两位数乘两位数的乘法教学设计(实用23篇)
一些琐碎小事看似微不足道,但它们也构成了我们生活的一部分。掌握正确的写作结构是写好文章的基础,下面介绍一下常用的结构类型。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那么我们该如何写一篇较为完美的总结呢?以下是小编为大家精选的相关范文,供大家参考。
两位数乘两位数的乘法教学设计篇一
人教版《义务教育课程标准实验教科书》小学三年级数学下册第63~64页的内容。
教学目标。
知识目标:学生经历发现两位数乘两位数的计算方法的过程,体验计算方法的多样化。
能力目标:
1.通过比较各种方法的优点和不足,寻找最佳方法,训练学生掌握优化策略的思想和方法。
德育目标:培养学生勇于探索的精神。
教学重点。
教学难点。
理解笔算两位数乘两位数的顺序以及第二部分积的书写方法。
教学准备。
多媒体课件、卡片、多个鞋形算式卡片(每张只有一个算式)。
教学过程。
一、导入。
1、回顾旧知。
学生独立完成:
(1)用竖式计算:24×223×3。
(2)口算:24×1012×20。
2、引出新知。
多媒体课件出示例1的情境图,引导学生观察图并说出图意。
引导学生列出:24×12,为什么用乘法计算?
师:这里的乘法和刚才的乘法比较,有什么不同?
二、探究。
1、估算。
请你估算一下,24×12的积大约是多少?(同桌互相说一说,指名汇报)。
2、自主探索,组内交流。
(1)学生独立计算。
(2)小组内交流算法。
(3)教师进行巡视指导部分学困生。
3、学生汇报。
请不同算法的同学上台板演并说明算法。
4、师生评议。
请学生说一说,你喜欢哪种算法?为什么?
5、研究笔算。
(1)请学生打开课本第63页,看看小红的算法,并完成以下三个要求:
a、同桌互相说一说小红的竖式计算过程。
b、自己试着算一算。
c、小组讨论:怎样笔算两位数乘两位数?
(2)学生汇报。
请学生说一说小红的竖式计算过程。
(3)课件出示小红的竖式计算过程,教师讲解。
(4)通过上面的讨论,你觉得怎样笔算两位数乘两位数?
三、练习。
1、尝试练习。
2333。
×13×31。
6933。
2、判断练习。
让学生先说出错误的原因,再改正错题。
3、选择练习。
出示:41×2132×1222×14各组选一道计算。
4、游戏。
贴出写有数字的卡通人物,说明游戏规则,让学生独立计算,找出所需的结果。完成后,先检查是不是算对了,再比一比哪组学生找到的鞋子最多。
四、总结。
这节课你学会了什么?
两位数乘两位数的乘法教学设计篇二
《乘法估算》是义务教育课程标准实验教科书数学三年级下册p59页的教学内容,包括例2以及相关的练习。
(二)教材简析。
本课是在三年级上册两位数乘一位数的乘法估算的基础上来进行学习的。此前学生已经掌握了整十整百数乘法的口算方法,能进行两、三位数乘一位数的估算。学好本节课内容,能为今后学习多位数除法估算以及除数是两位数的除法计算做好知识上的准备。
(三)教学目标。
根据“新课标”的理念,结合学生的知识现状和年龄特点,我制定了以下教学目标:
1、结合具体问题情境让学生经历两位数乘两位数的估算过程,培养学生的估算意识,初步理解估算方法。
2、给学生创设主动探索估算知识的空间,解释估算过程,培养学生的数感,进一步提高学生的比较推理能力。
3、培养学生学习数学的兴趣,感受数学与生活的紧密联系。
(四)教学重、难点:
难点:合理选择估算方法解决生活中的.数学问题。
二、说教法学法。
1、说教法:为了培养学生估算的意识,我设计了估座位数、准备钱买书、师生互动等生活场景,激发学生的主体探究热情,让学生主动结合生活情境进行估算。
2、说学法:本课设计力求突出“自主学习实践感知”的特点,采用个体探究、小组合作的学习形式,创设有利于学生参与探索活动的学习情境,使学法与教法和谐统一在“促进学生能力发展”这个教育目标上。
三、说教学过程。
为达到本节课的教学目标,我从以下五个环节设计教学。
1、复习铺垫引出新知。
2、创设情景自主探究。
3、应用提高巩固深化。
4、实践生活升华教育。
5、互动总结课外延伸。
(一)复习铺垫,引出新知。
1、口算。
20×20=24×10=40×50=12×30=。
2、下列算式,你能估算各题的结果吗?你是怎样想的?
28×4≈62×7≈。
[这里通过复习旧知,抓住知识的内在联系,为知识的迁移做好铺垫,并由此引出课题。]。
两位数乘两位数的乘法教学设计篇三
教学目标:。
1.学生经历发现两位数乘两位数的计算方法的过程,体验计算方法的多样化,会进行两位数乘两位数的`笔算。
2.通过小组合作交流,比较各种方法的优点和不足,帮助学生体会优化的策略和思想。
教学过程:。
一、创设情境,提出问题。
1.出示例1图。(图中增加1盒水彩笔)提问:你能猜测一下大约有多少枝水彩笔吗?
2.学生进行猜测后要求说说怎样猜测的。
3.提问:怎样才能证明你猜测的答案是正确的?(要计算出24×12=?)。
4.追问:怎么算呢?我们没有现成的办法,你能自己想办法计算24×12得多少吗?
二、探索尝试,比较并优选算法。
1.独立思考,尝试解决问题。(学生用自己的方法去解决24×12=?注意帮助有困难的学生。)。
2.小组交流、整理。
3.以小组为单位,全班汇报,再汇总不同算法。学生的算法可能有:。
(1)12+12+“……”+12=288(24个12相加)。
(2)12×4×6=288。
(3)12×3×8=288。
(4)12×20+12×4=288也有学生用竖式计算。
4.方法归类。(共分三类,第一类是连加;第二类是连乘;第三类是把其申一个乘数拆成两数的和或差)。
5.发现最佳方法。
(1)出示:23×13二请你用自己喜欢的方法计算这道题目。
(2)小组交流,然后选出最简单的方法向全班同学汇报。
(3)提问:为什么不用连加?为什么不用连乘?
(4)引导:在计算两位数乘两位数时,你认为哪一种方法适用的范围比较广?为什么?
6.研究笔算方法。
(1)提问:我们再来看看24×12这个乘法的竖式。你能说说每一步的意思吗?(学生进行讨论,然后全班交流。)。
(2)根据学生回答,出示每一步竖式表示的意义。
(3)设问:是不是每一道两位数乘两位数都可以用竖式计算呢?计算时你认为应该注意些什么?(体会竖式计算的优点:简便,正确;注意数位对齐。)。
三、巩固法则,推广应用。
1.完成“练一练”的3道题目。(学生独立完,再指名板演)。
2.练习二第3题。(先填在书上,然后交流)。
四、全课总结,交流收获。
1.小结:通过本节课的学习,你有什么收获?
两位数乘两位数的乘法教学设计篇四
人教版实验教材三年级下册p59例2。
【教学目标】。
1、结合具体问题情境让学生经历两位数乘两位数的估算过程,培养学生的估算意识,初步理解估算方法。
2、给学生创设主动探索估算知识的空间,解释估算过程,培养学生的数感,进一步提高学生的比较推理能力。
3、培养学生学习数学的兴趣,感受数学与生活的紧密联系。
【教学重点】。
【教学难点】。
合理选择估算方法解决生活中的数学问题。
【教学过程】。
一、复习铺垫,引出新知。
1、口算。
20×20=24×10=40×50=12×30=。
2、下列算式,你能估算各题的结果吗?你是怎样想的?
28×4≈62×7≈。
二、创设情景,自主探究。
1、创设情景,引出主题。
分析引导:完整地说一说你收集的信息?
“能坐下吗”是什么意思?
要比较座位数与人数的大小,必须先求出什么?
2、尝试估算,探索方法。
学生独立完成,个人汇报,教师板书。(着重让学生说说是怎样想的。)。
方法小结:两位数乘两位数的估算,它与一位数乘两位数的估算方法相类似,估算时可以把其中的一个两位数看成整十数,也可以把两个两位数都看成整十数,再用口算确定估算结果。
3、巧理信息,探究明理。
师:同样是估算,为什么会出现几种不同的结果呢?
四人小组讨论,合作完成学习卡一,并对照黑板板书汇报成果。
分析小结:估算的时候我们可能把因数看大了,这时估算的结果比实际结果大,也可能会把因数看小了,这时估算的结果比实际结果小,不同的估算方法可能会有不同的估算结果,但都会与实际的结果之间存在一定的误差。
4、运用策略,解决问题。
着重引导学生明白:在第(3)种情况中,是估小了,既然估小了都够坐,那实际结果肯定就能坐下。这种方法在这里相对而言更有把握解决“够不够坐”的问题。
5、指导看书,质疑释疑。
三、应用提高,巩固深化。
1、随堂练习,检验效果。
(1)、口算(书本p62第10题第一行)。
89×30≈32×48≈43×22≈35×19≈。
()()()()()()()()。
(2)、(书本p59做一做)一页有23行,每行约23个字,一页大约有多少字?
