直线和圆的位置关系说课稿(模板16篇)
语法是语文学习的基础,掌握好语法规则有助于写出正确的表达。写作时,我们要多注意常见的语法错误,避免影响文章的质量。小编为大家准备了一些总结的范文,供参考,希望能够给大家写总结提供一些思路。
直线和圆的位置关系说课稿篇一
本节课由蔡**老师执教,主要有三部分组成。首先前面两个问题通过复习前几课学过的点到直线的距离公式以及两条直线的位置关系的判定,为下面例子中判断直线与圆的位置关系作好铺垫。紧接着通过回顾直线与圆的三种位置关系引入新课,并结合图形深入探究每种关系中圆心到直线的距离d与圆的半径r的大小关系以及交点个数的情况。再通过例题的讲解与练习的训练去总结直线和圆的位置关系所反映出来的数量关系。最后师生对本节课知识点进行共同小结,完成本节课的整体教学内容。
听了这节课之后,我认为本节课的整体思路清晰、流畅,结构合理,重点突出,较好地完成了本节课的教学目标。在引导学生归纳出直线与圆的`位置关系的数量关系后再进行相关的例题讲解和习题训练,确保了学生对本节课重点知识的掌握。不过,个人认为本节课还是有一些值得探讨的问题:1、例1是对本节课所学知识的应用,是本节课的重点及难点,应该着重分析这块。学生对带有绝对值符号的c的范围并不能很好地理解,因涉及先前学过的内容,可举个适当小例子帮助学生回顾,如:,则的范围是什么等等。2、个人觉得练习一中判断直线与圆的位置关系时,圆心到直线的距离计算得d=,让学生求k的范围难度太大。本来学生才刚掌握点到直线的距离公式,还不能很好熟练的运用,现在式子中又有绝对值又有根号求k的范围,学生的积极性很容易被打压,应当换个适当难度的,及时提高学生的积极性,培养他们的兴趣。3、应让学生多动手、动口回答问题,及时巩固所学知识。
本节课是在直线和直线的基础上进一步学习的内容,也是后面学习直线与圆的方程的应用的基础,起着承上启下的作用,而且三种位置关系的研究方法和思路基本一直,都是从研究位置关系开始进而研究位置关系而发生的数量关系,教师可以用类比的教学方式使学生掌握这种学习方法。其实,一堂课的教学很大程度上受教学细节的影响,比如:语言的描述是否准确,是否及时对学生进行表扬等。每次听完课,我都会拿自己进行比较,看看还有哪些自己没做到的,或是没注意的,然后多多实践,尽量充实自己,收获不少啊。
直线和圆的位置关系说课稿篇二
已知直线都是正数)与圆相切,则以为三边长的三角形是________三角形.
三、解答题。
当为何值时,直线与圆有两个公共点?有一个公共点?无公共点?
四、填空题。
若直线与圆相切,则实数的值等于________.
圆心为且与直线相切的圆的方程为________.
直线与圆相切,则实数等于________.
直线与圆相切,则________.
过点作圆的切线,且直线与平行,则与间的距离是________.
过点,作圆的切线,则切线的条数为________条.
过点的圆与直线相切于点,则圆的方程为________.
五、解答题。
过点作圆的切线,求此切线的方程.。
圆与直线相切于点,且与直线也相切,求圆的方程.。
六、填空题。
由直线上的一点向圆引切线,则切线长的最小值为_____________.
七、解答题。
求满足下列条件的圆的切线方程:
(1)经过点;
(2)斜率为;
(3)过点.。
已知圆的方程为,求过的圆的切线方程.。
八、填空题。
直线被圆截得的弦长等于________.
直线被圆截得的弦长等于________.
直线被圆所截得的弦长为________.
圆截直线所得弦的长度为4,则实数的值是________.
设直线与圆相交于两点,若,则圆的面积为________.
直线被圆截得的弦长为________.
直线被圆所截得的弦长为________.
