律。
(设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)。
2、在计算中验证规律。
(1)教师出示两组题目,让学生观察结果是否相等,为学生接下来题目,探究打下基础。
(2)教师写出左边算式,让学生写出右边算式(与左边相等),使学生在教师的引导下,逐步感知加法结合律。
(3)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。
(设计意图:学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。
(1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?
(2)按照这种规律,你还能写出这样的算式吗?
(3)用字母表示这样的规律。
(设计意图:这里主要通过学生讨论、交流、汇报等环节,正直组学生一个自主的空间。由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)。
三、实践应用。
(设计意图:我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。
1、基础训练,分三个层次。
(1)想想做做1:运用了加法的什么定律?
通过寓教于乐的游戏方法进行练习,女生代表加法交换律,男生代表加法结合律,让学生体会在每个等式中应用了什么运算定律。
(2)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。
(3)想想做做5。
(设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)。
2、拓展练习,分二个层次。
(1)在方框里填上适当的数。通过用图形式字母表示数来巩固加法运算定律,有利于学生抽象思维的形成。
(2)应用加法运算定律使计算简便:30+28+70+45+72。通过该题训练把一般的规律推广到更多的数字计算中,有利于知识的深化和综合运用知识能力的提高。
四、评价鼓励。
(设计意图:及时评价总结,肯定学生的学习,以促进学生更加自觉主动地进行学习,使本课学习内容的理解提升到一个更高层面。)。
五、教法、学法。
以上是本人对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,新授和练习尽可能从贴近学生身边的素材撷取,激发学生学习兴趣,在学习过程中让学生经历动手实践,自主探究,合作交流的活动,使学生体会“做数学的乐趣。”
板书设计:
(设计意图:简明扼要的、纲领式的板书反映本课主要内容,体现本课知识的形成过程,知识性、系统性在整个板书中充分体现。)。
加法交换律教案篇五
教具准备:把下面复习中的题目写在小黑板上,把例1的插图放大成挂图。
教学过程:
一、复习。
教师:我们在前面复习总结了加法和减法,今天要复习总结乘法。
教师出示复习题。
1.同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多人?
3.小荣家养鸭45只,养的`鸡是鸭的3倍,小荣家养鸡多少只?
4.小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?
先让学生默读题目,然后教师提问:
“上面这些题目哪些题可以用乘法计算?为什么?”请三、四个学生逐题回答能不能用乘法计算。
教师:第1题和第3题可以用乘法计算,因为这两道题都是求几个相同加数的和。
二、新课。
1.教学例1。
出示例1的插图,再提问:
“要求盘里的一共有多少个鸡蛋可以怎样求?”
“还可以怎样求?”
学生回答后教师板书:
用加法计算:5+5+5+5+5+5=30(个)。
用乘法计算:5×6=30(个)。
“乘法算式5乘以6表示什么?”(6个5相加)。
“乘法算式中的被乘数5是加法算式中的什么数?”(相同的加数。)。
“乘法算式中的乘数6是加法算式中的什么数?”(相同的加数的个数)。
“解答这道题用加法计算简便,还是用乘法计算简便?”
“求几个相同加数的和可以用什么方法计算?用哪些方法比较简便?”
“你能说出乘法是什么样的运算吗?”
教题肯定学生的回答,再强调说明并板书:求几个相同加数的简便运算,叫做乘法。接着让学生看教科书第61页,齐读两遍书上的结语。
“乘法算式中乘号前面的数叫什么数?表示什么?”
“乘法算式中乘号后面的数叫什么数?表示什么?”
“被乘数和乘数又叫什么数?”