2、配对练习,突破难点。
《气象知识知多少》每本19元,李老师决定买12本,李老师大约要准备多少钱?
选择答案:a、12看成1010×19=190(元)。
b、19看成2012×20=240(元)。
针对不同争议,同桌互议,然后汇报。
难点小结:两位数乘两位数的估算,由于因数的不同特点,估算的方法可能有几种,但我们在解决不同的情境问题时,一定要考虑具体情况,灵活地选择合适的估算方法。
四、实践生活,升华教育。
勇当小记者,采访听课老师,巩固所学知识。
内容a、我们组采访的是()老师,他家每月水费支出大约是()元,一年大约支出水费元。我们是这样估算的。
内容b、我们组采访的是()老师,他每天批改作业()本,每个星期(5天)大约批改作业本,每学年(40个星期)大约批改作业本。
看到这些数字,你有什么感受?
五、互动总结,课外延伸。
互动总结:在今天的学习中你有什么感受?又有什么收获呢?
课外延伸:请你把你是怎样用估算来解决实际问题的小故事记录下来,写一篇生动的数学日记。
附:板书设计。
两位数乘两位数的乘法教学设计篇五
教材简介:
本单元是在学生能够比较熟练地口算整十、整百数乘一位数(20×3,200×3),两位数乘一位数的笔算(每位乘积不满十)(43×2),掌握了多位数乘一位数的计算方法的基础上进行教学的。本单元主要内容有:口算乘法、笔算乘法。
教材内容安排如下表:
教学目标:
1、会口算整十、整百数乘整十数,会口算两位数乘整十、整百数(每位乘积不满十)。
3、能结合具体情境进行乘法估算,并解释估算的过程。
教学重点:
教学难点:
教学建议:
1、让学生通过解决问题学习计算方法。
2、让学生主动探索计算方法。
3、加强估算,鼓励算法多样化。
4、注意处理好口算、估算、笔算三者之间的关系,要做到三算互相促进,达到共同提高的目标。
课时安排:
9课时。
口算乘法。
第1课时。
教学内容:
58页例1及做一做、练习十四1~4题。
教学目标:
经历探索口算方法的过程,学会口算整十、整百数乘整十数及两位数乘整十、整百数(每位乘积不满十)。
教学重点:
学会口算整十、整百数乘整十数及两位数乘整十、整百数(每位乘积不满十)。
教具准备:
口算卡片等。
教学过程:
一、回顾学过的口算方法。
口算下面各题:
40×460×530×3300×7200×8。
12×424×213×332×311×5。
自己选两题,说说口算方法。
二、新课。
1、提出问题。
(1)仔细观察例1图。
(2)请学生提出问题。
(3)从学生回答中选择例1的两个问题:
邮递员工作10天,要送多少份报纸?
工作30天,要送多少份报纸?
2、探讨口算方法。
(1)请学生思考、交流解决问题的方法。引出算式:
300×10300×30。
(2)小组讨论:怎样想出得数?
(3)各组代表向全班汇报本组的各种口算方法。
(4)评价。
3、尝试解决问题。
(2)组织交流。
请学生说一说解决问题的过程和结果。让学生在交流中品尝学习的乐趣。
4、探讨新的口算方法。
(1)出示:42×1023×3014×200。
请学生思考,讨论怎么算?
(2)组织交流,并由教师评价每种方法。
三、练习。
1、完成做一做的8道题。
(1)先由学生独立计算,集体订正。
(2)引导学生总结,发现规律。
2、独立完成练习十四1~2。
3、解决实际问题:练习十四3~4。
四、总结。
请学生谈收获。
第2课时。
教学内容:
59页例2(估算)。
教学目标:
2、能结合具体情境进行乘法估算,并解释估算的过程。
教学重点:
教学过程:
一、复习旧知:
1、口算下面各题:
40×1060×2030×40300×70200×80。
12×400240×2130×330×311×50。
2、求下面各数的近似数:
321868729535842。
选择几个数说一说是怎样求近似数的。
3、估算:
198×4305×6485×3182×5。
说一说你是怎么估的?
二、探究新知:
1、提出问题:
(1)出示例2图:请学生仔细观察。你从图中了解到什么?
(2)把在图中获取的信息汇总,说成完整的一道题:
大会堂里共有18排座位,每排22个座位。有350名同学来听课,能坐得下吗?
2、探讨估算方法。
(1)请学生思考、交流解决问题的方法。引出算式:
18×2222×18。
(2)小组讨论:怎样估算得数?
(3)各组代表向全班汇报本组的各种估算方法。
方法一:18≈2022≈2020×20=400。
方法二:18≈2022×20=440。
方法三:22≈2018×20=360。
(4)比较、评价。
3、尝试解决问题。
(2)组织交流。
请学生说一说解决问题的过程和结果。让学生在交流中品尝学习的乐趣。
三、练习。
1、完成练习十四的第7题:
(1)先由学生独立计算;
(2)集体订正,讲讲估算的方法。
2、练习十四第8题:
(1)学生认真读题,理解题目要求。
(2)“已经种了的93棵树苗是几行?”这块地有几个93呢?
(3)请独立列出算式并进行估算。
四、总结。
请学生谈收获。
第3课时。
教学内容:
口算乘法的练习课(完成练习十四的相关练习)。
教学目标:
1、通过练习,使学生进一步熟练口算整十、整百数乘整十数及两位数乘整十、整百数(每位乘积不满十)。
2、使学生进一步掌握两位数乘两位数的估算方法,结合具体情境进行乘法估算,并解释估算的过程。
教学过程:
一、基本练习:
1、学生回顾上两节课学习的内容。
2、开火车的形式进行口算练习:
50×1070×2040×40500×70600×80。
12×300240×2130×290×311×30。
选择一部分题目让学生说一说自己是怎样口算的。
3、听算练习:
40×1030×2030×50300×10300×80。
22×40330×2120×330×610×50。
4、估算:
42×1168×1032×47。
45×1726×1836×21。
四人小组互相说说是怎样估算的?有多少种估算的方法?
二、解决问题:
1、养一张蚕需要桑叶约600千克,可产茧约50千克。
(1)小明家养了4张蚕,可产茧多少千克?需要桑叶多少千克?
(2)张村共养40张蚕,可产茧多少千克?需要桑叶多少千克?
学生仔细读题,理解题目意思,并弄明白两个问题的不同。
同桌合作完成,集体讲评。
2、果园里有28行橘子树,每行32棵。果园里大约有多少棵果树?
先列出算式,想一想,是求近似值还是准确的值?该怎样解决?
学生独立完成。
三、综合练习:
1、独立完成练习十四第5、6题,比一比,谁在规定的时间内完成得最好。
2、分组进行“夺红旗”比赛(练习十四第9题)。
3、合作完成练习十四第10、12题。集体讲评。
四、学习总结:
生生互相谈收获。
两位数乘两位数的乘法教学设计篇六
教学难点:
正确规范地计算和书写乘法竖式。
教学设计:
一、复习铺垫:
1、口算热身:
23x20=42x30=。
2.估算:
23x19=42x29=。
3、竖式练练手:。
16x21=43x15=38x44=65x34=。
学生自己动手完成并思考:用竖式计算乘法你有哪心得可以与大家交流一下?
二、互动情境探索。
1、教学例1:张阿姨每时采摘123kg脐橙,她在果园里工作了32时;李叔叔每天包装324筐脐橙,他在果园里工作了27天。
提问:张阿姨32时采摘脐橙多少千克?
独立列式:123×32(板书)。
师:观察这算式,你发现和我们以前所学得乘法算式有什么不同吗?(三位数乘两位数,两个因数都没有0……)。
123×32。
2、你能运用估算知识猜一猜:张阿姨能采摘多少千克脐橙吗?
说一说你的想法。
3、尝试用竖式计算出准确答案。
4、(1)学生独立思考,教师巡回指导,特别关注有困难的学生,看看他们每一部分积的书写位置和计算结果是否正确。
(2)反馈计算结果,要求学生回答:
先算什么(先算123x2)。
再算什么(再算123x30)。
最后算什么(2个123与30个123的和)。
板书:123x32=千米。
123。
x32。
-----------------。
246。
369。
---------------。
3936。
6、交流汇报、归纳解题策略。
7、同桌之间交流计算方法。
三.出示第二个问题,由学生自己独立做题。
1.出示:李叔叔一共包装脐橙多少筐?
列示:324x27。
2.学生独立完成。
3.集体订正。
四、巩固练习。
142x23214x34。
(先完成前一个反馈后再练习,最后将214×34改为34×214)。
学生独立用竖式计算,完成后,反馈交流。
小结:1、数位对齐;2、分位相乘;3、合并相加;4、满十向前一位进1。
五、总结。
这节课我们学习了什么?
