抽屉原理教案(优质14篇)
一个好的教案应该具备条理清晰、逻辑严谨、具有可操作性等特点。教案应该具备一定的灵活性,能够根据实际情况进行调整。精选教师教案范文,提供教学设计的思路和灵感。
抽屉原理教案篇一
本课是小学六年级数学广角的内容。“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于利用学生已有的认知,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。反思我的教学过程,有几下可取之处:
兴趣是最好的老师。课前“抽扑克牌”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。比如:任意点13个同学起来,至少有2个同学在同一天过生日。
教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,特别是在学生叙述的过程中,学生用比较凌乱的语言的进行描述,教师指导不够,因为数学语言精简性直接影响着学生对新知识的理解与掌握,也就是没有很好地强化理解“总有”“至少”的含义。
抽屉原理教案篇二
作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带抽屉原理是人教版数学六年级下册的知识。作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带动学生的思考。在充分活动的基础上理解总有与至少的含义。如进行坐椅子游戏,5个人坐在4把椅子上,不管怎样坐,总有一把椅子上至少有2个人。
又如,4个桃子放在3个盘子里,不管怎样放总有一个盘子里至少有2个桃子。3支笔放进2个笔筒里,不管怎样放,总有一个笔筒里至少有2支笔。多次操作,分一分,描一描,说一说等活动体会总有与至少的含义,这些知识有只可意会不可言传的感觉。在建模后在分析具体问题时,先让学生说说把什么放在什么地方,体会待分物体与抽屉的关系,这样才能更好的找到至少数。
抽屉原理教案篇三
学生的数学学习过程就是利用学生已经学过的只是和现在有的经验基础,然后理解更高更深更复杂的知识。数学强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的.运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。
不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。
抽屉原理教案篇四
我的几点看法:
最近我一直正在关注抽屉原理,刚好听了高玉东老师的这节课,我来谈一下我的几点看法。
一:我认为高老师的课三言两语直入主题,节省了时间,这是构建高效课堂的基础。有的老师讲课导入部分太长,浪费了时间,我们应该借鉴一下,缩短我们导入新课的时间。
二:过程清晰。高老师吃透了教材,把教学过程呢设计的由易到难,层层递进,是学生易于接受。这凸显了高老师把握教材的能力,使我感受很深,也是我今后努力的'方向。
三:我讲一下我的几点看法。我研究了抽屉原则的几个主要方面。
1.我认为在教学的过程中应结合具体的例题讲一下什么是至少,让学生先理解了至少的含义在具体的教学。抽屉原则这类的题我考过其他的成年人,他们刚读题时不理解至少的含义,所以做错了,我认为学生也不好理解,所以讲一下至少的含义再继续往下教学。
抽屉原理教案篇五
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重、难点。
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程。
向大家介绍一位德国数学家,狄利克雷,他在数学上的贡献涉及数学的各个方面,他痴迷于数学,关于他有一件趣事:他的第一个孩子出世时,向岳父写的信中只写上了一个式子:2+1=3。
今天我们就来学习狄利克雷首先明确提出来的抽屉原理。
齐读课件上的话。
下面让我们一起探究抽屉原理。
抽屉是做什么用的呢?-----放东西的板书抽屉。
有了放东西的,还要有什么?----要放的东西我们就假设要放的东西是苹果板书苹果。
下面我们就来研究往抽屉里放苹果,(1)苹果数抽屉数。
师解释:今天我们研究物品数比抽屉数多的情况,比如,7个苹果任意放入6个抽屉……。
(2)任意放………任意放是什么意思呢?
生:想怎么放就怎么放。
如果我们来把4个苹果任意放入3个抽屉会有几种放法呢?
学生发言,师点击课件。
判断:把4个苹果任意放入3个抽屉,总有抽屉比其他抽屉放的苹果多。(课件出示)。
指明判断并说出理由。(大家听明白他的发言了吗?)。
大家看老师把“总有”加圈圈了。
“总有”是什么意思?
生……。
师:总有就是肯定存在,抽屉原理就是对存在性的研究板书:存在性。
有的同学要说好简单,这就是抽屉原理吗?我告诉你,比其他抽屉放的苹果多的抽屉就是抽屉原理的研究对象.
第一种放法里我们要研究的抽屉是哪一个?
第二种放法里我们要研究的抽屉是哪一个?
第三种放法里我们要研究的抽屉是哪一个?
第四种放法里我们要研究的抽屉是哪一个?
