比例的应用教学设计范文(15篇)
媒体是信息传播的桥梁,它对于塑造公众舆论有着重要的影响力。如何充实自己的业余生活是追求全面发展的重要方面。希望大家喜欢这些总结的参考文献,为自己的写作添加灵感。
比例的应用教学设计篇一
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
二、重、难点。
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式。
3.难点的突破方法:
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。
(3)(k0)还可以写成(k0)或xy=k(k0)的形式。
三、例题的意图分析。
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
比例的应用教学设计篇二
教学过程:
一、导人新课。
教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。这节课我们要学习解比例。(板书课题)。
二、新课。
1、自学解比例。
(1)学生自学教材35页的解比例。
(2)学生交流解比例的意义。
(3)教师归纳:(出示课件)。
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
出示例2。
(1)学生读题,理解题目里的条件和问题。
(2)学生试着解答此题,一名学生演板。
(3)师生共评。
a.设出题目中要求的未知量为x;
b.根据比例的意义列出比例;
c.运用比例的基本性质解比例;
d.检查、写答语。
(5)试一试:完成练习六第8题。
3、自学例3。
(1)学生独立把例3补充完整。
(2)学生口述解答过程和解答依据。(根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程,再解方程。)。
教师说明:这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解。
从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
4、总结解比例的过程。
提问:
(1)刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)。
(2)变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)。
(3)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)。
5、完成第35页的做一做。
学生独立解答,订正时,让学生说说是怎么做的。
三、巩固练习。
做练习六的第7、9、10题。
四、学有余力的学生做第12*、13*题。
傲第12*题的第(1)题。教师可以这样引导学生:这道题需要逆用比例的基本性质。比例的基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:
3:8=15:4040:15=8:3。
3:15=8:4040:8=15:3。
如果把3、40作为内项,有下面这些比例式:
15:3=40:88:40=3:15。
15:40=3:88:3=40:15。
可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。
比例的应用教学设计篇三
教学内容:
教学目标:
1、使学生进一步理解比例尺的`意义以及比例尺在现实生活中的应用,会根据比例尺求图上距离或实际距离。
2、进一步培养学生分析、抽象、概括的能力,体会数学知识与现实生活的紧密联系。
教学重点:
根据比例尺的意义求图上距离或实际距离。
教学难点:
设未知数时单位的正确使用。
教学准备:
布置前置作业。小黑板。小组分工。
教学内容:
一、小喇叭主持。
讲数学小故事。
师:谢谢你给我们带来的小故事。其实生活处处有数学。好了。同学们打开小研究本,把做好的前置作业小组里进行交流。一会儿派代表起来汇报。
二、新课引入。
1、小组内交流数学前置小作业。指生汇报。
“哪个组起来汇报?”
2、谈话:我们在前面学习了比例尺的计算方法。今天我们就来学习比例尺在生活中的应用。
三、探究新知。
(一)学习求实际距离的方法。
师(出示例7及右图):这道题已知什么,让我们求什么?比例尺1:8000表示什么意思?(学生自由读题思考,小组里互相说一说,指生回答。)。
师:那么,根据题意怎样才能求出实际距离是多少?你能想出几种办法来呢?
请同学们先试着在研究本上做一做,然后在小组里讨论交流。(师巡视辅导。)。
师:你是怎么想的?你觉得做的时候特别要注意什么?哪个小组到台上来汇报?
老师提个要求,别人回答问题的时候,请同学们认真倾听,你们能做到吗?
生1、生2、生3。
师:刚才同学们还想到了用解比例的方法求出了实际距离,真不简单!
那你说说你是根据什么列出比例式的?
首先解设什么?设未知数时用什么做单位呢?
为什么不用米做单位?做的时候要注意什么呢?
小组里再互相说一说。
生1、生2、生3。
师:我们知道了已知图上距离求实际距离,既可以按照实际距离与图上距离的倍数关系解决来解答,还可以按“图上距离:实际距离=比例尺”列出比例,用解比例的方法求出结果了。
师:那这些方法当中,你最喜欢用那种方法?为什么?