六、课堂作业:
两位数乘两位数的乘法教学设计篇七
教学目标:
1、理解乘法的意义和两位数乘两位数的算理,让学生经历发现两位数乘两位数的计算方法的全过程,体验计算方法的多样化。
2、感受“借助旧知识,解决新问题”的策略意识。
3、通过应用,初步体验两位数乘两位数在生活、数学应用中的广泛性,拉近算式与生活的联系,并体验探究、应用过程中的成功感。
教学重点:
理解乘法的意义和两位数乘两位数的算理,掌握两位数乘两位数的笔算方法,能正确地进行计算。
教学难点:
理解用一个数的十位上的数去乘另一个,得数的末尾与十位对齐的道理。
教学过程预设:
一、创设情境,提出问题。
听说小朋友这几天在学乘法,先来考考你们:
1、先后出示12x312x30。
师:12x3多少?是几位数乘几位数(两位数乘一位数)你知道这个算式的乘法意义吗?(乘法意义)。
师:那12x30呢?是几位数乘几位数?(整十数乘两位数)它的乘法意义?
2、师:老师对今天这节课小朋友的学习更有信心了。小朋友,你们有吗?好,现在上课。
(1)读题。
(2)怎样列式?31x12=?
二、探索尝试,寻找方法。
1、自己试着把这题变成我们学过的`旧知识,在自己的练习本上试试。
2、师:你不仅要会算,还要把道理说清楚,有了一种方法,还有没有第二种方法,第三种方法?(在此期间请学生到黑板板书不同的方法)。
3、同桌交流整理。
师:怎样才能使老师听明白?先同桌之间互相当小老师试试,看能不能使对方听懂。开始交流。
4、全班汇报,汇总解答策略。
可能会出现:
第一种方法:31x10=31031x2=62310+62=372。
师:这两题方法有什么共同的地方(都把一个因数拆成两数之和,再与另一个因数相乘)我们可以把它看成是同一种方法)。
师:为什么要拆呀?
师:看来大家很有自己的想法,想到把新知识转化成旧知识来解决。
第二种方法:31x4x331x2x6。
那这又是什么意思呢(把一个因数拆成两个因数的积)老师发现我们班小朋友真是了不得,你们知道吗你们刚才用的方法是我们四年级才要学的。
第三种方法:
师:我们以前学习两位数乘一位数的时候可以用竖式做,那两位数乘两位数可以吗?自己试着做做看。用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)。
2、62是怎么来的?(2个31)也就是用第二个因数的个位去乘第一个因数。
3、310是怎么来的?(10个31)那3728呢?(板书:与第一种方法用线联系起来)。
(1)你为什么这么做?看来大家很有自己的想法。
(2)看着这三个板书,你想不想说什么?是不是觉得有点繁?能不能再创造出一个算式,把三个算式的意思也能用一个算式也能明白?再试试。我已经发现很多小朋友智慧的火花了。
4、请他板演后,问:大家能看明白是什么意思吗?每一步表示什么意思?同桌互相说一说(提醒:分几步做?)。
5、看着板书现在你想说什么?(第一种方法与笔算方法的思路是一样的,一个横式表达,一个竖式表达。竖式的形式以前我们也见过,我想今天学习了两位数乘两位数,竖式这种形式应该重点掌握。
(1)谁愿意把你的解法展示给大家看(实物投影)并边介绍你的想法。
(2)你能看明白这个算式的每一步是怎么来的,表示什么意思吗?同桌互相说一说,有什么地方不懂的?想问大家的。(实物投影)。
8、揭示课题。
师:是呀,我们学习数学往往都是把新问题转化为旧知识来进行的,今天的新知识,对于后面要学的知识来说又变成了旧知识,因此我们必须今天的知识学好,学扎实。
9、理解个位“0”不写的意思。
三、巩固方法,推广应用。
1、现在我们用这种形式笔算完成34x1241x21:
(1)做之前有什么要提醒自己和大家的吗?
(2)(实物投影)学生笔算并汇报。
2、师:在我们生活中用没有用到过“两位数乘两位数”的例子?(一学生举例可请其他学生笔算完成)。
3、师:老师也来举个例子并笔算。出示:一套12本,每本24元。一共要付多少元?
4、帮老师解决一个问题出示:
(1)61个小朋友去看电影,买票一共需要多少钱?(学生认为还少了每张票的价钱)。
师:电影院售票窗口有这样一个告示:成人票每张50元儿童票每张24元。
(2)学生笔算,怎样列式?为什么要与24相乘而不是50?
(3)多媒体对照。
(4)1张票要元60张票要()元61张票要()元。
5、11x11=。
12x11=。
13x11=。
14x11=。
15x11=。
16x11=。
师:要掌握两位数乘两位数的笔算,必须进行大量练习。现在我报题,你们笔算。
(教师随时报得数)我已经好了,你们呢?
师:很奇怪是吧,是不是老师把这些得数全背出来了?其实这里就有数学秘密在,有兴趣的话下课可以去找找。
四、课堂小结。
师:今天这节数学课你有什么收获?你是怎样学习的?
两位数乘两位数的乘法教学设计篇八
人教版小学三年级下册第四单元笔算乘法。
1.知识与技能目标:让学生经历探索两位数乘两位数的计算方法的过程,初步掌握笔算方法,理解算理与方法。
2.过程与方法目标:学生通过自主探索、合作交流,体验计算方法的多样化,并能进行自主优化。
3.情感态度与价值观目标:在探索算法与解决问题过程中,增强相互交流的意识,体验成功的喜悦,体会数学在生活中的应用价值。
在理解算理的基础上掌握两位数乘两位数(不进位)的计算方法并正确计算。
理解乘的顺序及第二部分积的书写方法。教学用具:课件教学方法:讲授法教学过程。
一、复习。
1.口算。
50×11=18×30=12×40=21×30=50×11=30×60=2.笔算。
24×2=78×8=123×4。
二、导入。
2.回顾旧知:
过渡语:那我们一起来看一看!
(投影出示:每套书有14本,王老师买了12套)师:她告诉我们什么?问题一:一共买了多少本?14×12=3.引出新知:
这里的因数是几位数?今天我们大家就一起来研究像这样的两位数乘两位数。(出示课题:两位数乘两位数)。
三、算法探究。
1.自主探索:
同学们,你能想办法算出24×12的得数吗?想想看,看谁能用自己的'方法进行计算,想好了写在小白板上。开始吧!教师进行巡视指导。
(注意点:a、学生中都出现了哪些算法?b、哪几位同学出现了典型算法?)。
2.小组交流:
你刚才是怎样算的?能不能让你小组的同学也明白你的算法?请互相说一说。(学生组内交流)。
3.全班汇报:
哪一个小组愿意来说一说你的方法?预计学生可能会出现下列当中的几类方法:
(2)连乘:14×2×6=16814×3×4=16812×2×7=168。
(3)拆数:14×10+14×2=16810×12+4×12=168。
(4)竖式:
4×。
2―――――。
814―――――1685.研究竖式:
若出现了竖式法,则14×12xx同学能用竖式直接计算,可真是了不起。可是老师这里有一点不明白:“下面这一个14是谁和谁相乘算出来的?为什么不和28对齐啊?若没出现竖式法,则教师引导:分步计算需要三步,是不是可以在一道式子上完成呢?接着引出竖式,并且教学竖式的写法。
(1)师:我们来看看14×12这个乘法的竖式。你能说说每一步的意思吗?(2)师根据学生回答,课件出示每一步竖式的意义。
(3)问:计算时你认为应该注意些什么?(a.要先算个位,再算十位。从低位开始计算。b.算的时候应该注意数位。)。
师:现在你们明白14×12的竖式计算方法吗?6.下面我们来算一算、说一说吧22×23=22先用个位上的()乘22得()。
再用十位上的()乘22得()。
×23。
把()和()加起来得()。————7.练一练。
23×13=33×31=41×21=32×12=8.小马虎体检中心。
四、巩固练习。
课本p46做一做;p47练习。
让做得快的学生上前展示成果,体验成功的喜悦。然后让下面的同学说明每一步的意思。
五、教学小结。
通过这节课的学习,你有什么收获?
