比例的应用教学设计(精选15篇)
通过总结,可以发现问题所在并提出改进的方案。怎样才能克服困难,迎接挑战,实现自己的梦想呢?以下是一些优秀运动员的经验和教训,希望可以给大家启发。
比例的应用教学设计篇一
翁台小学:罗仁慧10月22日教学目标:
知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。
过程与方法:培养学生运用知识进行分析、推理等思维能力,
情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:掌握按比例分配应用题的结构特点和解题思路。教学难点:正确分析解答按比例分配应用题。教法:启发引导法,演示法学法:观察比较,合作交流。教学准备:多媒体课件。教学过程:
一、复习解决下面各题:化简。
1.63:272.1.2千克:750克3.4千米:800米求下面各比的比值。
1.4:2.82.99:66学生独立完成,抽生板演,集体订正。
二、情景导入学生自由讨论。
2.我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。
(2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)。
(3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)(4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)。
水的体积:500×4=400(ml)。
答:稀释液100ml,水400ml。
这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。
师:把我们学过的比转化成分率,怎样来做?
生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5.可以写成:浓缩液的体积:500×1/5=100(ml)。
水的体积:500×4/5=400(ml)。
答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。四:巩固提高(幻灯片出示)。
做一做第。
1、2题,学生独立完成,抽生板演,集体讲评。
五、全课总结。
今天我们学到了什么?
六、家庭作业。
教材第50页,练习十二1-3题。教学反思:
本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。
比例的应用教学设计篇二
(9)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?(用比例解)。
(10)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?(用比例解)。
(11)修一条公路,原计划每天修360米,30天可以修完。如果要提前5天修完,每天要修多少米?(用比例解)。
(12)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)。
(13)修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?(用比例解答)。
(14)用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?(用比例方法解)。
(15)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)。
(16)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。实际每天节约1/8,实际可以烧多少天?(比例解)。
(17)解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)。
(18)一对互相啮合的齿轮,主动轮有60个齿,每分转80转。从动轮有20个齿,每分转多少转?(用比例方法解)。
(19)6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?(用比例方法解)。
(20)一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天?(用比例方法解)。
(21)某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天就完成,每天要多运多少车?(用比例方法解)。
比例的应用教学设计篇三
教学目标:
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力.教学重点:
结合图象分析总结出反比例函数的性质;
教学用具:直尺。
教学方法:小组合作、探究式。
教学过程:
我们在小学学过反比例关系.例如:当路程s一定时,时间t与速度v成反比例。
即vt=;
当矩形面积s一定时,长a与宽b成反比例,即ab=。
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(s是常数)。
(s是常数)。
解:列表。
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习。
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)。
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小.同样可以推出的图象的性质.(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.函数的图象性质的讨论与次类似.4、小结:
比例的应用教学设计篇四
教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
培养学生的判断分析推理能力。
教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
(一)复习。
1.说说正、反比例的意义。
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从a地到b地,行驶的速度和时间。
(3)每块砖的面积一定,砖的块数和总面积。
(4)海水的出盐率一定,晒出的盐和海水重量。
3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(二)新课。
(1)用以前方法解答。
(2)研究用比例的方法解答。
题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?
能不能利用这个关系式列比例解答?
解比例,同学自已完成,及时纠正。检验。
改变例1中的条件和问题。
1、以前的发法解答。
2、怎样用比例知识解答?