还有什么不明白的地方吗?还有要补充的吗?小组里互相说说,遇到不懂的可以提出来。其他同学帮忙解答。
(二)学习求图上距离的方法。
(出示“试一试”:明华小学正北方240米处是医院。先算出学校到医院的图上距离,再在图中表示出医院的位置。)。
师:好了,请同学们用你喜欢的方法试着做一做。然后在小组里互相说说你是怎么想的?
(小组互动,师巡视。指生汇报。)。
生1、生2、生3、生4。
师:你们当中谁用算术方法做的?说说你的想法。
谁是用比例解的?你能说一说根据什么列比例的吗,应该将谁设为x?单位是什么?列比例之前首先要干什么?(单位换算)。
生1、生2。
师:图上距离求出来后,这道题做完了吗?还有补充的吗?
师:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以根据比例的意义及性质列出比例,再解比例求出结果。
四、反馈练习。
1、练一练。
先在练习本上独立做,再小组交流,指生汇报交流。
2、选择:(出示小黑板(1)(2))。
读题思考。指生回答。
五、小结。
师:今天这节课我们学习了什么?你有什么收获?
六、作业。
练习十一第三题。
七、课后拓展。
课后找时间测量出学校操场的长和宽,然后选用适当的比例尺画出操场平面图。
比例的应用教学设计篇四
教学内容。
本内容是六年级下册第19,20页“比例的应用”。设计背景。
本节课主要是结合解决问题的过程学习解比例。它是在学生掌握了比例的意义、比例的基本性质的基础上进行学习的。四年级时已经学习过用等式性质解方程,也是本节课的重要学习基础。这节课的学习既要帮助学生经历“问题情境—建立模型—解释应用”的思维过程,也要引导学生理解“根据比例的意义写出比例,根据‘两个内项的积等于两个外项的积’和等式的性质解方程”。
“物物交换”是人类使用货币的开端。“物物交换”的情境蕴含着按一定的比例交换的数学关系。教科书通过创设“物物交换”的情境,引导学生用多种方法解决问题,体会解决问题方法的多样性。在解决问题的过程中列出含有未知数的比例,再次呈现学生多样化的思考,并自主探索解比例的方法。在此基础上理解根据“两个内项的积等于两个外项的积”求比例中的未知项,会正确解比例。整节课“寓算于用”,在问题解决过程中产生新知、学习新知、掌握新知,提高了综合运用知识解决问题的能力。
学习目标。
1.经历用多种方法解决“物物交换”问题的过程,体会解决问题方法的多样性,提高综合运用知识解决问题的能力。
2.在解决问题的过程中列出含有未知数的比例,并自主探索解比例的方法,理解根据“两个内项的积等于两个外项的积”求比例中的未知项,会正确解比例。
教具准备练习本、课件。过程预设。
活动。
(一)“物物交换”,提出问题。1.介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“以物易物”的方式,交换自己所需要的物资,比如用一头羊换一把石斧。我们今天所学的数学知识就从“物物交换”开始。
2.呈现问题情境,引导学生读懂题意,并尝试提出问题。
(二)尝试解决,体会联系。
1.14个玩具汽车可以换多少本小人书?把你的想法记录在草稿本上。
2.交流各自的想法,体会“物物交换”过程中。玩具汽车数量与小人书数量之间存在的比例关系。
1/4。
学习成果预设,学生可能会出现四种思考方法。方法一:14÷4=3.5,3.5x10=35(本)。
方法二:10÷2=5(本),14÷2=7,5x7=35(本)。方法三:4个玩具汽车=10本小人书,14÷4=3„„2(个),2个玩具汽车=5本小人书,10x3+5=35(本)。
方法四:4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本,2个玩具汽车=5本,12+2=14(个),30+5=35(本)。
3.请学生介绍每种方法的思考过程,并强调尽管思路不同,但各种方法都围绕玩具汽车个数与小人书本数之间的比例关系而展开。