教师:学过因数以后,在一个算式中被乘数和乘数就可以不必严格区分了。
2.教学乘数是1和0的乘法。
(1)教学一个数和1相乘。
教师在黑板上写出三个算式:1×3、3×1、1×1。
“1乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书1×3=3,表示3个1相加的和是3。
“3乘以1等于什么?这个算式表示什么意思?”可以多让几个学生说一说,最后教师说明:1个3不能相加,3乘以1就表示1个3还是3,再板书3×1=3。
“1乘以1等于什么?能不能说这个算式表示1个1相加?”先让学生说一说,然后教师再说明:1个1不能相加,1乘以1就表示1个1还是1,算式是1×1=1。
“这三个乘法算式都和哪个数有关系?”(都和1有关系)。
下面我们一齐看一看一个数和1相乘它们的乘积怎样,教师在黑板上写出下面一些算式:
6×1=1×8=1×10=123×1=。
“谁能说一说一个数和1相乘的积有什么特点?”可以多让几个学生说一说。
教师边说边板书:一个数和1相乘,仍得原数。
(2)教学一个数和0相乘。
教师在黑板上写出三个算式0×3=3×0=0×0=。
“0乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书:0×3=0表示3个0相加的和是0。
“0乘以0呢?”学生回答后,教师说明:0个0不能相加,0乘以0就表示0个0还是0,算式是:0×0=0。
“这三个算式都和哪个数有关系?”(都和0有关系)。
“一个数和0相乘它们的积有什么特点?”
教师边说边板书,一个数和0相乘,仍得0。
让学生再看例2的插图,然后教师提问:
“要求一共有多少鸡蛋,用乘法计算还可以怎样列式?”学生回答后,教师板书:6×5=30(个)。
“比较一下这两个乘法算式,有哪些相同?有哪些不同?”多让几个学生发言,互相补充。
教师:这两个算式都是两个数相乘,只是两个因数交换了位置,算出的结果相同。下面我们一起来看一下这个结论是不是有普遍性。
“12乘以5等于多少?5乘以12呢?”学生口算,教师板书算式。
“400乘以20等于多少?20乘以400呢?”学生口算,教师板书算式。
“100乘以1000等于多少?1000乘以100呢?”学生口算,教师板书算式。
“通过上面这些乘法计算,可以看出两个数相乘,交换因数的位置,计算结果怎样?”
学生发言后,教师边说边板书:两个数相乘,并换因数的位置,它们的积不变,这叫做乘法交换律。
“谁能够用字母把乘法交换律表示出来?”教师板书:a×b=b×a。
“大家回忆一下,我们过去学习哪些知识时用了乘法交换律?”学生发言后,教师肯定学生回答,并明确指出:我们曾经用交换乘数和被乘数位置的方法进行乘法验算,这实际上就是用了乘法交换律。
三、巩固练习。
1.做第60页“做一做”中题目。先让学生独立做,然后再集体核对。
2.做练习十三的第3、4题。学生独立做完以后,再集体核对。核对第4题的第4小题时,可以引导学生计算一下等号左面等于什么,等号右面等于什么。教师再说明:三个数连乘,相乘的因数交换了位置,乘积也不变,所以乘法交换律也适合三个数连乘的计算。
四、作业。
练习十三的第1、2、5题。
加法交换律教案篇六
动手实践是学生在亲自动手操作的过程中进行探索,从而获取数学经验、知识和技能,发展能力的一种学习方式。
二年级下册的“克与千克的初步认识”是一节操作体验课。教材配套的教师用书中明确要求“在掂一掂、估一估、称一称的实践活动中,初步建立1克和1千克的质量观念,并学会以此为标准去估量物体的质量,培养学生的动手能力和合作意识。”但在很多课堂上,这一实践过程只有“形”而无“质”,更多的是怎么使用这两个单位的相关练习。