3讨论结果填书上。
4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。
比例的应用教学设计篇五
教学内容:
教科书第59页例5以及相关练习题。
教学目标:
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
教学重点:
利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。
教学难点:
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
教具准备:
小黑板。
教学过程:
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成()比例。
(2)单价一定,总价与数量成()比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成()比例。
比例的应用教学设计篇六
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
二、重、难点。
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式。
3.难点的突破方法:
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。
(3)(k0)还可以写成(k0)或xy=k(k0)的形式。
三、例题的意图分析。
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
比例的应用教学设计篇七
教学过程:
一、导人新课。
教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。这节课我们要学习解比例。(板书课题)。
二、新课。
1、自学解比例。
(1)学生自学教材35页的解比例。
(2)学生交流解比例的意义。
(3)教师归纳:(出示课件)。
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
出示例2。
(1)学生读题,理解题目里的条件和问题。
(2)学生试着解答此题,一名学生演板。
(3)师生共评。
a.设出题目中要求的未知量为x;
b.根据比例的意义列出比例;
c.运用比例的基本性质解比例;
d.检查、写答语。
(5)试一试:完成练习六第8题。
3、自学例3。
(1)学生独立把例3补充完整。
(2)学生口述解答过程和解答依据。(根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程,再解方程。)。
教师说明:这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解。
从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
4、总结解比例的过程。
提问:
(1)刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)。
(2)变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)。
(3)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)。
5、完成第35页的做一做。
学生独立解答,订正时,让学生说说是怎么做的。
三、巩固练习。
做练习六的第7、9、10题。
四、学有余力的学生做第12*、13*题。
傲第12*题的第(1)题。教师可以这样引导学生:这道题需要逆用比例的基本性质。比例的基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:
3:8=15:4040:15=8:3。
3:15=8:4040:8=15:3。
如果把3、40作为内项,有下面这些比例式:
15:3=40:88:40=3:15。
15:40=3:88:3=40:15。
可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。
比例的应用教学设计篇八
教学目标:
1、了解比在生活中的广泛应用。
2、掌握按比分配的解题思路。
3、学会灵活地解决生活中的实际问题。
教学方法:
分析、推理、合作交流,让学生自主探索知识。
教学重点:
学会用比的应用知识解决生活中的实际问题。
教学难点:
学会自主探索解决问题的方法。
教学流程:
一、导入新课。
学生展示收集的物品,体会比在生活中应用很广泛。
师:看来,比在生活中应用很广泛,这节课我们来学习《比的应用》。
二、探索新知。
1、读题,理解题意。
出示课件,观察老师收集的物品,齐读什么叫稀释液,谈谈自己的理解。
出示例题,齐读,你知道了哪些数学信息?
2、做实验。
3、画线段图。
师生一起在线段图上表示浓缩液、水和稀释液之间的关系。让生上台指出各部分表示什么。
师:1份的浓缩液和4份的水合起来是几份?板书:1+4=5?把稀释液看出单位“1”,平均分成5份,浓缩液还能怎样表示?水呢?板书:
4、解决问题。
生独立完成,找生板演,同桌交流,最后集体汇报(注意对应关系)。
5、归纳方法。
方法一,先求每份是多少,再求几份是多少。
方法二,把1:4转化成分数,根据求一个数的几分之几是多少用乘法计算来解决。
6、检验。
师:这道题我们做的对不对呢?如何检验?
三、巩固练习。
2、适用范围、稀释比例(原液:水)、作用时间(分钟)、使用方法。
一般物体表面。
1:200。
10—30。
对各类清洁物体表面擦拭、浸泡、冲洗消毒。
1:100。
10—30。
对各类非清洁物体表面擦拭、浸泡、冲洗、喷洒消毒。
果蔬。
1:250。
10。
将果蔬洗净后再消毒;消毒后用生活饮用水将残留消毒液洗净。
织物。
1:125。
20。
消毒时将织物全部浸没在消毒液中,消毒后用生活饮用水将残留消毒液洗净。
排泄物。
1:4。
120。
按照1份消毒液、2份排泄物混合搅拌后静置120分钟以上。
周末小明清洗苹果,需要配置502ml的稀释液,需要消毒液和水各多少毫升?
四、全课总结。
谈收获,图片欣赏。
将本文的word文档下载到电脑,方便收藏和打印。
比例的应用教学设计篇九
教学内容:
教科书第40页的例3,完成随后的练一练和练习九的第3—7题。
教学目标:
1、理解比例的意义。
2、能根据比例的意义,正确判断两个比能否组成比例。
3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
教学重点:
理解比例的意义,能正确判断两个比能否组成比例。
教学难点:
在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神。
教学准备:
两张照片。
预习作业:
1、预习课本第40页例3,
2、分别写出每张照片长和宽的比,并比较这两个比的关系,知道什么叫做比例。
3、在课本上完成第40页练一练。
教学过程:
一、预习效果检测。
1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?