活动。
(三)引进新知,拓展策略。
2.学生尝试列式,并说说写出比例的主要根据。学习成果预设:学生可能会出现四种思考方法:方法一:4:10=14:x。方法二:10:4=x:14。方法三:14:4=x:10。方法四:4:14=10:x。
3.教师启发学生思考:列出比例的主要根据是什么?主要是“4个玩具汽车可以换10本小人书,假设14个玩具汽车可以换戈本小人书”这两句话。
这几种方法有什么特征呢?学生的想法可能是两句话中玩具汽车与小人书之间存在相同的比例关系,也可能是前后玩具汽车个数的倍数关系与前后小人书本数的倍数关系是一致的。写成比例的形式就是汽车1:书1=汽车2:书2或汽车1:汽车2=书1:书2。
4.学生独立解比例。
4:10=14:x10:4=x:1410:4=x:144:14=10:x解:4x=140解:4x=140解:4x=140解:4x=140x=35x=35x=35x=35答:14个玩具汽车可以换35本小人书。
2/4。
项的积等于两个外项的积”求比例中的未知项。
活动。
2.组织交流。第一小题说出每一步骤的依据,再次明确根据“两个内项的积等于两个外项的积”转化成方程解决。第二小题写成分数形式的比例求解时,可以引导学生发现“内项的积、外项的积”实际上只要“对角两个数相乘”即可。然后,再引导学生把戈的值代入比例进行验算。
3.教师小结解比例的基本方法:关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。
活动。
(五)课堂作业,深化认识。第1题。
1.学生独立审题,完成两个小题。
2.学生汇报解题思路。学生不管怎样变换思路,都要清楚列出的比例是否合理。6:2=15:x,x=5。
1.让学生根据情境直接写出比例,并求未知数;(1)1:4=x:84,x=21;(2)4:10=x:250,x=100。
2.反馈时,教师改变其中一个比的前、后项,让学生辨析是否合理,进一步明晰列比例时要符合比例的意义。
第3题。
3/4。
x=60x=2活动。
(六)回顾梳理,总结收获。
今天这节数学课,大家通过自己的努力,掌握了哪些新知识?还有什么疑问吗?实施要求。
1.将解比例的学习融人问题解决过程中,体会解决问题方法的多样性。
本节课主要学习解比例的方法,但没有纯粹地为了学方法而教方法。而是创设了学生比较喜欢的“物物交换”问题情境激发思考,在学生经历多种方法解决问题之后再介绍用比例的方法来解决。新知在学生体会多样化解决问题的过程中得以“生长”。为此,要安排一定时间让学生尝试用自己的方法解决问题,更要有足够的时间让学生理解根据哪几句话列出比例,这样的比例又是怎么想到的,“理”说清了,“法”也就自然生成。
2.解比例的前提是正确列出比例,关键是“比例中两个内项的积等于两个外项的积”的应用。将解比例与问题解决相结合,前提就是学生能否正确列出比例。之后解比例的关键是“两个内项的积等于两个外项的积”的应用。教师要加强学生的说理训练,不管是比的形式还是分数的形式,都要讲清楚根据什么将含有未知数的比例转化为方程。完成解答后,还要加强代人法验算能力的培养,提高计算的正确率。另外,教师要注意自己出题时要明确两个比是相等的,不需要学生先判断两个比是否相等的过程。
4/4。
比例的应用教学设计篇五
教学目标:
1、了解比在生活中的广泛应用。
2、掌握按比分配的解题思路。
3、学会灵活地解决生活中的实际问题。
教学方法:
分析、推理、合作交流,让学生自主探索知识。
教学重点:
学会用比的应用知识解决生活中的实际问题。
教学难点:
学会自主探索解决问题的方法。
教学流程:
一、导入新课。
学生展示收集的物品,体会比在生活中应用很广泛。
师:看来,比在生活中应用很广泛,这节课我们来学习《比的应用》。
二、探索新知。
1、读题,理解题意。
出示课件,观察老师收集的物品,齐读什么叫稀释液,谈谈自己的理解。
出示例题,齐读,你知道了哪些数学信息?