圆心坐标为的圆在直线上截得的弦长为,那么这个圆的方程为________.
过点的直线被圆截得的弦长为,则直线的斜率为________.
过原点的直线与圆相交所得弦的长为2,则该直线的方程为________.
九、解答题。
圆心在直线上,圆过点,且截直线所得弦长为,求圆的方程.。
十、填空题。
过点作圆的弦,其中最短弦的长为________.
十一、解答题。
已知圆,直线.
(1)求证:对,直线与圆总有两个不同的交点;
(2)若直线与圆交于两点,当时,求的值.。
设圆上的点关于直线的对称点仍在圆上,且直线被圆截得的弦长为,求圆的方程.。
已知圆,直线.。
证明:不论取什么实数,直线与圆恒交于两点。
求直线被圆截得的弦长最小时的方程,并求此时的弦长。
十二、填空题。
圆上到直线的距离等于1的点有________个.
在平面直角坐标系中,已知圆上有且仅有四个点到直线的距离为1,则实数的取值范围是________.
设圆上有且仅有两个点到直线的距离等于1,则圆半径的取值范围是________.
直线与曲线有且只有一个公共点,则b的取值范围是_________。
若直线与圆恒有两个交点,则实数的取值范围为________.
已知点满足,则的取值范围是________.
若过点的直线与曲线有公共点,则直线的斜率的取值范围为。
直线和圆的位置关系说课稿篇三
1、教材分析:
《圆》这一章,是学生平面几何学习中一个重要的内容,如何在圆的教学中,让学生在直线型图形研究的基础上进一步去体会研究几何图形的思维和方法,深刻领悟几何学的学科观点,有着非常重要的意义。下面是《圆》这一章的框架图:
2、学情分析:
通过前面8章的有关几何的学习,学生已经具备了一定的空间概念和几何直观,具有研究几何图形的思维和方法,有了上节课点和圆的位置关系的铺垫,学生对于探究直线和圆的位置关系并不会感到陌生。
根据教学内容的特点及学生的实际情况,确定了三个方面的目标:
2、在探究过程中,提高学生观察、分析、抽象概括的能力,体会数学的基本思想和思维方式。
3、通过具体的探究活动,认识数学具有抽象、严谨的特点,体会数学的价值。
本节课的教学难点是能够从几何和代数两个角度分析直线和圆的位置关系。
根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法,教学中使用了几何画板来辅助教学。
为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:复习旧知,引入课题;探索归纳,得出结论;拓展运用,巩固新知;归纳小结,提高认知。具体过程如下:
(一)复习旧知,引入课题。
提前准备好的学案上,只有一个o,如右图,
按照相应要求作图:
1、作点p。
2、过点p作点和圆的位置关系,为接下来探究直线和圆的位置关系奠定基础。
对于问题2的预案:
提问1:分成几类:
提问2:分类的依据是什么。
引导学生得出:根据直线和圆的公共点个数,可以把直线和圆的位置关系分为三类:相交、相切、相离,板书相关概念。
(二)探索归纳,得出结论:
刚才是从几何的角度(交点个数)探究直线和圆的三种位置关系,这阶段将从代数角度将直线和圆的位置关系数量化:
借助几何画板,让学生从运动变化的角度去理解直线和圆的三种位置关系:
圆具有轴对称性,直线也具有轴对称性,所以这个组合图形本身就具有轴对称性,其对称轴是过圆心垂直于该直线的,考虑到对称轴与直线的这种垂直关系在运动的过程中具有不变性,所以我们在考虑用数量来刻画直线和圆的位置关系时,要找的几何量一定是和这种垂直关系密不可分的,因此,圆心到直线的距离就会被考虑,然后先让学生猜想,再用几何画板演示加以严谨的证明验证猜想。
本章的研究主线就是圆的对称性,此环节的设计正符合这个研究逻辑,所以我认为此环节的设计是我的一个亮点。
(三)拓展运用,巩固新知:
1、已知圆的直径是13cm,设圆心到直线的距离是d。
(1)若d=4.5cm,则直线与圆_______,有______个公共点。
(2)若d=6.5cm,则直线与圆_______,有______个公共点。
(3)若d=8cm,则直线与圆_________,有______个公共点。
2、已知圆的半径为r,直线上一点到圆心的距离为d,若d=r,则直线与圆的位置关系是()。
a、相交b、相切c、相离d、相切或相交。
本阶段的教学主要是通过对例题和练习的思考,使学生初步掌握直线和圆的位置关系,并能简单应用。