笔者曾经在教学这一节课前要求学生准备1千克及接近1克重的物品(2包500克的盐或1包1千克的洗衣粉等;5分硬币或1颗扁豆等),课堂上重点要求学生体验1克与1千克的重量:先通过掂自己的物品,体验出1克的感觉,再掂一下其他同学的物品,通过多次的掂量,把1克的感觉记在心上;让同桌的2名学生把两个1克合并起来,再掂,然后3个1克、4个1克……在掂一掂的过程中,让学生体会到以克为单位进行称量,即使数字翻倍,还是非常轻,有时候轻得快要感觉不到;感觉千克的过程大同小异,学生很快就知道千克比克重得多,而且不需要教师提醒,学生已经知道要把同桌的物品合并起来一起掂量,发现1千克与2千克的重量相差非常多,3千克、4千克……学生就会发现,质量大的单位,如果多1个单位,会重很多。通过大量的操作实践,学生做到了真正的知,再与后面的行合起来,学生对千克与克在生活中的应用自然能水到渠成,如鱼得水。
二、找准知识间的联系,把数学的思想贯彻始终。
笔者尝试从学生的这一疑惑着手,在研学案中准备了适量的前置性练习:
学生发现这些式子的得数都是整百整十数,特别容易计算,这时再告诉学生,交换律说的是两个数之间的关系,但在日常生活中,只有两个数的时候没必要使用交换律。
在学习完交换律之后,再给出练习:
此时,学生遇到需要应用到交换律的情况,才“接受”让交换律成为自己数学思维的一部分。
三、从如何修改着手,优化学习路线。
六年级下册的“统计”是通过让学生阅读扇形统计图,会综合应用学过的统计知识,能从统计图中准确提取统计信息,正确解释统计结果,并能根据统计图提供的信息,作出正确的判断或简单的预测。从教学目标上看,这样的课要上得出彩,并不容易。
有位执教老师在教学中先给出一幅存在问题的扇形统计图:
学生在讨论中了解到,当“其他品牌”具有最大占有率时,这个扇形统计图的数据就显得不清晰,此时需要把“其他品牌”细化。本来教学到这里就可以给出相关的读图分析练习。但是,该教师又提出一项研学任务:怎样修改才能使这张统计图更加清晰呢?由于有了之前的铺垫,学生很容易形成一个思维定式:直接把它改为a品牌最畅销的统计图。但通过分享与交流,学生给出了三种情况:把“其他品牌”拆分成若干份,占有率都小于20%,还是a品牌最畅销;拆分的若干份中,有的占有率大于20%,a品牌不是最畅销的;拆分的若干份中,有的占有率刚好也是20%,a品牌不是最畅销的……该过程充分体现出交流的优越性。
加法交换律教案篇七
1、上课做到条理清晰,层次分明。我认真研读了教材,在尊重教材的基础上精心设计课堂教学过程。这节课教学目标明确,结构层次清晰,重点突出,教学方法灵活,也很恰当,体现了新课程的理念。
2、培养了学生探究精神。教学成功的重要前提之一就是要激活学生参与热情,打开思维的闸门,在“多向互动”和“动态生成”的教学过程中凸显知识的活性。
3、精心设计练习。教学中学生有一定的练习量,除了完成课本上的相关练习,我还补充设计了“填空题”,在教学加法交换律结合律之后,都安排了一组练习题强化概念。
加法交换律教案篇八
在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:
具体做法是:
一、学生经历有效地探索过程。
在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
二、注意数学学习方法的渗透。
加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
三、教学中注意沟通知识间的联系。
在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。
总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水平。
加法交换律教案篇九
加法交换律是一节概念课,是在学生已经掌握四则运算的基础上进行教学的。本节课的教学设计有意识地让学生运用已有经验,亲身经历“提出猜想—举例验证—得出结论—总结规律”这一探究过程,同时注重学习方法的渗透,为高年级的学习打下基础。
1、创设问题情景,激发学生学习兴趣。本节课以成语故事“朝三暮四”为切入点,吸引了大部分学生的注意力,自然而然地激发了学生学习的兴趣。同时,为学生进行教学活动创设了良好的氛围,这样设计,让学生在快乐的氛围中主动思考,发现规律,为举例验证埋下伏笔。