2、做实验。
3、画线段图。
师生一起在线段图上表示浓缩液、水和稀释液之间的关系。让生上台指出各部分表示什么。
师:1份的浓缩液和4份的水合起来是几份?板书:1+4=5?把稀释液看出单位“1”,平均分成5份,浓缩液还能怎样表示?水呢?板书:
4、解决问题。
生独立完成,找生板演,同桌交流,最后集体汇报(注意对应关系)。
5、归纳方法。
方法一,先求每份是多少,再求几份是多少。
方法二,把1:4转化成分数,根据求一个数的几分之几是多少用乘法计算来解决。
6、检验。
师:这道题我们做的对不对呢?如何检验?
三、巩固练习。
2、适用范围、稀释比例(原液:水)、作用时间(分钟)、使用方法。
一般物体表面。
1:200。
10—30。
对各类清洁物体表面擦拭、浸泡、冲洗消毒。
1:100。
10—30。
对各类非清洁物体表面擦拭、浸泡、冲洗、喷洒消毒。
果蔬。
1:250。
10。
将果蔬洗净后再消毒;消毒后用生活饮用水将残留消毒液洗净。
织物。
1:125。
20。
消毒时将织物全部浸没在消毒液中,消毒后用生活饮用水将残留消毒液洗净。
排泄物。
1:4。
120。
按照1份消毒液、2份排泄物混合搅拌后静置120分钟以上。
周末小明清洗苹果,需要配置502ml的稀释液,需要消毒液和水各多少毫升?
四、全课总结。
谈收获,图片欣赏。
将本文的word文档下载到电脑,方便收藏和打印。
比例的应用教学设计篇六
教学内容:
教科书第59页例5以及相关练习题。
教学目标:
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
教学重点:
利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。
教学难点:
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
教具准备:
小黑板。
教学过程:
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成()比例。
(2)单价一定,总价与数量成()比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成()比例。
比例的应用教学设计篇七
翁台小学:罗仁慧10月22日教学目标:
知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。
过程与方法:培养学生运用知识进行分析、推理等思维能力,
情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:掌握按比例分配应用题的结构特点和解题思路。教学难点:正确分析解答按比例分配应用题。教法:启发引导法,演示法学法:观察比较,合作交流。教学准备:多媒体课件。教学过程:
一、复习解决下面各题:化简。
1.63:272.1.2千克:750克3.4千米:800米求下面各比的比值。
1.4:2.82.99:66学生独立完成,抽生板演,集体订正。
二、情景导入学生自由讨论。
2.我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。
(2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)。
(3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)(4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)。
水的体积:500×4=400(ml)。
答:稀释液100ml,水400ml。
这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。
师:把我们学过的比转化成分率,怎样来做?
生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5.可以写成:浓缩液的体积:500×1/5=100(ml)。
水的体积:500×4/5=400(ml)。
答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。四:巩固提高(幻灯片出示)。
做一做第。
1、2题,学生独立完成,抽生板演,集体讲评。
五、全课总结。
今天我们学到了什么?
六、家庭作业。
教材第50页,练习十二1-3题。教学反思:
本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。
比例的应用教学设计篇八
使学生理解正比例的意义,会正确判断成正比例的量。
使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
情感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学习习惯。
正确判断两个量是否成正比例的关系。
一、揭示课题。
在教师的此导下,学生会举出一些简单的例子,如:
1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
二、探索新知。
1、教学例1。
(1)、出示小黑板。问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)、出示表格。
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25立方厘米。
板书:50100150200?......?252468。
教师:体积与高度的比值一定。
(3)、说明正比例的意义。
在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一、两种相关联的量。
第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三、两个量的比值一定。
(1)、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用正的式子表示:
y?k(一定)x。
(2)、想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
比例的应用教学设计篇九
教学过程:
同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)。
1、判断下面每题中的两种量成什么比例关系?
(1)单价一定,总价和数量、
(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、
(3)全校学生做操,每行站的人数和站的行数、
2、说说速度、时间和路程这三个量存在怎样的比例关系?
(当速度一定)。
1、导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。
2、学习例1.(课件出示例题)。
(1)先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。
(2)引导学生探究用比例知识解答。
提问:这道题能不能用比例知识来解答呢?