(三)归纳小结,提高认识:
知识层面上:
相交。
相切。
相离。
公共点的个数。
2
1
dr。
d=r。
dr。
公共点名称。
交点。
切点。
无
直线名称。
割线。
切线。
无
方法层面上:
经历了从不同角度分析问题和解决问题的过程,掌握解决问题的一些基本方法。
布置作业:学练优p59,60。
直线和圆的位置关系说课稿篇四
薛老师执教的高三文科复习课:《直线与圆的位置关系》,首先从一个引例出发,让学生尝试作图和验证,得出知识要点,继而在此基础上继续研究直线方程和轨迹等问题。例题只有一个,但小题很多,题题递进,环环相扣,在此环节上教师以学生训练为主,教师讲授和引导为辅,共同完成本节课的整体教学内容。
我听了薛老师的这节课认为本节课设计高度重视学生的主动参与、亲自操作,让学生从中去体验学习知识的过程,同时,也注重培养学生的自主学习能力和创新意识。整体看来这节课的优点很多,很值得我去学习。
总结起来,大概有以下几个特点。
(一)注重一个“渗透”——德育渗透。
在数学教学中,我们常常把德育教育与辩证唯物主义、爱国主义情怀联系在一起,借助古今中外数学史不惜把数学课上成政治课,却成为一堂蹩脚的课。其实,通过数学问题的发生和解决过程的教学,培养与锻炼学生知难而进的坚强意志,败而不馁的心理素质,一丝不苟的学习品质,勤于思考的良好学风,勇于探索的创新精神,实事求是的科学态度,这也是是德育教育,更是数学本质上的德育教育。本课薛老师把这种德育教育渗透到教学的每一个环节,力求“润物细无声”。当学生解题遇到困难时,教师能给予耐心的引导。但,在课堂上,处理第(3)小题第二问时,有一名男生利用圆的定义很巧妙地给出了轨迹方程,薛老师可能没有很好地把握表扬的机会,而是询问学生有否最后算出答案,显得有些匆促。
(二)坚持两个“原则”
1、例题设计注重分层教学,坚持面向全体学生的原则。
题目母体来源于学生现有教辅书《全品》,却在原题基础上进行了分层递进的改编,让不同的学生都有不同的收获。以学生的最近发展区为指向,充分尊重了学生现有的认知水平和个性差异,为不同层次的学生采用适合自己个性的方法进行学习创造了条件。
2、教学过程授人以渔,坚持以学生发展为本的原则。
让学生深刻经历:通过作图和求解基本例题回忆知识结构——通过尝试深化知识内容——通过递进扩展知识联系,教会学生研究的方法,而不是结果。
(三)落实三个“容量”——知识量、活动量和思维量。
本节课所选内容以解析几何为平台,却可以集函数性质、图像、方程、不等式于一体,例题只有一题,但以此展开的小题却逐层递进和推进,容量大,难度高。可喜的是,薛老师通过合理运用现代技术和整合例题,成功地丰富了知识量;加强探索与过程教学,有效地落实了思维量;突出学生板演与探究教学,巧妙地增加了活动量,值得借鉴。
(四)实现四个“转变”——学生角色从被动到主动;教师角色从传授到指导;学习理念从封闭到开放;学习形式从单一到多元。
本课初步实现了“四个转变”是由于采用了探究式的教学策略,为学生提供开放性的学习内容、开放性的教育资源和开放性的教学形式。特别是向学生提供了更多的机会和时间,让学生尝试和探究、合作和交流、归纳和总结,最大限度地提高学生学习活动的自由度,促使学生思维空间的充分开放。
(五)培养五种“能力”——应用能力、探究能力、反思与提问能力、交流合作能力和创新能力。
本课从引入开始,充分放手让学生动脑、动口、动手,使研究问题得以逐个深入,难点得以一个个突破,能力得以一点点培养。事实上,解析几何复习课,重在数形结合,重在几何性质,重在静动结合,课堂贵在“生动”,所谓“生动”,是指“生”出“动”。要树立生本意识,立足学生“可动”;设置问题探究,引领学生“会动”;课前充分预设,不怕学生“乱动”;及时表扬肯定,激励学生“愿动”。
但是我认为这节课也有一些值得探讨的问题:
第一、老师讲的还是太多。听说杜郎口中学要求老师每节课讲课时间不能超过10分钟,否则是不合格的。一堂课,就只有40分钟,老师讲多了,学生自然就参与少了。这样的后果就会导致学生具体体验时间不够,同时规范操作和演练也不够。
第二、在学生回答引入题时,假设直线方程时,学生没有考虑到斜率是否存在的情况,这时,老师没有及时进行补充和纠正。一个很明显的后果就是导致在(2)问的板演中,学生解答出错。
第三,学生板演时没有很好地结合图像进行解题,这时,老师应该要适时引导学生作好草图。凸显解题时要从宏观到微观,从直觉到精确,从定性到定量分析。