2、本节课让学生经历数学知识发生、发展和形成的过程,同时注重数学思想和方法的渗透,通过猜想、验证、类比、归纳,提升学生的理性思维,提高学生应用数学思想方法解决实际问题的能力。
加法交换律教案篇十
本节课的知识点相对来说比较简单,因此从课堂效果来看学生掌握的还是比较好的。本节课设计了一个让学生自己用喜欢的方式表示加法交换律,两个班的学生在本节课中都能充分的表达自己的意愿,想到了好多不同的方法来表示交换律,这期间当然也有我想要的字母表达式。教学任务全部完成,同时也体现了小组合作和动手操作,这也是本节课我在教学的过程中希望能够完成的教学目标。
本节课的可取之处仍然是我们继续使用了小组合作的方法,让学生在讨论中得出想要的结果,而且还能得到充分的锻炼,锻炼孩子们能用完整的话表达自己的想法,锻炼他们用标准的数学语言来描述规律等等。本节课中最大的亮点就是这项工作了。
然而,教学总是有缺憾的,今天的课安排的不是很充实,课程上完了还有将近五分钟的时间,我的设计意图也是这样,想利用这五分钟的时间跟学生一起做一下今天的作业,一方面他们回家以后作业就没有那么多了,另一方面作业中的一些稍难一点的题我也能够做一下指导。但是从另一个侧面又能说明本节课设计的还是不够充实,没有拓展方面的题让学生在课上训练,尤其是对于五班的同学来说,这节课几乎是吃个半饱,如果本节课能针对五班学生的特点再加入一些提高性训练的话,这节课应该会上的更完美,换句话说,本节课中分层教学又体现的不是很充分了。
总之,如果再次教学本课的时候,应该针对本节课知识点简单的特点有针对性的加入一些拓展的题让学生充分掌握和巩固的,这不仅是要体现分层教学,更重要的是让那一部分“没吃饱”的同学得到满足!教学就是教师在打仗,每一场下来都要总结自己的经验为下一场战役做准备,希望能达到百战百胜的目的!
加法交换律教案篇十一
在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:
具体做法是:
在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。
总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水平。
加法交换律教案篇十二
今天完成了加法交换律的教学,由于借班上课,上完后感觉自己前半节课发挥得不如后半节课,不过学生对交换律的理解和应用以及对交换律对减法、和加减混合的应用掌握的还是不错的。这节课,我从学生以学知识入手,引导学生发现加法交换律,理解知识就在我们身边,进而提出除了帮助我们验算外还有什么强大的功能!接下来利用加法交换律使计算简便,进而发现还可以使减法简便,加减混合简便!使交换律得以推广!
听完课后,赵老师没来得及喝水就结合这节课进行了评析。
赵老师首先肯定了我的素质,作为骨干教师课堂扎实,教学思路清晰!
同时赵老师提出这节课可以从经验拓展的角度,让学生从更多的生活实例入手,从道理上理解“交换”,如8+74+2、想:原来有8本作业,先拿来74本又拿来2本,我们可以这样,先拿来2本,又拿来74本,都表示现在有的,因此8+74+2和8+2+74是相等的。再如:35-17+5,可以这样想公交车原来有35人,下去17人,上来了5人,可以这样想有35人,上来了5人,又下去了17人。这样的结果都表示现在有的因此人数是一样的。结果是相等的。
“理”上的理解更容易让学生从根上明白算理。我在教学时,用计算的方法验证下的工夫多了一些,学生举例少了点,这样总感觉形式上稍多了点,另外“验证”更多的是验证这种方法可以,但不能在道理上理解,赵老师提出可以看看马刚老师的课例。也鼓励我们多去看看名师的`课例。
从第一次听课得到王宏主任的指导,指出“苹果”的贯穿,课堂练习的量,今天得到赵老师的指导,自己感觉收获很多,发现了自己身上的不足,从备课到上课,用了两天的时间,昨晚还熬夜制作课件到11点多,虽然累,但自己有了收获,此时感觉一切累都值得!