(课件出示问题,让学生思考)。
1、这道题中涉及哪三种量?(路程、时间和速度)。
2、哪种量是一定的?你是怎样知道的?(照这样的速度就是说速度一定)。
3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)。
(课件出示思考的过程,并齐读)。
(3)提问:根据正比例的意义可以列出怎样的比例?
(教师根据学生的回答板书)。
(4)解这个比例。(教师板书解答过程)。
(5)怎样检验所求的答案是否正确?(把求出的未知数代入原方程,看等式是否相等)。
(6)写出答语。
(7)练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)。
(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。
(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。
3、学习例2:
(课件出示例题)。
(1)自主探究用比例知识解答。
1合作交流,小组讨论:
题中有哪几种量?这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?
2、汇报讨论结果。
老师板书方程并提问:这个方程是比例吗?为什么?
3、师生一起解答。(完成例2的板书)。
4、练习:(课件出示练习题)。
(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)。
5、教师小结。
(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)。
1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?
四、作业:练习中的1~4题。
五、课堂小结:
1、这节课我们学会了什么?
(学会了用比例知识解答应用题)。
教学内容:数学十二册《比例的应用》。
教学目标:
1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生能用比例方法正确解答比例应用题。
3、培养学生的推理判断能力及勇于探索的精神。
教学重难点:
正确地判断应用题中的数量之间存在什么样的比例关系,并能根据正、反比例的意义列出含有未知数的等式。
比例的应用教学设计篇十
教学目:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
:掌握成正比例量的变化规律及其特征。
:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。
一、复习铺垫激情促思。
1、说出下列每组数量之间的关系。
(1)速度时间路程。
(2)单价数量总价。
(3)工作效率工作时间工作总量。
2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充。
二、初步感知探究规律1、出示例1的表格(略)。
说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)。
(2)引导学生观察表中数据,寻找两种量的变化规律。
根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。
根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?
根据学生的回答,板书关系式:路程/时间=速度(一定)。
(板书:路程和时间成正比例)。
2、教学“试一试”
学生填表后观察表中数据,依次讨论表下的4个问题。
根据学生的讨论发言,作适当的板书。
3、抽象表达正比例的意义。
根据学生的回答,板书:=k(一定)。
揭示板书课题。
先观察思考,再同桌说说。
大组讨论、交流。
学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。
学生根据板书完整地说一说表中路程和时间成什么关系。
学生独立填表。
完整说说铅笔的总价和数量成什么关系。
学生概括。
三、巩固应用深化规律。
1、练一练。
生产零件的数量和时间成正比例吗?为什么?
2、练习十三第1题。
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第2题。
先独立判断,再有条理地说明判断的理由。
4、练习十三第3题。
先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。
讨论、交流。
独立完成,集体评讲。
说明判断的理由。
说一说,画一画。
填一填,议一议。
讨论。
四、总结回顾评价反思。
这节课你学会了什么?你有哪些收获?还有哪些疑问?
比例的应用教学设计篇十一
课的个人看法:
老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。
这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。
“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。
比例的应用教学设计篇十二
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。
教学重点。
使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。
教学难点。
用比例解决生产生活中的问题。
教学过程。
【问题导学】。
畅所欲言:关于比例,你已经知道了什么?赶紧把你的收获和同桌交流一下吧!
1、交流汇报。
2、运用收获的知识解决问题:将2:8080:25:200200:5放在天平的两端,使它保持平衡,并说出理由。
3、将比例式子运用比例的基本性质改写成等积式。
0、5:5=0、2:20、5×2=()×()。
2/5:1/2=3/5:3/42/5×3/4=()×()。
8:25=40:x()×()=()×()。
观察上面的三个式子,有什么不同?
引导学生解第三个方程,追问方程是怎样来的?
揭题,导入新知。
【自主探究】。
1、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)。
那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)。
依据是什么呢?
同学们真聪明,不用老师讲,用以前学过的知识就解决了今天的难题,继续开动你聪明的大脑前行吧!