2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)。
还记得怎样求比值吗?希望这些知识能对你们今天学习的'新知识有帮助。
3、什么叫做比例?
二、合作探究。
1、认识比例。
(1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。
(2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)。
数学中规定,像这样的式子就叫做比例。(板书:比例)。
(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)。
(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
2、学以致用。
(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)。
(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?
学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。
(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?
3、交流“练一练”的完成情况。
三、当堂达标检测。
1、做练习九第3题。
先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。
2、做练习九第4题。
独立审题,说说解题步骤,在独立完成。同时找两个同学板演。
3、做练习九第7题。
(1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。
(2)分组完成,同时四人板书,再讲评。
完成后反馈、引导学生进行汇报交流,及时修正自己的答案。
提出疑问,总结全课。
将本文的word文档下载到电脑,方便收藏和打印。
比例的应用教学设计篇十
教学目的:
1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。
2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。
教具、学具准备:
教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。
教学过程:
一、复习准备。
1、什么是比例?
2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。
时间(时)27。
路程(千米)180630。
二、导入新课。
教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。
三、进行新课。
用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。
时间(时)12345678…。
路程(千米)90180270360450540630720…。
教师:先独立思考后再讨论、交流、回答以下问题。
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还能够从表中发现哪些规律?
教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。
板书:相关联。
教师:你们还发现哪些规律呢?
引导学生归纳出:
(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;
(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;
(3)路程和时间的比值都是90;时间和路程的比值都是1/90。
路程和时间的比值是什么?(速度)。
在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)。
数量(米)1234567…。
总价(元)8.216.424.632.841.049.257.4…。
先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。
学生分析后引导学生归纳:
(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;
(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;
(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。
教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系能够用式子表示为x/y=k(必须)。
教师:请同学们相互说一说生活中还有哪些是成正比例的量?
指导学生完成第56页“做一做”。
四、巩固练习。
指导学生完成练习十六第1~3题。
五、课堂小结。
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师对全课所学的知识进行归纳。
创意作业。
小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。
比例的应用教学设计篇十一
教学过程:
同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)。
1、判断下面每题中的两种量成什么比例关系?
(1)单价一定,总价和数量、
(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、
(3)全校学生做操,每行站的人数和站的行数、
2、说说速度、时间和路程这三个量存在怎样的比例关系?
(当速度一定)。
1、导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。
2、学习例1.(课件出示例题)。
(1)先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。
(2)引导学生探究用比例知识解答。
提问:这道题能不能用比例知识来解答呢?
(课件出示问题,让学生思考)。
1、这道题中涉及哪三种量?(路程、时间和速度)。
2、哪种量是一定的?你是怎样知道的?(照这样的速度就是说速度一定)。
3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)。
(课件出示思考的过程,并齐读)。
(3)提问:根据正比例的意义可以列出怎样的比例?
(教师根据学生的回答板书)。
(4)解这个比例。(教师板书解答过程)。
(5)怎样检验所求的答案是否正确?(把求出的未知数代入原方程,看等式是否相等)。
(6)写出答语。
(7)练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)。
(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。
(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。
3、学习例2:
(课件出示例题)。
(1)自主探究用比例知识解答。
1合作交流,小组讨论:
题中有哪几种量?这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?
2、汇报讨论结果。
老师板书方程并提问:这个方程是比例吗?为什么?
3、师生一起解答。(完成例2的板书)。
4、练习:(课件出示练习题)。
(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)。
5、教师小结。
(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)。
1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?
四、作业:练习中的1~4题。
五、课堂小结:
1、这节课我们学会了什么?