研究对象我们已经找到了,研究什么呢?请看题.
把4个苹果任意放入3个抽屉,总有抽屉比其他抽屉放的苹果多。这个抽屉里至少有()个苹果。(课件出示)。
师:“至少有2个苹果是什么意思?”“至少有2个”加圈圈。
生:(也可能比2个苹果多)。
师:为什么比其他抽屉放的苹果多的抽屉里至少有2个苹果?
学生很自然说1、1、2的放法。
师:你为什么选择用这种方法说明至少放2个苹果,而不是其他三种呢?
生:其他三种都有空抽屉,做“至少”的结论没有说服力。
同学们,考虑最糟糕的情况这在数学上叫做“最不利原则”板书最不利原则。
师:谁能用一个除法算式来表示这种放法呢?
生4÷3=1……1。
师板书并问:4表示什么?板书苹果。
3表示什么?板书抽屉。
1表示什么?
1表示什么?
这个算式其实是在把4个苹果怎样分给3个抽屉?
生:平均分师板书:平均分。
课件:5个人中至少2人在同一个季节出生的.
这位算命先生算得准吗?为什么?
这个原则可以用一个什么算式表示呢?
生5÷4=1……1。
师板书并问:5表示什么?板书苹果。
4表示什么?板书抽屉。
1表示什么?这个1表示什么?
怎样得到至少几人在同一个季节出生?1+1=2。
刚才算命先生的判断中什么相当于苹果?什么相当于抽屉?
我给大家介绍抽屉原理时说,抽屉原理也叫做鸽巢原理。
下面的练习就用鸽子和鸽笼。
课件6只鸽子飞回5个笼子,至少有2只鸽子飞进同一个笼子。为什么?
什么相当于苹果?
什么相当于抽屉?
用一个什么算式表示呢?
生6÷5=1……1……。
师:一个抽屉里至少放几个苹果与什么有关?
生:与苹果数量和抽屉数量有关。
师:这几个算式有什么共同特点?
生:苹果总比抽屉多一个。
那么如果改变苹果总比抽屉多一个的条件,你还能找出一个抽屉里至少放几个苹果吗?下面我们继续研究抽屉原理.
7只鸽子飞回5个笼子,至少有()只鸽子飞进同一个笼子。为什么?
课件演示。
用一个什么算式表示呢?
生7÷5=1……21+1=2。
把5本书进2个抽屉中,不管怎么放,总有一个抽屉至少放进()本书。这是为什么?
用一个什么算式表示呢?
生5÷2=2……12+1=3。
8只鸽子飞回3个笼子,至少有()只鸽子飞进同一个笼子。为什么?
用一个什么算式表示呢?
生8÷3=2……22+1=3。
你发现什么规律了呢?
一个抽屉里至少放几个苹果与什么有关?
生:与苹果数量和抽屉数量有关。
引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(课件返回配合演示)。
总结:苹果除以抽屉数,再用所得的商加1。
板书:商加1。
2、要保证有2种不同花色至少抽多少张?
生:5张牌。
若不除去大小王,从中随意抽几张牌,总有两张牌是同一花色的?
4、若不除去大小王,要保证有2种不同花色至少抽多少张?