2、试做:1、25:0、25=x:1、61、5/2、5=x/6。
与大屏幕比较,提出质疑。
怎样知道解是否正确呢?检验。
3、即时练习:32页做一做。
4、比例在生活中的应用示范广泛,你看,老师给大家带来了谁?
学生解决,如果用比例知识来解,怎样解呢?
教师点拨:用比例解的关键是找到关系式。身高:脚长=7:1,将脚长的条件换到这个关系中,就可以列出比例。
规范写法。
【巩固提升】。
1、出示书35页例2、自己解决,小组交换检查。
【课堂小结】:这节课主要学习了什么内容?
比例的应用教学设计篇十三
教学目的:
1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。
2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。
教具、学具准备:
教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。
教学过程:
一、复习准备。
1、什么是比例?
2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。
时间(时)27。
路程(千米)180630。
二、导入新课。
教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。
三、进行新课。
用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。
时间(时)12345678…。
路程(千米)90180270360450540630720…。
教师:先独立思考后再讨论、交流、回答以下问题。
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还能够从表中发现哪些规律?
教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。
板书:相关联。
教师:你们还发现哪些规律呢?
引导学生归纳出:
(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;
(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;
(3)路程和时间的比值都是90;时间和路程的比值都是1/90。
路程和时间的比值是什么?(速度)。
在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)。
数量(米)1234567…。
总价(元)8.216.424.632.841.049.257.4…。
先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。
学生分析后引导学生归纳:
(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;
(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;
(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。
教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系能够用式子表示为x/y=k(必须)。
教师:请同学们相互说一说生活中还有哪些是成正比例的量?
指导学生完成第56页“做一做”。
四、巩固练习。
指导学生完成练习十六第1~3题。
五、课堂小结。
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师对全课所学的知识进行归纳。
创意作业。
小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。
比例的应用教学设计篇十四
1、大家好,我是西街小学的刘老师。今天我们学习的内容是判断两种量是否成反比例关系。首先我们必须明确成反比例关系的两种量满足的条件:两种量成相关联的量,意思就是说这两种量有关系2它们乘积一定,这决定了两种量的变化趋势是相反的,一种量随着另外一种量增大而减小。这两个条件,我们可以用一个数学表达式代替:xy=k(一定),满足这个式子就可以证明出他们是反比例关系。接下来我们观察这个等式的特征。等号右边是一个定值,等号左边是两种相关联的量相乘。抓住反比例关系的数学表达式的特征,对于判断两种量是否成反比例关系十分重要。下面我们结合练习题进行讲解。
二练习。
1、判断下面每题中的两种量是不是成反比例,并说明理由。(1)全班人数一定,按各组人数相等的要求分组,组数与每组人数根据常识我们知道,组数和每组人数是两种相关联的量。组数乘以每组人数等于全班人数,根据条件可知全班人数一定。所以组数和每组人数成反比例关系。
(2)生产手机的总量一定,工作时间和效率。
同样工作时间和效率是两种相关联的量,工作时间乘以效率等于工作总量,有条件可知,手机的总量是一定的,所以生产时间和效率成反比例关系。(3)在一块菜地上种的黄瓜与生菜的面积。
黄瓜和生菜的面积是相关联的量,但是黄瓜的面积+生菜的面积=菜地的面积,不符合乘积一定的条件,所以不是反比例关系。通过上面的题目我们不难发现判断两种量是否相关比较容易,重点在于判断乘积是否一定。
二、填一填。
(1)平行四边形的()一定,()和()成反比例关系。平行四边形中哪两种量成反比例关系,我们首先能够想到它的面积公式,底乘以高等于面积,我们让面积一定,就刚好符合反比例关系的表达式,这道题就迎刃而解了。
(2)三角形的()一定,()和()成反比例关系。同样我们会想到三角形的面积公式:底乘以高除以二等于三角形的面积。这个等式与我们的反比例的数学表达式有所不同,等号的左边多个2怎们办?我们可以通过等式的性质对这个式子变形,两边同时乘以二就可以得到底乘以高等于三角形的面积乘以2。我们让三角的面积一定,两个三角形的面积也是一定的。这样就符合我们的关系式。所以三角形的面积一定,底和高也成反比例关系。对于第二题,我们主要是对相关的公式进行变形然后判断。