将本文的word文档下载到电脑,方便收藏和打印。
加法交换律教案篇十三
《加法交换律》是人教版四年级下册第三单元第一节概念课,是在学生已经掌握四则运算的基础上进行教学。本节课的教学设计有意识地让学生运用已有经验,让学生亲身经历这一规律的发现过程,同时注重学习方法的渗透,为高年级的学习打下基础。新课标指出,让学生经历有效地探索过程。教学中以学生为主体,教师为主导,激励学生动手、动脑、动口积极探究问题,促使学生积极主动地参与到“倾听故事——提出猜想——举例验证——得出结论”这一数学学习过程。现对本节课的教学设计说以下几点:
1、创设问题情景,激发学生学习兴趣本节课以成语故事《朝三暮四》为切入点,吸引了大部分学生的注意力,自然而然激发学生学习的兴趣。同时,为学生进行教学活动创设了良好的氛围。通过教师设问:“故事讲完了,你想说些什么?”水到渠成地引出数学算式“3+4=4+3”,进而提出猜想“交换两个加数的位置,和不变?”。这样设计,让学生在快乐的氛围中主动思考,发现规律,为举例验证埋下伏笔。
2、组内交流讨论,举例验证猜想教师引导学生思考举出怎样的例子去验证猜想?应该举多少个?意在渗透举例验证这一数学方法,同时让学生初步感知“无数”的概念。
在小组讨论的同时,教师及时进行点拨,引导学生举出如下例子:
1、3+6=6+3,4+5=5+4,7+8=8+7。
2、1+2=2+1,12+13=13+12,100+200=200+100,20xx+3000=3000+20003、0+5=5+0,1|4+2|4=2|4+1|4,1.02+2.03=2.03+1.02小组汇报后,让学生评价各小组举例,真切体验“举例验证要考虑到方方面面”。
3、练习层层深入,巩固所学新知为了让学生巩固本节课所学的知识,为学生提供了充分的练习内容。让学生利用加法交换律进行填空即可,使学生即时运用掌握的知识。本节课使学生由简单应用到灵活应用的练习中,掌握本节课的基础知识,同时又培养了数学思想。本节课的教学设计比较创新,打破了传统教学观察得结论的方法,而故事引入,提出猜想,举例验证,和学校提倡的.“主体多元,合作探究”教学模式相吻合。同时,也适合本学段学生的发展特点、认知规律。当然,在实际的教学过程中,也存在很多的缺点和不足,如下:
1、在引导学生思考举怎样的例子来验证猜想这一环节,处理的不够恰当。不是学生不会思考,是教师的设问指向性不够明确。比如,可更改为“我们是不是可以再举一些加法算式的例子来验证呢?”,让学生明白举例是指举加法算式,然后交换他们的位置,看和是否相等。
2、在让学生体验“无穷”思想时,没有达到预设的教学目的。课堂教学时,当学生举了大量的例子之后,教师询问是否可以验证我们的猜想时,有的学生还是坚持认为不可以,一定要举无数个例子才行。此时,可自然衔接,引入用字母a和b可表示任意数。这样,我想比教师生硬地解释,刻意地让学生用自己喜欢的方式来表示加法交换律,效果要好得多。
4、在课堂练习时,可引导学生回顾我们在哪里用到过加法交换律。可利用课本31页第2题,将新学与旧知巧妙地结合。另外,要将每一个习题的设计意图,充分地挖掘出来。
总的来说,这堂课取得了预期的教学效果。学生不但掌握了加法交换律,更重要的是学会了数学方法,为下节加法结合律以及乘法运算规律打下很好的基础。
将本文的word文档下载到电脑,方便收藏和打印。
加法交换律教案篇十四
世界著名数学家和数学教育家弗赖登塔尔指出,数学的学习方法是实行再创造,也就是由学生本人把要学习的东西发现或创造出来。根据这个指导思想,我认为数学教学在关注知识和技能的同时更应注重学生“亲历性”、落实教学“主体性”,关注学生“学数学”、“做数学”的过程。以上教学过程打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。
1.注重教学目标的整合化。
根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。
在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。
2.注重教学内容的现实性。
教学时,应根据学生的年龄特征和教学要求,从学生熟悉的情境和已有的知识出发进行调适,开展教学活动”。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。
(1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别安排在第七册和第八册,而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。