板书设计:。
抽屉原理研究:存在性问题。
方法:平均分。
依据:最不利原则。
苹果抽屉至少。
4÷3=1……12。
5÷4=1……12。
6÷5=1……12。
7÷5=1……22。
5÷2=2……13。
8÷3=2……23。
抽屉原理教案篇六
“抽屉原理”是开发智力,开阔视野的数学思维训练资料,对于一部分想象潜力较弱的学生来说学起来存在必须的困难。透过本次课堂实践,有几点体会:
1、创设情境,调动学生的学习用心性。课前让几个学生表演“抢椅子”的游戏:如3个人抢坐2把椅子、4个人抢坐3把椅子。让学生在活动中初步感知抽象的“抽屉原理”,理解“至少”的意思。
2、合作交流,建立模型。根据课前的表演及老师的分苹果演示,交流、讨论理解:“待分物体数”、“抽屉数”、“至少数”分别指什么?“至少数”为什么是商加1,而不是商加余数?透过老师的提示、引领,学生对“抽屉原理”基本上能理解,但是要让学生用简练的语言表达出来还有必须的困难。
3、培养学生的“模型”思想,提高解题潜力。“抽屉原理”的问题变式很多,应用更具灵活性。能否将一个具体问题和“抽屉原理”联系起来,能否找出题中什么是“待分物体数”,什么是“抽屉”,是解题的关键。有时候找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了也很难确定用什么作“抽屉”。教学时,我但是于强调说理的严密性,只要学生能把大致意思说出来就行,有些题目能借助实物或用枚举法举例猜测、验证也能够。
回顾整节课我觉得主要存在两个问题:1、在学生体验数学知识的产生过程中,老师担心学生不理解、走错路,不敢大胆放手,总是牵着学生的思路走。2、这部分资料属于思维训练的资料,有少部分学生学起来困难大,效果差。在课堂上如何更好地发挥学生的主体性,如何关注学困生的同步发展,我们将继续寻找方法。
将本文的word文档下载到电脑,方便收藏和打印。
抽屉原理教案篇七
上午,再一次听了明老师的课,总体来说,她的课有了很大的进步。不管是教态、教法、评价语言还是对整堂课的流程设计,进步还是满喜人的。因为我从来没有上过高段,对高段知识不是太了解,所以昨天问来了上课内容后,临阵磨枪找来教本和教师用书熟悉了一下教材。《抽屉原理》一课,是六年级下册数学广角的内容。本课与课前后知识点没有联系,比较孤立,惟一可以联系的是有余数的除法。抽屉原理很抽象,依靠学生的逻辑思维能力进行教学,对于师生而言,这节课比较难上。虽然不是很了解内容但是整体上说明老师的课在以下几方面做的很好。
课始明老师通过学生比较熟知的扑克牌入手,激发了学生的学习兴趣。当明老师说如果我拿出5张牌,我不用看也可以肯定其中至少有两张牌的花色是一样的,其实这个对于学生来说也是有经验的只是无法用数学的语言来描述罢了,这个时候明老师没有直接回答而是说:王老师为什么能做出如此准确的判断?道理是什么?这其中是不是蕴含着一个有趣的数学原理?引发了学生学习数学的求知欲,为学生学习抽屉原理作了很好的铺垫。
本节课明老师组织的教学结构紧凑,实施过程层层推进上的扎实有效,教师通过4支铅笔3个杯子,先让学生小组合作讨论,把所有情况摆出来,运用直观的方式,发现并描述:理解最简单的“抽屉原理”,举例后学生感知理解“铅笔比杯子多1时,不管怎么放,总有一个杯子至少有2支铅笔”。再让学生探究解决问题的简便方法,即“平均分”的`方法,在这节课中,由于明老师提拱的数据较小,为学生自主探索和理解“抽屉原理”提供了很大的空间,特别是教师设问:到底是“至少数=商1”还是“商余数”?引发学生思维步步深入,并通过讨论,说理等活动,得出“至少数=商1”。使学生经历了一个初步的数学证明过程,培养了学生的推理能力和初步的逻辑思维能力。
“抽屉原理”这一知识点,明老师让学生通过实验操作、观察、思考、推理的基础上理解和发现的,整堂课在她的精心安排和指导下,学生学的积极主动,课堂气氛非常活跃。
当然,不管是谁上的课总是有许多值得探讨的地方,更何况是一个刚走上工作岗位不足一年的新教师。整堂课下来,看起来气氛非常的好,学生讨论积极,发言大胆似乎都已经理解了这个抽屉原理,但是深究一下,不难发现其实这堂课的难点还是没有突破。学生对“至少”一词的理解还显得有些欠缺,学生仅仅理解了字面上的意思,对“至少”一词的指向性还不明确,就我理解,“至少”应该是指的在每一种情况中出现的最大数中的最小数,而学生对这个词语的理解非常的模糊不清。所以感觉孩子们对所学的知识像是没有根的浮萍不是很扎实,那么如何让学生的理解更准确,更深刻,还需要我们共同去探究的。
抽屉原理教案篇八
教学内容:
六年级数学下册70页、71页例1、例2.
教学目标:
1、理解“抽屉原理”的一般形式。
2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。
4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。
教学重点:
经历“抽屉原理”探究过程,初步了解“抽屉原理”。
教学难点:
教学准备:
相应数量的杯子、铅笔、课件。
教学过程:
一、情景引入。
让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。
师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。
二、探究新知。
1、探究3根铅笔放到2个杯子里的问题。
师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?
摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。
2、教学例1。
(2)、学生汇报放结果,结合学具操作解释。教师作相应记录。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(学生通过操作观察、比较不难发现有与上个问题同样结论。)。
(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。
师:“总有”是什么意思?“至少”呢?让学生理解它们的含义。
师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。
教师出示课件演示让学生进一步理解“平均放”。
3、探究n+1根铅笔放进n个杯子问题。
师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?
让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。
师:7根铅笔放进6个杯子,你们又有什么发现?
……。
学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。
学生汇报后引导学生用实验验证想法。
师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)。
师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)。
4、总结规律。
a、先同桌摆一摆,再说一说。
b、你怎么分的?
引导学生知道再把两根铅笔平均分,分别放入两个杯子里。
(2)探究把15根铅笔放在4个杯子里的结论。
(3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。
(4)教学例2。
课件出示:
1、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
2、把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
3、把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
学生汇报。
小结:不管怎么放,总有一个抽屉里至少有“商加1”本书了。
师:这就是有趣的“抽屉原理”,又称“鸽笼原理”,最先同19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些今人惊异的结果。
三、解决问题。
1、7枝笔入进5个笔筒里,不管怎么放,总有一个笔筒中至少有2枝笔。为什么?
2、8只鸽子飞回3鸽笼,不管飞,总有一个鸽笼里至少有3只鸽子。为什么?
四、课时总结。
抽屉原理教案篇九
各位领导、老师:
大家好!
首先非常感谢两位执教的老师,给我们带来了两节非常精彩的教学观摩课。听了这两节课,我受益匪浅。接下来,我想对廖老师执教的“抽屉原理”这一节课,谈谈自己几点初浅的体会和一点不成熟的看法。
我认为本节课较好地体现了以下几点:
一、教者善于找准教材切入点,从学生熟悉的“抢凳子”游戏引入,让学生初步体验不管怎么坐,总有一张椅子上至少坐着两个人。激发了学生的探究兴趣,教师开门见山地揭示出课题,又较快的抓住了学生的注意力,使学生产生“疑而不惑,又欲解之”的强烈愿望,这是进入本节课学习的良好开端。
二、教者注重让学生在操作中,经历探究过程,感知理解抽屉原理。本节课中教师组织的教学活动结构紧凑,实施过程层层推进,在学生一次次的操作、观察、猜测、总结、归纳中一步步地探寻规律,建立数学模型。整堂课,教师不是直接将公式抛给学生,让学生套用公式解决问题,而是让学生经历了数学学习过程,上得扎实有效。
三、教者能注重学生“说课”过程,能充分的让学生来说,提高了学生有条理地、清晰地阐述数学观点的能力,也使学生感受到了数学语言的逻辑性与严密性,感受了数学的魅力。
四、能深入挖掘教材,拓宽了知识应用的深度和广度,如巩固练习部分“扑克牌”、“生日”那两题的设计。
最后,提一点不成熟的看法。在得出结论“商+1”时,是否再简要地强调说明一下为什么是“商+1”,而不是“商加余数”,那将会让学生更清楚探讨的问题是“至少数”,因此,当有余数时,应再将余数一一分配。
抽屉原理教案篇十
7、幼儿园买来不少猴、狗、马塑料玩具,每个小朋友任意选择两件,那么至少几个小朋友中才能保证有两人选的玩具相同。
8、有一个布袋里有红色、黄色、蓝色袜子各10只,问最少要拿多少只才能保证其中至少有2双颜色不相同的袜子。
加分题:每题20分。
2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
3、五年级有49名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间,问至少有名学生的成绩相同。
5、从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.