六、作业布置。
课本第47、48页练习。
两位数乘两位数的乘法教学设计篇九
在教学此例题时,学生都是采用第一种方法进行解答的,没有一位同学采用第二种方法进行解答,那么怎样让学生进行这两种方法的讨论呢?于是我要求学生笔算出实际需要买票的钱,学生通过计算得知需要5096元。此时我问学生按刚才我们估算的结果只带5000元钱能买到所有的票吗?学生说不能。按我们估算的结果不能买到所有的票,我们估算的好吗?学生说不好。那怎么办呢?我让学生讨论,通过学生讨论得知将104看成110就可以,那么引出第二种估算方法:49×104≈5500(元)。我问学生这两只方法都对吗?学生说都是对的;接着问以前我们怎么进行估算的?学生说先将题目中的数据按四舍五入法求近似数然后再进行计算的。接着我让学生对比今天的两种方法是不是按以前的`方法进行估算的?学生第一种是按以前的方法做的,第二种方法不是的。我又问这两种方法哪一个更好呢?学生说第二种。为什么呢?学生回答说按第一种结果不能都买的票,第二种可以让每一个人都能买到票。那么我们以后如何进行估算呢?按以前的方法还是用什么办法?学生不知道了。
反思:1、学生为什么不能做出书上出示两种方法?因为这一题学生是按求每一个数据的近似数后进行计算的,对于第二种方法104看成110,学生没有这样的经验,因此不能做出这样两种解法。
2、如何引出第二种方法,如何渗透第二种方法大估的思想呢?我在教学前仔细想了又想,在于引出第二种方法只能通过学生实际算出准确值,然后比较这两个值在通过思考能否都卖到票去思考,引出学生找出第二种方法。在渗透第二种方法大估上,我只能通过讲述在实际情况中,如买东西考虑带多少钱;坐车、乘船等都要考虑实际情况进行大估。可是学生还是不能理解。
困惑:如何让学生根据实际情况进行估算?对于实际情况采取大估,这个实际情况是什么情况,如何让学生更好理解这个实际情况,如何让学生从实际出发进行估算很难。怎么更好的进行此类问题的教学呢?学生没有这样的经验,怎么办呢?是教师直接告诉,还是让学生去探讨?如果是让学生去探讨,那又如何去探讨呢?我也没有一个很好的办法。
两位数乘两位数的乘法教学设计篇十
1、理解两位数乘两位数的笔算算理,理解乘的顺序以及第二部分积的书写位置。
3、在小组合作学习探究活动中感受学习数学的乐趣。
理解乘的顺序以及第二部分积的书写位置。
多媒体课件等。
1、口算。
12×20=24×10=50×20=70×2=。
21×10=11×30=60×40=30×5=。
2、谈话导入。
师:同学们,我们已经学习了两位数乘一位数的笔算乘法和两位数乘两位数的口算。今天,我们继续两位数乘两位数的笔算乘法。(板书课题)。
师:为了使同学们更好地学习这一部分的知识,请看自学提示。(指名读)。
看第63页的情景图,观察并思考下列问题:
(1)图中有哪些信息?把这些信息完整地叙述下来。(独立思考解决)。
(2)根据题中的已知条件和问题列出算式,并算出结果。(尝试用不同的方法进行计算)。
(3)试着用自己的话说一说笔算乘法的方法。(4人一组讨论、交流)。
学生自学、讨论。
指名回答自学提示中的问题,师随着学生的回答板书。
1、板书:妈妈买了一套书12本,每本24元。妈妈一共要付多少钱?
2、24×12=(元)。
师:同学们,你能用已经学过的知识求出得数吗?
师:你是从哪里看到的?
生:……(你真是一个有心的孩子。)。
师:其实,我们也可以把这个过程用竖式进行计算。请看(屏幕出示:)。
242448。
×2×10+240。
48240288。
(1)师:刚才求妈妈12本书用288元,计算时一共用了3个竖式。我们共同尝试一下,看能不能把这3个竖式合并起来写成一个竖式呢?来,看着我们的计算过程。刚才的第一步我们是先算什么的?怎样计算?(先算2本多少钱,用24乘2。)。
1计算24乘2先算什么呢?再算什么?(先算2乘个位上的4表示8个一;再算2乘十位上的2表示4个十,合起来是48。)。
2在48的旁边注明24×2的积。
(2)此时教师揭去盖在第二个因数十位上“1”的东西,并问第二步要算什么?怎样算?(第二步算的是10本书一共多少钱,24乘10得240。)。
1、教师对着竖式说明:十位上的“1”表示10,所以用十位上的“1”去乘24就是用10去乘24;先用1个十乘4得40,“4”要写在十位上,个位上写“0”;再用10乘2得20,但是这个2表示2个十,所以10乘2得到的20也表示20个十,也就是200,这个“2”要写在百位上。因此求得的积是240。
2、在240的旁边注明24×10的积。
3、师:这次求得的积个位上的“0”应该如何处理呢?
生:“个位的0不写”。
师:你是怎么知道的?
生:书上小括号里提示我们的。
师:你真是一个细心的孩子,大家应该向他学习。想想个0为什么可以不写呢?
生:因为用十位上的“1”去乘24,得到的24就表示24个十,也就是240,所以在这里个位上的0不写。
(3)第三步要算什么?(把10本书的钱和2本书的钱加起来,也就是把48与240加起来,得288。)。
4、师:谁能说一说这道题的计算顺序和方法。
生:先用2乘24得48,得数的末位要与因数的个位对齐;再用1乘24得24,得数的末位要与因数的十位对齐;最后把两次乘得的积加起来。
出示例1的竖式,引导学生总结方法。
1、以小组为单位说一说这道题的计算顺序和方法,然后各组派代表说。
2、竖式中48和24比较,哪个数大,为什么?
3、计算两位数乘两位数时,先用第二个因数()位上的数去乘第一个因数的每一位,得数的末位要与因数的()位对齐;再用第二个因数()位上的数去乘第一个因数的每一位,得数的末位要与因数的()位对齐;最后把两次乘得的积()。
两位数乘两位数的乘法教学设计篇十一
又问:要比较座位数与人数的大小,必须先求出什么?(座位数)你会列式吗?(板书算式:18×20)。
再问:只要比较座位数与人数的大小,需要知道准确的结果吗?(不需要)既然不需要,那我们就试着用估算去解决会比较便捷一点。
2、尝试估算,探索方法。
让学生先独立完成,再小组交流,学生汇报,教师板书。
……。
3、巧理信息,探究明理。
根据学习卡(一)的内容,四人小组交流误差产生的原因,完成学习卡,小组汇报。
结果比实际结果小,不同的估算方法会有不同的估算结果,但都会与实际的结果之间存在一定的误差。
4、运用策略,解决问题。
引导学生在刚才讨论的基础上,逐步理清,在第(3)种方法中,采用估小的方法得到的360都大于350,那么实际结果应该比360还要大,肯定能坐下350人。
同时指出:虽然估算的方法有很多,但在这道题中,用估小的方法来进行估算,相对而言比较有把握解决“够不够坐”的问题。
5、指导看书,质疑释疑。
(三)、应用提高,巩固深化。
1、随堂练习,检验效果。
让学生独立完成书本p62第10题第一行和书本p59做一做。
2、配对练习,突破难点。
在引导学生列出算式后,让学生帮老师拿个主意,应该选择下面哪种建议?
a、12看成1010×19=190(元)。
b、19看成×20=240(元)。
在学生的争论中,让学生逐渐明白:像这种准备钱购物的情况应该尽量选择估大的方法来进行估算,才能更为有效地解决问题。
同时作出小结:两位数乘两位数的估算,由于因数的不同特点,估算的方法可能有几种,但我们在解决不同的情景问题时,一定要考虑具体情况,灵活地选择合适的估算方法。
(四)、实践生活,升华教育。
设计学生采访的师生互动环节,巩固所学知识。
内容a、我们组采访的是老师,他家每月水费支出大约是()元,一年大约支出水费元。我们是这样估算的。
内容b、我们组采访的是()老师,他每天批改作业()本,每个星期(5天)大约批改作业本,每学年(40个星期)大约批改作业本。
看到这么大的数字,你有什么感受或想法?
(五)、互动总结,课外延伸。
互动总结:在今天的学习中你有什么感受?又有什么收获呢?
课外延伸:请你把你是怎样用估算来解决实际问题的小故事记录下来,写一篇生动的数学日记。
四:说板书设计。
两位数乘两位数的乘法教学设计篇十二
教材及学情分析:
本节教材内容是在学生会口算两位数加减一位数和整十数的基础上编排的,对于学生来说难度不大,在编排上有两个特点:一是利用情境图导入新课,激发兴趣,二是突出重点,分散难点,本节主要解决不进位加法的“对位”这一难点,而进位的难点留在下节课解决,三是体现了计算方法的多样性,如用你喜欢的方法计算。
教学目标:
3.获得自主学习的成功体验,提高学习数学的兴趣。
教学重点:会用自己的方法正确地计算不仅为的两位数加两位数。
教学难点:会正确书写不进位加法的竖式,强调“对位”。
教学过程:
一、情境创设,激发兴趣。
观察少年合唱团的情境图,说说从图中发现了哪些数学信息?怎样解决问题?
二、自主探究与合作交流。
1、学生列式并交流自己的算法。
要求少年合唱队一共有多少名学生,应怎样列式?
老师根据学生的回答,板书:23+22=?
那么,要求23+22=?我们可以怎样算呢?
请大家独立想一想,然后同桌互相说一说自己是怎样算的,再全班交流。全班交流算法时,只要学生汇报的思路准确,说得有道理就可以。
学生交流自己的想法。
可能有这些想法:
(1)23+20=4343+2=45。
(2)20+20=403+2=540+5=45。
(3)还可以用竖式计算。
(如果学生提不出这种算法,教师可以以合作者的身份提出来。)。
……。
2、讨论用竖式计算的方法。
学生试算,再和同桌交流一下计算的过程和结果,最后全班交流。重点是竖式的对位和书写及计算顺序。
质疑:你还有什么不明白的?