第四,本节课最大的特色就是很好的整合了例题,以一题可以扫遍所有的直线与圆的有关知识点,这是一种复习习惯和策略。教师在这个点上应该要向学生强调,引导学生今后复习也应该有意识地进行整合和提升,做到既“重复”,又“学习”,这才是复习。
第五,本节课还有一个线索,就是前面的题目基本上能借助几何性质进行解题,而最后一问必须采用解析几何的思路,就是用代数的方法解题,这实际上要求老师要进行总结,告诉学生直线与圆的位置关系解题时,先考虑几何性质,再借助代数方法解决,这不仅是一般的解题思路,也为后面的直线与椭圆的位置关系埋下伏笔。
总之,这是一堂原生态的高三复习课,让我获益匪浅。以上仅是一家之言,在此权当抛砖引玉,谢谢大家!
直线和圆的位置关系说课稿篇五
在本届贵阳市中青年教师教学研讨会中,修文中学提出打造有自己特色的“良知高效课堂”,整个课堂进程分四步八环节。本人承担的是直线与圆的位置关系这一堂课与大家交流,有不足之外请老师们批评指正。
1、教材地位。
从知识结构来看,直线与圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。
2、学生情况。
对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交。从直线与圆的直观感受上,学生懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系。本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会从不同角度分析思考问题,为后续学习打下基础。另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。
3、教学目标。
新课程标准的要求是能根据直线与圆的方程判断其位置关系(相交、相切、相离),体会用代数方法处理几何问题的思想,感受“形”与“数”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,本节课教学应实现如下教学目标:
4、知识与技能。
直线和圆的位置关系说课稿篇六
5、过程与方法。
理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系;体验通过比较圆心到直线的距离和半径之间的大小及通过方程组的解的个数判断直线与圆的位置关系,能用直线和圆的方程解决一些条件下圆的切线问题;领会数形结合的数学思想方法,提高发现问题、分析问题、解决问题的能力。
6、情感态度与价值观。
通过对本节课知识的探究活动,加深学生对解析法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质。
教法学法为了实现上述教学目标,本节课采取以下教学方法:
(1)恰当的利用多媒体课件,通过学生熟悉的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。
(2)采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,站在学生思维的最近发展区上启发诱导。
(3)在整个数学教学过程中,既要体现学生的主体地位,更要强调教师的主导地位,在科学讲授的同时教会学生清晰的思维和严谨的推理。
在学法上注重以下几点:
(2)在用代数法解决直线与圆的位置关系时,要能够明确运算方向,把握关键步骤,正确的处理较为复杂数据。
课堂结构设计:
整个教学过程是四步组成,自主学习,合作探究,老师辅导、课堂展示。共分为八个环节,复习、独立训练、相互探讨、老师参与、形成结论、课堂展示、评价(互评师评)、反思。
教学过程设计:
通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学。
回顾反思,拓展延伸:
直线和圆的位置关系说课稿篇七
三、目的分析:
1、知识目标:
2、能力目标:
要使学生体会用代数方法处理几何问题的思路和“数形结合”的思想方法。
四、教法分析:
1、教学方法:启发式讲授法、演示法、辅导法。
2、教材处理:
(1)例题1(1)(2)用两种不同的办法求解,让学生自己体会这两种方法。
通过老师引导和让学生自己探索解决,反馈学生的解决情况。
(2)增加一个过一点求圆的切线方程的题型,帮助学生增加对直线与圆的认识。