抽屉原理教案篇十一
“数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课借助把4本书放进3个抽屉里的操作情境,介绍了一类较简单的“抽屉原理”。
本课通过直观和实际操作,使学生进一步经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,从而在用“抽屉原理”加以解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考思考问题的意识。
本节课我安排了四个教学环节:
第一环:创设情境,诱发兴趣。
在这个环节中,安排了一个小游戏:任意抽取五张扑克牌,不看牌判断五张牌中同种花色的至少有2张,让学生猜猜。为什么老师可以这样判断?由此引发学生的兴趣,营造一个愉快的学习氛围,为学习新知创设良好的情境。
第二环:自主参与,探索新知。
在这个环节中,教学时先放手让学生自主思考,采用实践操作的方法进行“证明”,然后再进行交流,引导他们对“列举法”、“假设法”两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题。
第三层:应用新知,解决问题。
让学生借助直观和假设法最核心的思路“有余数除法”形式,使学生更好的理解抽屉原理解决问题的'一般思路。小学生不要求学生用反证法进行严格的证明,鼓励学生借助学具、实物操作、或画图的方式进行说理。
第四层:引导学生总结规律。
在学生自主探索的基础上,教师进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。
抽屉原理教案篇十二
xx老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。
1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的'不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。
2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。
3、注意渗透数学和生活的联系。并在游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。”这是为什么?学生很惊讶。于是,学生的积极性被调动起来了,总想接开其中的奥秘。学完抽屉原理后,让学生用学过的知识来解释这些现象,有效的渗透“数学来源于生活,又还原于生活”的理念。
商讨之处:
学生对“至少”一词的理解还显得有些欠缺,学生仅仅理解了字面上的意思,对“至少”一词的指向性还不明确,就我理解,“至少”应该是指的在每一种情况中出现的最大数中的最小数,而有学生却理解成是每一种情况中的最小数。如何让学生的理解更准确,更深刻,还需探究。
抽屉原理教案篇十三
××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。
1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。
2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。
3、注意渗透数学和生活的联系。并在游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。”这是为什么?学生很惊讶。于是,学生的积极性被调动起来了,总想接开其中的奥秘。学完抽屉原理后,让学生用学过的知识来解释这些现象,有效的渗透“数学来源于生活,又还原于生活”的理念。
商讨之处:
学生对“至少”一词的理解还显得有些欠缺,学生仅仅理解了字面上的意思,对“至少”一词的指向性还不明确,就我理解,“至少”应该是指的在每一种情况中出现的最大数中的最小数,而有学生却理解成是每一种情况中的最小数。如何让学生的理解更准确,更深刻,还需探究。
抽屉原理教案篇十四
根据《数学课程标准》和教材内容,我确定本节课学习目标如下:
知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。
过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
1、用具体的操作,将抽象变为直观。
“总有一个文具盒中至少放进2支铅笔”这句话对于学生而言,抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”,二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个文具盒中至少放进2支铅笔”这种现象,让学生理解这句话。
2、充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生手去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
3、适当把握教学要求。
我们的教学不同于社会上的辅导培优机构,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“抽屉”和“物体”。
以学生为课堂的主体,采用创设情境,提出问题,让学生大胆猜测、动手操作、自主探究、合作交流。
今天在学习新课之前,老师和大家玩一个“抢凳子”游戏。(下面有2把椅子。3个同学玩抢凳子的游戏,要求每个人都要坐到凳子上,结果会怎样?)。
1、提出问题:把4支笔放进3个文具盒中,可以怎么放?
2、验证结论:不管学生猜测的结论是什么,都要求学生借助实物进行操作,来验证结论。学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生。
(1)先请列举所有情况的学生进行汇报,一、说明列举的不同情况,二、结合操作说明自己的结论。(教师根据学生的回答板书所有的情况)。
学生汇报完后,教师再利用枚举法的示意图,指出每种情况中都有几支笔被放进了同一个文具盒。
(2)提出问题:不用一一列举,想一想还有其它的方法来证明这个结论吗?
学生汇报了自己的方法后,教师围绕假设法,组织学生展开讨论:为什么每个文具盒里都要放1支铅笔呢?请相互之间讨论一下。
在讨论的基础上,教师小结:假如每个文具盒放入一支铅笔,剩下的一支还要放进一个文具盒,无论放在哪个文具盒里,一定能找到一个文具里至少有2支铅笔。只有平均分才能将铅笔尽可能的分散,保证“至少”的情况。
(3)初步观察规律。
4、发现规律,初步建模。
我们将铅笔、鸽子看做物体,文具盒、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)。
小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。
5、用有余数的除法算式表示假设法的思维过程。
(2)做一做:8只鸽子飞回3个鸽舍,至少有3支鸽子飞进同一个鸽舍。为什么?
6、再次发现规律。
观察板书,你有什么发现吗?让学生通过对除法算式的观察,得出“只要物体个数比抽屉个数几倍还多,总有一个抽屉至少有商+1个这样的物体。”的结论。
7、介绍课外知识。
介绍抽屉原理的发现者——数学家狄里克雷。
【设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。】。
《导学练案》自我测评第一题。
对于本节课的学习,你的感受如何?
只要物体数量比抽屉的数量多,
总有一个抽屉至少放进2个物体。
只要物体个数比抽屉个数几倍还多,总(至少数=商+1)。
有一个抽屉至少有商+1个这样的物体。文章。