完成试一试:教师出示试一试,学生独立完成。
三、实践应用,拓展提升。
1.完成练一练第一题。
教师重点检查学生的计算是否正确,是否做到了相同数位对齐。
学生独立完成,做完后同桌说一说自己是怎样算的。
2.完成练一练第二题摘桃子。
设计一个摘桃子的游戏,比一比看谁摘到的桃子最多。
小组内以比赛的形式完成,做完后订正。
3.完成身边的数学。
教师出示图和问题。学生读题,理解题意,独立完成。做完后说一说。
四、总结提升,自我建构。
通过今天的学习,你有什么收获?
作业设计:
1、笔算。57+20=45+41=62+34=83+16=。
教学反思:
在本节课的学习中,大部分学生能积极参与到学习活动中,能想到多种方法计算,体验到算法的多样性,在用竖式计算时,通过学生试算,纠错,掌握了竖式的计算过程,书写比较规范。但个别学生还没养成用尺子画横线的.习惯,要逐步培养。
两位数乘两位数的乘法教学设计篇十三
本节教材内容是在学生会口算两位数加减一位数和整十数的基础上编排的,对于学生来说难度不大,在编排上有两个特点:一是利用情境图导入新课,激发兴趣,二是突出重点,分散难点,本节主要解决不进位加法的“对位”这一难点,而进位的难点留在下节课解决,三是体现了计算方法的多样性,如用你喜欢的方法计算。
3.获得自主学习的成功体验,提高学习数学的兴趣。
会正确书写不进位加法的竖式,强调“对位”。
一、情境创设,激发兴趣。
观察少年合唱团的情境图,说说从图中发现了哪些数学信息?怎样解决问题?
二、自主探究与合作交流。
1、学生列式并交流自己的算法。
要求少年合唱队一共有多少名学生,应怎样列式?
老师根据学生的回答,板书:23+22=?
那么,要求23+22=?我们可以怎样算呢?
请大家独立想一想,然后同桌互相说一说自己是怎样算的,再全班交流。全班交流算法时,只要学生汇报的思路准确,说得有道理就可以。
学生交流自己的想法。
可能有这些想法:
(1)23+20=4343+2=45。
(2)20+20=403+2=540+5=45。
(3)还可以用竖式计算。
(如果学生提不出这种算法,教师可以以合作者的身份提出来。)。
2、讨论用竖式计算的方法。
学生试算,再和同桌交流一下计算的过程和结果,最后全班交流。重点是竖式的对位和书写及计算顺序。
质疑:你还有什么不明白的?
完成试一试:教师出示试一试,学生独立完成。
三、实践应用,拓展提升。
1.完成练一练第一题。
教师重点检查学生的计算是否正确,是否做到了相同数位对齐。
学生独立完成,做完后同桌说一说自己是怎样算的。
2.完成练一练第二题摘桃子。
设计一个摘桃子的游戏,比一比看谁摘到的桃子最多。
小组内以比赛的形式完成,做完后订正。
3.完成身边的数学。
教师出示图和问题。学生读题,理解题意,独立完成。做完后说一说。
四、总结提升,自我建构。
通过今天的学习,你有什么收获?
作业设计:
1、笔算。57+20=45+41=62+34=83+16=。
教学反思:
在本节课的学习中,大部分学生能积极参与到学习活动中,能想到多种方法计算,体验到算法的多样性,在用竖式计算时,通过学生试算,纠错,掌握了竖式的计算过程,书写比较规范。但个别学生还没养成用尺子画横线的习惯,要逐步培养。
两位数乘两位数的乘法教学设计篇十四
一、教材:
1、教学内容及简析:
本课的教学内容是两位数乘两位数的笔算,它是学生在已经掌握了两位数乘一位数和两位数乘整十数的口算的基础上进一步学习的,为后面学习乘数数位是更多位的笔算乘法垫定基础。这部分内容是学生计算方面学习的重要转折点。
2、教学目标:
知识目标:经历探索两位数乘两位数笔算方法的过程,会笔算两位数乘两位数,会用交换乘数位置的方法验算乘法。
能力目标:培养观察力、探究能力、抽象概括能力。
情感目标:获得成功的体验,树立学习的信心。
3、教学重点、难点:
难点:理解乘的顺序及第二部分积的书写方法。
二、教法、学法:
针对这样的教学目标、教学重难点,在教法上,我个人认为,在教学中应当突出学生的主体地位,通过启发、引导、设疑等教学手段及方法进行教学。
在学法指导上,让学生掌握观察、比较、发现、交流、合作等学习方法。
课本中以订牛奶为情境,我进行了改编,以学生献爱心活动为研究题材,贴合学生实际,通过四个环节进行教学:创设情境,激发兴趣;自主探索,研究算法;巩固强化,拓展延伸。
(一)创设情境,以旧引新。
在教学的导入环节,老师充分依据学生原有的知识和经验,从复习两位数乘一位数、两位数乘整十数,在此基础上,再引出两位数乘两位数。老师有意识提问:你想怎样学习新知识?让他们运用已有知识经验将难点转化,以旧知解决新问题,从而渗透数学学习的方法。
(二)自主探索,研究算法。
1、渗透估算意识。教学过程中先让学生估算,再尝试用笔算,这样使估算、笔算有机结合。
2、计算方法的多样化到优化。计算教学,内容比较枯燥乏味。为激发学生的求知欲望,老师通过充分创设问题情境,多种方式体会两位数乘两位数的计算方法。学生可能出现3种情况,情况一:28×6×2;情况二:28×4×3;情况三:28×10+28×2。让学生从不同的角度、运用不同的策略去思考、探索计算的方法,通过比较认识到笔算方法的重要性,从而一起探索竖式计算的方法。
3、注重沟通,理解算理。在师生共同交流中引导学生理解把两位数乘两位数的计算分成三个部分,前面两部分都可以看成是两位数乘一位数、整十数,但着重让学生明确第二次计算的书写,第三部分,将两次计算的结果相加。竖式计算的算理与学生前面的方法是一致的,教师要注重沟通,让学生更好地理解算理,掌握每一步计算的意义。
4、归纳总结。两位数乘两位数的计算方法的叙述对三年级学生来说,有点困难,要求学生根据对算理的理解用自己的话来讲就行了,教师简要的板书为学生提供思考方向。
5、验证结果,提高效率。在笔算中,验算是最好的验证方法。因此,让学生交换48和12的位置再乘一遍,然后引导学生观察:你发现了什么?总结出乘法的验算方法。
(三)有效练习,巩固延伸。
第一组安排的4题不同的练习,主要是让学生在理解的基础上从而进行独立的计算过程,第1题明确得数数字相同意义却是不同的,3、4两题的计算都有向前一位进位的问题,拓展了例题的教学。
第2题纠错题,让学生进一步理解每一步计算的意义。
第3题解决问题部分的设计,是为了增加数学计算的趣味性,让学生觉得数学学习与生活的紧密联系。
第4题是开放性练习,也是提高了计算难度,有基础练习、有提高性的进位练习,自己出题时还有可能两次相乘都有进位。
练习中的习题从不进位到进位,主要是基于这样的考虑,因为对于学生来说,顺序方法都是一样的,进位的问题也是在多位数乘一位数中学过了,对于学生来说,不是新问题,但会感觉有点困难。当然,计算要达到一定的正确率和熟练程度,必须要相当的练习量。
将本文的word文档下载到电脑,方便收藏和打印。
两位数乘两位数的乘法教学设计篇十五
教学内容:人教版三年级下册。
教学目标:1.掌握两位数乘以两位数的不进位乘法的笔算方法(列竖式计算)。
2.理解用第二个因数的十位上的数乘第一个因数得多少个十,乘得的数的末位要和因数的十位对齐。
3.培养学生良好的书写习惯,树立细节决定成败的思想。教学重点1.掌握两位数乘以两位数(不进位)的笔算方法,并会正确计算。2.解决乘的顺序和第二部分积的书写位置问题。
教学过程:
一.创设情境,复习旧知。
师:昨天去书店买书,每套书有14本,那么买3套有多少本?生:14×3=42(本)。
师:那老师如果买10套书,又有多少本?生:14×10=140(本)。
二、探索新知,明确算理:
师:你为什么要这么列?
生:要求有多少本书,也就是要求12个14是多少。
师:说的真不错,请同学们估算一下,14×12大约得多少?
生1:我把12估成10,大约是140本。生2:我把14估成10.大约是120本。生3:我把14和12都估成10,大约有100本。
生:我们都是估小的。
2、师:14×12到底得多少,你能算出准确的答案吗?下面拿出老师给你们准备好的点子图,用黑笔试着在纸上用我们学过的方法来,分一分,圈一圈,算一算。把14×12的结果写出来。
生:独立思考后在纸上写出得数。
4、师巡视,拿出几个同学的做法并投影。
生1:14×4=56(本)56×3=168(本)。
师:先把12分成3个4,再算12乘4,最后算56乘3,这是一个好方法。
生2:14×6=84(本)84×2=168(本)师:这也是一个好方法。
生3:14×10=140(本)14×2=28(本)140+28=168(本)师刚才这几位同学都是通过先分后和的方法,把未知的知识转化成已学的知识来解决新的问题。说明同学们都积极动脑思考了,真棒。
生:用列竖式的方法计算。师:这就是我们今天要学习的内容两位数乘两位数的笔算乘法。现在你们在自己的草稿纸上试着列一列。
师:巡视,请几位同学上台板书。
5、师:请你讲讲你是怎么做的?(生讲计算的过程)。
师:谁跟他的方法相同?你能再讲一遍吗?