3、学法指导:本节课的学法是继续指导学生把新问题转化为已有知识解决的化归思想。
4、教具:多媒体电脑、投影仪、自做多媒体。
五、过程分析:
教学。
环节。
教学内容。
设计意图。
新课引入。
1、学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形,在学生回答的基础上,通过多媒体演示圆与直线的三种位置关系。让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。然后引入本节课的课题。
2、在上一章,我们在学习了直线的方程后,研究了点和直线、直线与直线的位置关系,本章我们已经学习了圆的方程,现在我们要研究直线与圆以及圆与圆的位置关系。
1数学产生于生活,与生活密切相关。
2、以实际问题引入有利于激发学生学习数学的兴趣,有利于扩展学生的视野。
新课讲解。
一、知识点拨:
答:把圆心到直线的距离d和半径r比较大小:
直线和圆的位置关系说课稿篇八
在本届贵阳市中青年教师教学研讨会中,修文中学提出打造有自己特色的“良知高效课堂”,整个课堂进程分四步八环节。本人承担的是直线与圆的位置关系这一堂课与大家交流,有不足之外请老师们批评指正。
从知识结构来看,直线与圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。
对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交。从直线与圆的直观感受上,学生懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系。本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会从不同角度分析思考问题,为后续学习打下基础。另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。
新课程标准的要求是能根据直线与圆的方程判断其位置关系(相交、相切、相离),体会用代数方法处理几何问题的思想,感受“形”与“数”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,本节课教学应实现如下教学目标:
掌握用圆心到直线的距离d与圆的半径r的大小比较,判断直线与圆位置关系,几何法。
理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系;体验通过比较圆心到直线的距离和半径之间的大小及通过方程组的解的个数判断直线与圆的位置关系,能用直线和圆的方程解决一些条件下圆的切线问题;领会数形结合的数学思想方法,提高发现问题、分析问题、解决问题的能力。
通过对本节课知识的探究活动,加深学生对解析法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质。
教法学法为了实现上述教学目标,本节课采取以下教学方法:
(1)恰当的利用多媒体课件,通过学生熟悉的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。
(2)采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,站在学生思维的最近发展区上启发诱导。
(3)在整个数学教学过程中,既要体现学生的主体地位,更要强调教师的主导地位,在科学讲授的同时教会学生清晰的思维和严谨的推理。
在学法上注重以下几点:
(2)在用代数法解决直线与圆的位置关系时,要能够明确运算方向,把握关键步骤,正确的处理较为复杂数据。
整个教学过程是四步组成,自主学习,合作探究,老师辅导、课堂展示。共分为八个环节,复习、独立训练、相互探讨、老师参与、形成结论、课堂展示、评价(互评师评)、反思。
通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学。
直线和圆的位置关系说课稿篇九
本节课的教学,我认为成功之处有以下几点:
1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。