(3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。本节课在教学材料的处理时,改变了把课本当作“圣经”的现象,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。另外在材料呈现的顺序上,本节课改变了教材编排的顺序:在第七册教学加法交换律,在第八册教学乘法交换律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的'有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。
3、注重教学过程的探索性。
在“教学要求”中,增加了“通过观察、操作、猜测等方式,培养学生的探索意识”的内容;在“教学应注意的几个问题”中,专门把“重视学生的探索意识和实践能力”作为一个问题进行论述,要求教师“依据学生的年龄特征和认知水平,设计探索性和开放性的问题,给学生提供自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,理解数学问题的提出,数学概念的形成和数学结论的获得,以及数学知识的应用”,“形成初步的探索和解决问题的能力”
在交换律这节课中,教师鼓励学生根据自己的“数学现实”理解情景,发现数学,打破封闭式的教学过程,构建“问题——探究——应用——新问题——再探究”的开放式学习过程,体现学生是学习的主人,教师是教学活动的组织者、引导者和参与者。
(1)创设生活情境,激励探究欲望。本节课,首先引导学生用“变与不变”的眼光观察身边的教学环境,进而采撷现实生活中的一种有趣现象,让学生初步感知问题,从而引起认知冲突,激发学生探究欲望。这样安排,既帮助学生消除了思维上的心理障碍,为新知的获得切实做好了心理和知识、能力的双重准备,又达到了激活学生原有知识、引起注意期待、诱发学生参与意识的目的,使教学始终处于学生思维的最近发展区之中。
(2)引导学生探索,开发创造潜能。教师巧妙地利用生活原型,激活与新知学习有关的旧知,引导学生从原来的知识库中提取有效的信息,通过自组算式,整理、观察、分类、交流,逐步抽象概括、形成结论,并进行应用。在这个过程中,通过学生探索与创造、观察与分析、归纳与验证、矫正与调换等一系列数学活动,自主发现、自主探索加法交换律和乘法交换律,使学生感受到数学问题的探索性和挑战性,并从中认识到数学思考过程的条理性和数学结论的确定性。
(3)反思探索过程,体验成功情感。问题解决后,引导学生对探究学习的活动过程进行反思:面对一个实际问题,我们是怎样来解决的?从中提炼出解决问题、获得新知的数学思想方法和有效策略,并自觉地将思维指向数学思想方法和学习策略上,从中获得积极的情感体验。
(4)提倡教学相长,鼓励开拓创新。在本节课的最后,教师有意识的空出一定时间让学生来质疑问难。一方面让学生对本节课不懂的知识提出疑问,在师生帮助下及时解决;另一方面,让学生提出有价值的问题,既培养了学生提问题的能力,又能使学生的认知心理产生新的“不协调”,形成一个再探究的氛围。
总之,本节课在教学过程中,突出了知识的系统性,学生的亲历性,尽量培养学生的主体意识,问题让学生自己去揭示,方法让学生自己去探究,规律让学生自己去发现,知识让学生自己去获得。课堂上给学生以充足的思考时间和活动空间,同时给学生表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。
篇1:今天完成了加法交换律的教学,由于借班上课,上完后感觉自己前半节课发挥得不如后半节课,不过学生对交换律的理解和应用以及对交换律对减法、和加减混合的......
范文(精选4篇)作为一名到岗不久的老师,课堂教学是重要的任务之一,我们可以把教学过程中的感悟记录在教学反思中,那么教学反思应该怎么写才合适呢?以下是小编为......
加法交换律教案篇十五
整个教学过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。
1.注重教学目标的整合化。
根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。
2.注重教学内容的现实性。
新课标里曾指出,教学时应从学生熟悉的情境和已有的知识出发进行,开展教学活动。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。
来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变。