师:我把刚才同学们计算的过程整理出来了,想给同学们演示一遍,让我们一起再回顾一次。
师:同学们真了不起,自己通过计算掌握了两位数乘两位数的计算方法。
三、巩固练习,拓展应用:
1.老师来考察一下你们的掌握情况,让我们看看第一关:巧填数字。
2、第一关我们已经顺利的过关了,现在来考察你的眼力,看看第二关:火眼金睛。
3、师:请看第三关:智力冲浪。你们有信心吗?
一本书有300页,如果每天读22页,2周能读完吗?
如果每天读40页,7天能读完吗?
4、师:同学们在这么短的时间里帮村长想出了这么多种方法,真是太感谢了。同时也恭喜同学们顺利过关。
恭喜做对的同学,你们和喜羊羊一起获得了这场智力大比拼的胜利。
四、总结:
师:短暂而愉快的四十分钟转眼就过去了,谁能说说通过本节课的学习你都有哪些收获?
生1:我学会了用竖式进行笔算乘法。
生2:(答略)。
师:其实这节课上同学们表现出了求知的欲望和探索的精神,对你们的表现老师非常满意,希望同学们能在生活中做一个有心人。
两位数乘两位数的乘法教学设计篇十六
一、教学目标:
1.知识与技能目标:
(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。
3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。
二、教学重难点。
教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。
教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
三、教学方法。
启发诱导法、讲授法、探究法。
四、学习方法。
练习法、探究法、小组交流法、观察法。
五、教学过程:
(一)引入新课。
师:同学们,今天的数学课,我们先从画画开始!
(老师在黑板上画出对称图形的一半)。
师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?
(让学生补充完整)。
师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。
(老师点击屏幕,出现——好人)。
师:大家想象着:如果在好人的后面也存在着那么一条对称轴的话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!
(二)新课教学。
学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!
哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!
生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。
生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。
生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。
生:笔算。
那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。
看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。
(学生交流计算结果)那通过我们的计算,你们能得出什么结论?
(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)。
(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):
(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。
老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”
故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。
好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。
师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?
(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!
(一个孩子举例说明14×16不等于61×41)。
师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!
提问:(一个孩子举例)46×61不等于16×64。
我看到已经有同学举起了智慧的手!
(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)。
师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)。
得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。
师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。
……。
好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!
两位数乘两位数的乘法教学设计篇十七
教学目标:
知识与技能:
1、理解和掌握两位数与两位数相乘的计算方法,并能正确地进行计算。
3、根据具体题目情景,合理选择解题策略。
过程与方法:
经历自主探索、合作交流两位数与两位数相乘的计算过程,体验算法多样化,培养学生的算法思维,提高数学交流能力,逐步养成自觉选择合理算法,发展计算的灵活性。
情感态度与价值观:
调动学生学习的积极性,激发学生学习兴趣,养成自主探索的学习习惯;通过估算,培养学生良好的计算习惯。
教学重点:
自主探究出多种两位数乘两位数的计算方法,并能正确地进行计算。
教学难点:
通过让学生亲身经历两位数乘两位数的计算过程,培养他们的算法思维。
教学过程:
一、情景导入,激发学生学习兴趣。
师:小朋友还记得小动物们在谁跑得快比赛中,谁获得了冠军?今天小牛要主持一场动物团体操比赛。
瞧!小刺猬上场了!每行12只,排了14行,共有多少只小刺猬参加团体操比赛?
二、自主探究。
(一)、探究算法。
1、列式:14×12=。
2、14×12等于多少呢?
(1)学生独立尝试,教师巡视,及时捕捉学生生成性资源,对有困难学生进行指导。
(3)对有意见或有疑惑的算法展开讨论与质疑,在讨论与质疑中引出课题,引出估算,引出范围。
(4)将上述方法进行整理归类(小组讨论)。
(5)同桌说说自己认为那种方法比较方便,最喜欢哪种方法?为什么?
(二)、体会算法;体验不同的题,最优的方法也不同。
交流:你的同桌是怎么算的?(指他的同桌)他又是怎么算的?
师:看来小朋友不但会用自己喜欢的方法来算,而且还能从别人那里学到不一样的方法,很会学习。
2、制造矛盾冲突,引发思考:是不是对每题都能用你觉得喜欢的方法来计算呢?
3、学生自己例举判断(如不行,教师出题:17×29)。
(1)、学生独立计算17×29。
(2)、不同的题,有不同的好方法。
(3)、小结:先要观察题目数字的特点,根据题目数字的特点选择计算起来比较快的好方法。
4、出示25×24。
(1)思考:观察题目数字的特点,对这题你会选择那种方法呢?
(2)计时赛一赛,选前10名,统计不同算法名次。
(3)思考:这是巧合么?是这些同学写字速度快,还是……?
(三)、练习47×7325×3285×16。
三、整理归纳,探究规律。
2、制造矛盾冲突,引发理性思考。
师:两位数与两位数相乘的积一定是三位数或四位数吗?肯定吗?
3、学生展开争论。
4、获得结论。
5、99×99怎样计算会更方便?
四、课堂总结。
两位数乘两位数的乘法教学设计篇十八
知识与技能:
1、理解和掌握两位数与两位数相乘的计算方法,并能正确地进行计算。
3、根据具体题目情景,合理选择解题策略。
经历自主探索、合作交流两位数与两位数相乘的计算过程,体验算法多样化,培养学生的算法思维,提高数学交流能力,逐步养成自觉选择合理算法,发展计算的灵活性。
调动学生学习的积极性,激发学生学习兴趣,养成自主探索的学习习惯;通过估算,培养学生良好的计算习惯。
一、情景导入,激发学生学习兴趣。
师:小朋友还记得小动物们在谁跑得快比赛中,谁获得了冠军?今天小牛要主持一场动物团体操比赛。
瞧!小刺猬上场了!每行12只,排了14行,共有多少只小刺猬参加团体操比赛?
二、自主探究。
(一)、探究算法。
1、列式:14×12=。
2、14×12等于多少呢?
(1)学生独立尝试,教师巡视,及时捕捉学生生成性资源,对有困难学生进行指导。
(3)对有意见或有疑惑的算法展开讨论与质疑,在讨论与质疑中引出课题,引出估算,引出范围。
(4)将上述方法进行整理归类(小组讨论)。
(5)同桌说说自己认为那种方法比较方便,最喜欢哪种方法?为什么?
(二)、体会算法;体验不同的题,最优的方法也不同。
交流:你的同桌是怎么算的?(指他的同桌)他又是怎么算的?
师:看来小朋友不但会用自己喜欢的方法来算,而且还能从别人那里学到不一样的方法,很会学习。
2、制造矛盾冲突,引发思考:是不是对每题都能用你觉得喜欢的方法来计算呢?
3、学生自己例举判断(如不行,教师出题:17×29)。
(1)、学生独立计算17×29。
(2)、不同的题,有不同的好方法。
(3)、小结:先要观察题目数字的特点,根据题目数字的特点选择计算起来比较快的好方法。
4、出示25×24。
(1)思考:观察题目数字的特点,对这题你会选择那种方法呢?
(2)计时赛一赛,选前10名,统计不同算法名次。
(3)思考:这是巧合么?是这些同学写字速度快,还是……?
(三)、练习47×7325×3285×16。
三、整理归纳,探究规律。
2、制造矛盾冲突,引发理性思考。
3、学生展开争论。
4、获得结论。
5、99×99怎样计算会更方便?
四、课堂总结。
两位数乘两位数的乘法教学设计篇十九
课前构思:
这部分内容是在万以内数的认识以及100以内的加减法的基础上教学的,起着承上启下的作用。口算两位数加减两位数是100以内口算的延续,是在100以内口算和笔算的基础上教学的。这部分内容不仅在实际中应用广泛,而且是以后学习笔算的基础,必须切实学好。教材以“二年级四个班的同学准备去鸟岛乘船”为素材引导学生在现实在情境中提出问题、探究算法,在多种口算方法中选择适合自己的方法正确地进行口算。我班学生对“整十数加减整十数”、“两位数加一位数和整十数”、“两位数减一位数和整十数”的口算掌握得较好,90%的学生能正确、快速地口算,所以我认为这部分知识的学习对他们来说不是一个难题,能通过自已的努力自主探究口算的方法,即使最差的学生也会用想竖式的方法来进行口算。为此我设想采用“创设情境,提出问题——自主探究交流完善——多项训练巩固提高”的程序开展教学。通过教学不仅使学生掌握两位数加两位的口算方法,能正确地口算,培养学生在具体的情境中提出问题的能力、在交流中培养学生的表达能力,并且使学生体验运用“迁移、转化”的方法来解决新问题的数学学习方法。教学目标:
1、知识与能力:使学生在经历两位数加两位数口算方法的探索和交流过程中,掌握其口算方法,并在解决问题过程中,体验数学与生活实际的密切联系,进一步发展解决问题的策略。
2、过程与方法:在复习两位数加一位数,整十数加整十数口算的基础上,经历探索,交流两位数加两位数的口算方法过程。教学方法:合作式学习、探索式学习、小组活动式学习。
2、难点:理解两位数加两位数的算理,进一步强化计算方法,逐步提高计算能力。
一、游戏导入。
(一)猜歌名。
大屏幕上有4组题目,每组有2个算式,只要你回答对了,后面就会有一段音乐,这4组算式都回答出来,并且猜出是什么歌曲,闯关就成功了!成功了会有惊喜哦!