(学会了用比例知识解答应用题)。
教学内容:数学十二册《比例的应用》。
教学目标:
1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生能用比例方法正确解答比例应用题。
3、培养学生的推理判断能力及勇于探索的精神。
教学重难点:
正确地判断应用题中的数量之间存在什么样的比例关系,并能根据正、反比例的意义列出含有未知数的等式。
比例的应用教学设计篇十二
教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
理解相关联的两个量及正比例的意义,并能正确判断两种量是否成正比例。
1.学生在学习本单元之前已经学习了比和比例的有关知识,会解决按比例分配的简单数学问题。
2.有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。
1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。
2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。
小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。
3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
根据学生的回答,教师板书关系式:路程时间=速度(一定)。
5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
(板书:路程和时间成正比例)。
二、教学“试一试”
1、要求学生根据表中的已知条件先把表格填写完整。
2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。
3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
三、抽象表达正比例的意义。
1、引导学生观察上面的两个例子,说说它们有什么共同点。
根据学生的回答,板书关系式。
四、巩固练习。
1、完成第63页的“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。
2、做练习十三第1~3题。
第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。
第2题先让学生独立进行判断,再指名说判断的理由。
第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。
五、全课小结。
这节课你学会了什么?通过这节课的学习,你还有哪些收获?
比例的应用教学设计篇十三
教学目标:
1、结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量。
2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。
教学重难点:
认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的能力。
教学过程:
一、呈现情境图。
思考、讨论。
我家的房屋平面图。
1、比例尺1:100是什么意思?
图上距离。
2、比例尺=--------------。
实际距离。
3、独立完成p30页第2、3题。
4、p30页第4题,怎样求窗户的图上距离?注意比成相成的单位后再计算。
5、指导完成p30页第5题。
注意求比例尺时,图上距离与实际距离的单位要统一。
p31页第1题,说明清楚两地距离一般假设是直线距离,计算时,注意单位换算。
p31页第2题,自己尝试独立完成。
放手让学生自己研究。
教师对困难的学生加以指导。
试一试。
练一练。
比例的应用教学设计篇十四
使学生理解正比例的意义,会正确判断成正比例的量。
使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
情感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学习习惯。
正确判断两个量是否成正比例的关系。
一、揭示课题。
在教师的此导下,学生会举出一些简单的例子,如:
1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
二、探索新知。
1、教学例1。
(1)、出示小黑板。问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)、出示表格。
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25立方厘米。
板书:50100150200?......?252468。
教师:体积与高度的比值一定。
(3)、说明正比例的意义。
在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一、两种相关联的量。
第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三、两个量的比值一定。
(1)、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用正的式子表示:
y?k(一定)x。
(2)、想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
比例的应用教学设计篇十五
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。
教学重点。
使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。
教学难点。
用比例解决生产生活中的问题。
教学过程。
【问题导学】。
畅所欲言:关于比例,你已经知道了什么?赶紧把你的收获和同桌交流一下吧!
1、交流汇报。
2、运用收获的知识解决问题:将2:8080:25:200200:5放在天平的两端,使它保持平衡,并说出理由。
3、将比例式子运用比例的基本性质改写成等积式。
0、5:5=0、2:20、5×2=()×()。
2/5:1/2=3/5:3/42/5×3/4=()×()。
8:25=40:x()×()=()×()。
观察上面的三个式子,有什么不同?
引导学生解第三个方程,追问方程是怎样来的?
揭题,导入新知。
【自主探究】。
1、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)。
那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)。
依据是什么呢?
同学们真聪明,不用老师讲,用以前学过的知识就解决了今天的难题,继续开动你聪明的大脑前行吧!
2、试做:1、25:0、25=x:1、61、5/2、5=x/6。
与大屏幕比较,提出质疑。
怎样知道解是否正确呢?检验。
3、即时练习:32页做一做。
4、比例在生活中的应用示范广泛,你看,老师给大家带来了谁?
学生解决,如果用比例知识来解,怎样解呢?
教师点拨:用比例解的关键是找到关系式。身高:脚长=7:1,将脚长的条件换到这个关系中,就可以列出比例。
规范写法。
【巩固提升】。
1、出示书35页例2、自己解决,小组交换检查。
【课堂小结】:这节课主要学习了什么内容?