三、有x,y,z三个相关联的量,并有xy=z.(1)当z一定时,x和y成()比例关系;(2)当x一定时,z和y成()比例关系;(3)y一定时,z和x成()比例关系。
我们看第一题,x和y直接满足了题目中的条件xy=z,所以很容易判定是反比例的关系;第二题,当x一定时,我们就把x放在等式的右边,x等于z除以y,满足了正比例的数学表达式,所以x和y成正比例关系;我们就可以用同样的方法判定第三题,y一定时,我们就把y放在等式的右边,y等于z除以x,满足了正比例的数学表达式,x和z成正比例关系。这种题型就是考察对代数式的转化能力。一般可以通过对代数式进行变形,把两种相关量写在等号的左边,不变的数写在右边。在看他们是乘还是除,继而判断是什么比例。以上就是我们学习的全部内容,谢谢。
比例的应用教学设计篇十五
本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
认识正、反比例的意义。
根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
教学内容。
教材第62—63页的例1和试一试,练一练和练习十三的第1—3题。
课型。
新授。
本单元教时数:4本教时为第1教时备课日期月日
教学目标。
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。
3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。
教学重点。
使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点。
根据正比例的意义正确判断两种相关联的量是不是成正比例。
教学准备。
光盘课件。
教学内容。
教师活动。
学生活动。
二次备课。
1、谈话引出例1的表格。
2、这两种量的数据是怎样变化的?
时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。
小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。
3、但是,你能发现什么呢?
如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。
这个比值是什么呢?
谁能用一句话来概括例1中的变化与不变。
4、介绍成正比例的量。
指名说说,表中有哪两种量。
引导学生观察,
指名说一说。
启发学生从“变化”中寻找“不变”。
学生试着回答,教师帮助完成。
学生完整的说说路程和时间成正比例的量。
1、出示教材试一试。
教师指导学生完成。
学试着完成,并交流回答四个问题。
三、概括意义。
1、引导学生观察例1和试一试,它们有什么共同点。
2、概括正比例的意义,揭示课题(板书)。
3、用字母怎样表示成正比例关系的两种量呢?
y:x=k(一定)。
观察,说说自己的发现。
学生完整的说一说例1和试一试成正比例关系。
四、巩固练习。
1、完成练一练。
2、练习十三第1题。
重点让学生说出判断的理由。
3、做练习十三第2题。
4、做练习十三第3题。
引导学生根据计算的结果来判断。完成书上的问题。
重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。
独立判断,交流时说出判断的理由。
学生先各自算一算,交流,说出思考过程。
指名判断,交流时说出思考过程,其它同学进行补充或纠正。
学生理解题意,然后在书上画一画,算一算,填在书上。
五、全课总结。
学习了什么?你有什么收获?
说一说。
板书。
两种相关联的量=k(一定)y和x就成正比例的量。
课后感受。
教学内容。
教材第63页例2,随后的练一练和练习十三的第4、5题。
课型。
新授。
本单元教时数:4本教时为第2教时备课日期月日
教学目标。
1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学重点。
使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
教学难点。
使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学准备。
光盘课件。
教学内容。
教师活动。
学生活动。
二次备课。
1、先出示例1的表格。
谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。
引导学生观察这些点的排布规律,并用直线连起来。
提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)。
(2)图中所描的点在一条直线上吗?
学生描点。
学生按要求操作完成。
指名回答。
如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。
二、巩固练习。
1、练一练。
学生做好后展示学生画的图象,共同评议。
问:你们画出的表示打字时间和打字个数关系的图象有什么特点?
指名回答第(3)个问题。
2、练习十三第4题。
既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。
第二题要求估计,答案出入是允许的。
3、第5题。
先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。
学生独立完成。
指名回答第(2)个问题。
学生相互间说一说。
学生回答,要说明理由。
讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。
三、全课总结。
说说,议论议论。
板书。
例2(图像)。
课后感受。