这是什么歌?(郊游)。
(二)说数的组成1.()个十和()个一组成45.2.31由()个十和()个一组成。
二、探索新知。
(一)创设情境,揭示课题。
同学们成功闯关,那这节课老师就要带同学们去郊游了,在郊游之前,我们要来说一说,出去郊游的时候要注意些什么呢?(生自由发言)。
我们要去什么地方郊游啊?二年级这么多人怎么去呢?
嗯,鸟岛在湖中央,所以我们要坐船去,而且老师已经把船都租来了。每条船限乘68人,我租来两条船,怎样乘船比较合理呢?(两个班级合乘一条船)你想让哪两个班合乘一条船?(讨论后设计以下三种方案)。
(1)23+31。
(2)23+32。
(3)23+39。
32+39。
31+39。
要想知道哪种方案最合理,就必须算出每种情况下的乘船总人数,如果总人数接近或等于68人,才能既舒服又省钱得到达目的地。
(二)教学不进位加现在让我妈一起来验证吧!
我们先来看第一种方案:23+31怎样计算?自己先想一想,然后和你的同桌讨论一下,说一说你是怎么算的。(1、相同数位相加的方法。
2、先加整十数,再加一位数的方法。(既把一个数拆为整十数和一位数,再和另一个数分别相加。由于计算顺序不同,所以有以下4种算法。))。
23+31=54,二(1)班和二(2)班可以合乘一条船。
(三)教学进位加。
那我们再来看看二(3)班和二(4)班可不可以合乘一条船呢?
32+39怎么计算?((1、相同数位相加的方法。
2、先加整十数,再加一位数的方法。
3、凑整十数的方法。)。
(四)小结计算方法。
(五)分组验证。
下面请同学们用你们学到的方法计算方案二和方案三的算式。请第一组验证方案二,第二组验证方案三。
指名学生汇报:哪两个班可以合乘一条船。
1、23+31红灯。
2、23+32。
红灯。
3、23+39绿灯。
32+39。
31+39。
31+32。
三、应用与拓展。
(一)乘船问题解决了,快让我们排队上船。船开起来了!
我们一路欢歌笑语,很快来到闻名中外的鸟岛。鸟儿们正列队欢迎我们呢!
快向他们问好吧!
导游告诉我们,在湖中有28种鸟,在湖面的岛上有65种鸟,我想知道一共有多少种鸟呢?(用前面学过的口算方法试一试)。
(二)在我们前面飞来了6只小鸟,它们说:“亲爱的小朋友们,我们迷路了,你们能送我们回家吗?”
17+5836+3227+5451+2439+2933+42。
(三)把小鸟们送回了家,一转眼,我们回家的时间到了。今天你们玩得开心吗?
(四)通过今天的学习,你学会了什么?
学生在已有一位数加一位数、整十数加整十数、两位数加一位数的口算基础,口算两位数加两位数口算对学生而言并不难,本节课的重点就是意在创设情境在激发学生兴趣的基础上,让学生通过自主探究、合作学习,明确算法的多样性,并能通过比较得出最佳的方法,在多种形式的练习中进行巩固,达到能够准确而熟练地进行计算。
在情境创设方面,我始终以学生最感兴趣的旅游为切入点,从出发到结束把数学知识始终贯穿于始终。而数学最注重的说算理,所以在教学中我始终把说理放在首位,让学生既知其然,更要知其所以然。同时我也极力做到把学习的主动权交给学生,让学生在自主探究、合作学习中学到新知。
不足之处,练习题设计还缺少点梯度,这是我今后对应注意改进的地方。
两位数乘两位数的乘法教学设计篇二十
教学目标:
1、结合计算浪费水的问题,经历自主尝试、学习两位数乘两位数(进位)的计算方法的过程。
3、在解决现实问题的过程中,认识水在人类生活中的重要性,增强节水意识。
教学准备:多媒体课件。
教学过程。
设计意图。
教学预设。
一、创设情境激趣导入。
小水滴:大家好,我是你们真诚的朋友小水滴。水,是人们赖以生存的重要资源。中国是水资源紧缺的国家,在全国640个城市中,缺水城市达300多个,其中,有100多个城市严重缺水。据医学专家介绍,一个健康的人,如果4天喝不到水,就会有生命危险。爱护水资源就是爱护我们的生命。可是在我们生活中有很多浪费水的现象,同学们,在你周围有这种不好的现象吗?学生发言。
以“小水滴”可爱的形象来引起讨论的话题,亲切自然生动,学生乐于接受。
通过小水滴的介绍,引起学生对浪费水现象的思考,为新知的教学创设了良好的情境。
在浪费水的话题上学生可能会提到身边发生的小事,例如:水笼头没有拧紧,总是滴水浪费的现象。老师应适时引入例题。
学生讨论适可而止。
二、自主探索教学新知。
(1)教学例题。
(附3、4月份的月历表)使学生了解“2个月”的含义。
让学生自己试着算一算,然后和周围的同学互相说一说自己是怎样想的,怎样算的。
在此学生可能出现的计算方法:
1、12×31=372(千克)。
12×30=360(千克)。
372+360=732(千克)。
2、31+30=61(千克)。
12×61=732(千克)。
12。
×61。
12。
72。
732。
答:2个月要浪费732千克水。
学生交流展示个性化的计算方法时,关注用竖式计算方法,并让学生生讨论:这个7是怎样算出来的?帮助学生掌握进位的方法。
(2)情感培养节约用水。
学生从生活中的小事谈一谈如何节约用水。
小水滴发出号召:朋友,让我们一起节约用水!
三、综合练习巩固新知。
让我们一起到神秘的海洋世界去游览一番吧!你能解决可爱的小鱼背后的题目吗?
请选择题目试一试吧。
(1)校园小主人。
学生独立解决问题。全班交流。
(2)计算小能手。
学生自己完成,让学生说一说验算方法和验算时出了哪些问题。
(3)小小超市。
让学生自己计算、填表,再交流。
p41页练习1—3题。
四、知识窗。
介绍古人计算乘法时用的一种巧妙方法—格子法。
这个环节充分调动了学生学习的主动性,积极性。学生自主探索、合作交流个性化的计算方法。在相互交流中解除困惑,并有机会分享自己和他人的想法,在探索活动中解决问题,理解和掌握了数学知识。
关注学生竖式计算的方法,通过讨论百位上的7是怎样算出来的,帮助学生掌握进位的方法。培养学生细心认真的学习习惯。
认识水在人类生活中的重要性,从身边小事作起增强节水意识。
通过情境创设,设计三道练习题,了解学生笔算方法的掌握情况。
在开拓学生思维的同时,培养民族自豪感。
在此过程中,学生在交流个性化的计算方法时,可能还会出现以下方法:
1、把两个月都看作30天。
30×2=60(天)。
12×60=720(天)720+12=732(天)。
2、把两个月都看作31天。
31×2=62(天)。
12×62=744(天)。
老师应及时鼓励算法多样化。当学生用竖式计算时会遇到进位的问题,可先让学生自己试着计算,然后在小组中交流计算方法。
在练习“小小超市”一题中,36×31这道题中出现三次进位,老师应重点关注学生的计算过程,并酌情进行点拨引导。
两位数乘两位数的乘法教学设计篇二十一
一、教学目标:
1.知识与技能目标:
(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。
3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。
二、教学重难点。
教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。
教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
三、教学方法。
启发诱导法、讲授法、探究法。
四、学习方法。
练习法、探究法、小组交流法、观察法。
五、教学过程:
(一)引入新课。
师:同学们,今天的数学课,我们先从画画开始!
(老师在黑板上画出对称图形的一半)。
师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?
(让学生补充完整)。
师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。
(老师点击屏幕,出现——好人)。
蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!
(二)新课教学。
学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!
哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!
生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。
生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。
生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。
生:笔算。
那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。
看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。
(学生交流计算结果)那通过我们的计算,你们能得出什么结论?
(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)。
(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):
(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。
老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”
故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。
好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。
师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?
(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!
(一个孩子举例说明14×16不等于61×41)。
师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!
提问:(一个孩子举例)46×61不等于16×64。
我看到已经有同学举起了智慧的手!
(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)。
师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)。
得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。
师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。
……。
好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!