2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3.本着学习----总结----再学习的思维教学模式,让学生逐步理解知识掌握知识能够很好的应用知识。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:1.学生观察得到直线和圆的三种位置关系后,我设计的是直接给出定义可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2.本节课中扩展应用环节图形给的不是很明确,如果能给出精确的图形那么学生会容易一些。
3.由于前边时间有些过长,所以小结部分有些仓促。
直线和圆的位置关系说课稿篇十
一、课程目标分析:
《普通高中数学课程标准》指出:在平面解析几何初步的教学中,教师应帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
二、教材分析:
1、教材的地位和作用:
《直线与圆的位置关系》这一节内容出现在必修2的第二章《平面解析几何初步》的第二节《圆与圆的方程》的第三小节的位置。就整套教材而言,《平面解析几何初步》一章的教学主要是让学生体会到用代数方法处理几何问题的思想,为选修教材中的《圆锥曲线与方程》一章打好基础。它是前两节《直线与直线方程》和《圆与圆的方程》的综合应用,也为后一小节《圆与圆的位置关系》提供研究方法的一个重要示例,是整个《平面解析几何初步》章节的重要内容,起着贯穿始终、应用反馈的重要作用,而且是贯彻“用代数方法处理几何问题”思想和“数形结合”方法的重要的反映内容和工具。在本章中的作用非常重要。
2、教材重点、难点。
直线和圆的位置关系说课稿篇十一
杨跟上。
一:教材:
人教版九年义务教育九年级数学上册二:学情分析。
初三学生已经具备一定的独立思考和探索能力,并能在探索过程中形成自己的观点,能在倾听别人意见的过程中逐渐完善自己的想法,因此本节课设计了探究活动,给学生提供探索与交流的空间,体现知识的形成过程。
三教学目标(知识,技能,情感态度、价值观)。
1、知识与技能。
能综合运用以前的数学知识解决与本节有关的实际问题。
3.情感态度与价值观。
(1)通过和点与圆的位置关系的类比,学习直线与圆的位置关系,培养学生类比的思维方法。
(2)培养学生的相互合作精神四:教学重点与难点:
五:教学方法:
启发探究。
六、教学环境及资源准备。
1、教学环境:学校多媒体教室。2.教学资源。
(1).教师多媒体课件,(2)学生准备硬币或其他类似圆的用具。
1、自主学习策略:通过提出问题让学生思考,帮助学生学会探索直线与圆的位置关系关系。
2、合作探究策略:通过学生动手操作与相互交流,激发学生学习兴趣,让学生在轻松愉快的教学气氛下之下掌握直线与圆的位置关系。
3、理论联系实际策略;通过学生综合运用数学知识解决直线与圆的位置关系的实际问题,培养学生利用知识解决实际问题的能力。
教学流程:
一.复习回顾,导入新课。
由点和圆的位置关系设计了两个问题,让学生独立思考,然后回答问题,为下面做准备。
二:合作交流,探求新知。
第一步,学生对直线与圆的公共点个数变化情况的探索。
通过学生动手操作和探索,然后相互交流,并画出图形,得出直线与圆的公共点个数的变化情况。
第二步,师生共同归纳出直线与圆相交、相切等有关概念。
1.设圆o的半径为r,圆心o到直线的距离为d,那么直线与圆在不同的位置关系下,d与r有什么样的数量关系?请你分别画出图形,认真观察和分析图形,类比点和圆的位置关系,看看d和r什么数量关系。
我设计了两个问题,使学生学会通过计算圆心到直线的距离,来判断直线与圆的位置关系。四:巩固提高:
在本节的教学中,我设计了两个练习、一个作业加以巩固,使学生能更好的掌握本节内容。
直线和圆的位置关系说课稿篇十二
节课的教学,我认为成功之处有以下几点:
1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。
2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
直线和圆的位置关系说课稿篇十三
“思之不慎,行而失当”,“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思意识人类早就有之。作为教师,在教学中也应适时反思教学过程的得与失。