两位数乘两位数的乘法教学设计篇二十二
两位数乘两位数的笔算乘法,学生通过前面学习不进位的笔算乘法,初步了解了乘的顺序及部分积的书写位置,理解笔算的算理。本课教学进位的,是为了进一步让学生经历两位数乘两位数需要进位的笔算过程,从而帮助学生掌握笔算乘法的方法。
两位数乘两位数的笔算是本单元的教学重点。掌握其计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。
“数的运算”在小学数学课程中占有重要的地位。计算教学直接关系着学生对数学基础知识与基本技能的掌握,关系着学生观察、记忆、意志、思维等能力的发展,关系着学生学习习惯、情感、意志等非智力因素的培养。计算能力是每个公民具备的基本素养之一。
学情分析。
“数的运算”在小学数学课程中占有重要的地位。计算教学直接关系着学生对数学基础知识与基本技能的掌握,关系着学生观察、记忆、意志、思维等能力的发展,关系着学生学习习惯、情感、意志等非智力因素的培养。计算能力是每个公民具备的基本素养之一。
教学目标。
1.结合彩笔问题,经历用已有知识解决问题,在口算乘法的基础上,掌握两位数乘两位数(不进位的)笔算乘法计算方法的过程。
2.培养学生的迁移推理能力,掌握其数学学习方法。
3.在与他人交流各自算法的过程中,体验算法多样化,提高学习数学的兴趣。
教学重点和难点。
重点:理解算理的基础上掌握两位数乘两位数(不进位)乘法的计算方法。
难点:理解用一个因数十位上的数去乘另一个因数,得数的末位要与十位对齐的道理。
教学过程:
一、创设情景,导入课题:
1.教师利用多媒体出示画面:学校买了一些彩色笔要奖给数学竞赛获奖的同学,每盒彩色笔24枝。
2.让学生观察情景图,了解图中的数学信息,并根据画面情景提出问题,自己尝试解答。
3.全班交流,进行互评。
学生可能提出两位数乘两位数的乘法,这时就可以沿着这个问题导入新课的学习。如果没有,教师也参加活动,提出问题。
比如:10盒一共多少枝?20盒呢?学生口答,说说你是怎么想的。
4.导入例题,猜测得数。
再问:如果买了12盒呢?学生独立猜测,并记录结果。
二、主动探索,验证结果。
怎么验证你猜测的结果是否正确?(教师引导学生明确应该计算出结果)。
1.教学24×12的算法。
(1)学生利用已有的知识,独立思考解法,并用算式表示出来。(教师巡视,了解学生的解答情况,对有困难的学生进行帮助。)。
(2)明晰计算思路,汇报交流,体验算法多样化。(在电脑上展示学生的算法)以小组为单位汇报,其它小组要认真听,及时补充。(学生的方法里可能有用竖式的方法,如果没有,还需要老师继续引导。)。
(3)讨论哪种方法最简便?
(4)统一认识,确定最简便的方法,引导学生试写成竖式。
(5)针对出现的情况讨论,关键处教师点拨,让学生领悟计算方法。
比如,讨论大头蛙提出的问题:这个“4”为什么写在十位上呢?(看竖式)。
明确:因数12十位上的“1”乘24个位上的“4”得4个十,所以4要写在积的十位上。
(6)练习:如果买了23盒呢?请一名学生板演,其它在本上做。
三、识应用,扩展思维。
1.第39页练一练的第1、3小题。
2.趣味练习。11x1112x1213x13你能发现什么规律嘛?和同学说说吧!
两位数乘两位数的乘法教学设计篇二十三
本课内容是在学生已经掌握了100以内的口算和笔算的基础上进行教学,学生在知识的掌握上已经不存在困难。而口算速度的快慢,则直接影响着后面笔算知识的掌握程度,甚至会影响后续数学知识的学习。因此,寻找一种简便的口算方式提高口算能力是这节课的重点。同时,我们知道要提高“两位数加两位数”的口算速度,通常要“直接从高位算”起,这样比较符合算式的观察和数的书写顺序。而学生却因为长期受笔算的影响,“直接从个位加起”的算法已经根深蒂固。为了解决这两者之间的矛盾,特意采用了“听算”这样一种口算形式进行教学,让学生在听算的过程中,感悟“直接从高位算起”算法的优越性。
设计理念。
1、联系学生的生活实际,为新知识的学习提供丰富的现实背景。数学与生活有密切的联系,学习内容的呈现应该贴近学生生活,让学生在生动、丰富的背景中学习数学,感受数学与现实的联系,体会数学的价值。因此,本课为计算教学设计了学生跳绳的现实情境,使学生充分感受到计算与生活的联系,同时提高解决实际问题的能力。
2、重视学生已有的知识和经验,注意体现算法多样化。
《数学课程标准》提倡算法多样化,目的是提倡学生个性化的学习,变“学方法”为主动地构建方法。在本课的设计中,让学生在“比一比谁的方法最多”中自主探究,体验算法多样化,在交流、比较的基础上不断地完善自己的想法,1并在练习中感悟最佳的方法,实现方法优化。
3、在开放中合作,在交流中收获。
知识与能力:经历探究两位数加两位数口算方法的过程,能熟练地进行口算;过程与方法:经历算法的多样化和解决问题策略的多样化的探究过程,培养学生根据具体情况选择适当方法解决问题的意识。
教学难点。
课件、教学过程。
一、以旧引新,揭示课题。
1、口算下列各题。课件出示。
指名学生说说结果。
2、说出下列各数的组成。课件出示。
把复习旧知的过程隐含与揭题的过程中,既让学生自然感觉到新旧知识的紧密联系,又让。
2学生初步感知“拆数”的计算方法,为探索新知识作好知识和心理上的准备。
二、创设情景,导入新课。
1、师:课间活动时同学们是不是喜欢跳绳呢?小华、小红和小军他们也喜欢跳绳,我们一起来看看吧。
2、出示主题图。
数学来源于生活,也应用于生活。用贴近儿童实际的“跳绳”的情境导入,容易激发学生的求知欲,激活学生的已有知识和生活经验,使学生能够自主地探究新知,解决问题。
三、收集信息,提出问题。
1、观察主题图,收集信息。
师:从这幅图上你得到了哪些信息?学生观察主题图并收集信息:
生1:小华跳了45下,小红比小华多跳28下。生2:小军比小华多跳23下。
2、提出数学问题并列式。
四、探究算法,学习新知。
(一)计算45+23你是怎么算的?
生:40+20=60,5+3=8,60+8=68。
师:很好!同学们,你看懂了吗?(个位数加个位数,十位数加十位数)还有别的算法吗?生:45+20=65,65+3=68。
师:和他相同的请举手,你是怎么想的呢?说给同桌听一听。再想想,还能怎么算?
3生:23+40=63,63+5=68。„„。
(二)计算45+28师:请你挑选一种你喜欢的方法来算一算,并把想的过程写下来。指名三人上前板演。其他同学反馈:
1、40+20=60,5+8=13,60+13=73。
2、45+20=65,65+8=73。
3、28+40=68,68+5=73。
师:在这么多的算法中,你最喜欢哪一种呢?说说你的理由?学生自由发言。
(小结:这种把数拆开的方法叫拆数法。用拆数法时要选择使计算简便的拆法,并且拆开后从高位开始加起。)。
(三)观察、比较,寻找异同点。师:这两道算式有什么相同的地方呢?生:都是加法。生:这些数都是两位数。
师:那这两道算式有什么不同的地方呢?生:一道是进位的,一道是不进位的。师:同学们很聪明,在口算是要特别注意区别!
提倡算法多样化,实质是尊重学生个性发展,提倡个性化的学习,支持并鼓励学生用自己喜欢的、熟悉的方法去解决问题,让学生在数学学习中张扬个性。但是在张扬个性的同时更应让学生通过对各种方法进行分析、讨论、比较,吸取各种方法的精华,悟出最佳方法。
五、巩固练习,拓展延伸。
1、口算练习。课件出示:
并要求学生尝试从直接从十位算起。
2、判断题。
4课件出示。
要求学生说出错在哪里,正确的结果是什么。
3、其他练习。课件出示购物问题。
让学生根据信息提出问题并解决问题。生自由发言。
师:请用算式表示出来。怎么计算呢?指名说一说。„„。
练习的设计紧紧围绕着教学的目标,针对教学的重难点展开:口算的练习是为了让学生通过计算引发对“直接从十位算起”算法的优势的感悟;解决问题的设计不仅仅是为了让学生体验解决问题策略的多样化,并及时进行优化,还有是为了对“直接从十位算起”算法进行拓展。
六、全课小结。
1、由老师引领学生回顾本节课学了什么?
口算方法。
跳绳问题。
解决方法。
最好方法。
2、让学生畅所欲言,谈谈这节课的收获体会这节课你有什么收获?(想好几句话,说一说。)。
通过回顾和总结对教学内容进行简单的梳理,向学生渗透一种解决问题的策略和数学学习思想,而让学生畅所欲言,说收获谈体会,更能让学生获得成功的体验,增强学好数学的自信。