开课时,借助微机展示“圆圆的落日慢慢从海平面升起”的动画,从而展现直线与圆的位置关系。由此引入课题——直线与圆的位置关系,学生比较感兴趣,充分感受生活中的数学知识,体验数学来源于生活。然后提出问题,引导学生大胆猜想,思考,发现三种位置关系,激发学生学习兴趣,营造探索问题的氛围。同时让学生从生活中“找”数学,“想”数学,体会到数学知识无处不在,应用数学无处不有。这也符合“数学教学应从生活经验出发”的新课程标准要求。
在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生用类比的方法来研究直线与圆的位置关系,在研究过程中,采用小组讨论的方法,给予学生足够的探索、交流的时间,培养学生互助、协作的精神,让学生在相互讨论中,集思广益,形成思维互补,从而使概念更清楚,结论更准确。最后由学生小结这一知识点,我板书在黑板上,培养学生用数学语言归纳问题的能力,同时感受收获知识的快乐。
在新知教授完毕,知识升华这块,我安排了一道实际问题,一辆火车的噪首会不会影向处在与铁路相交的另一条公路旁的学校?如果会影响,影响的时间有多长?新课标下的数学强调人人学有价值的数学,人人学有用的数学,由于此题要学生回到生活中去运用数学知识解决生活中遇到的问题,学生的积极性高涨,都急着讨论解决方案,使乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
一堂课教学下来,也发现有诸多不妥之处,让我认识到自己需要继续努力。归纳主要有以下三点:。
1、教师在课堂应当以引导者的身份出现,把课堂和讲台让位于学生,让“教师的教”真正服务于“学生的学”,而我在这一节课中因为一方面担心学生在自主研究知识的形成时会浪费时间,另一方面担心会产生意想不到的或者课前备课时没有考虑到的回答,总是把自己的思想强加给学生,比如学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生只是被动的接受,这样就会对概念的理解不是很深刻。这里可以改为让学生自己下定义,教师适当放手,以师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、有些课堂提问欠合理化、科学化,提问随意性大,缺乏针对性和启发性,导致课堂教学引导不力,问题缺乏精心安排这就使得课堂存在着不少“徒劳的提问”。让课堂时间分配的不太合理。今后应该把一些提问设计再提炼,能达到精而准。
3、在处理课后练习时,做的不够细致,这一环节是对前面探究新知识是否掌握的一个小测试,重在帮助学生掌握方法,而我在讲解练习时,只展示了解题思路,并没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。这里教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识,充分体现”授人以鱼不如授人以渔"。
总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。
将本文的word文档下载到电脑,方便收藏和打印。
直线和圆的位置关系说课稿篇十四
本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题。《圆与圆的位置关系》在旧教材中比重不大,但是在新课标中,被作为一个独立的章节,说明新课标对这一章节的要求已经有所提高。教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上得到圆与圆的位置关系的判断方法,北师大版教材中着重强调了根据圆心到直线的距离与圆的半径的关系进行判断,对用方程的思想去处理位置关系没作要求,但用方程的思想来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的基本方法,因此,我增加了用方程的思想来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧在今后整个圆锥曲线的学习中有着非常重要的意义。
作为解析几何的一堂课,判断圆与圆的位置关系,体现的正是解析几何的思想:用方程处理几何问题,用几何方法研究方程性质。所以我在教材处理上,对判断两圆位置关系用了方程的思想和几何两种方法,两种方法贯穿始终,使学生对解析几何的本质有所了解。
第一,学生学习新知识必须在已有知识和经验的基础上自主建构与形成。所以,我一开始便提出了三个问题,即复习此节相关的知识点,通过问题解决,以旧引新,提出新的问题,以类比的方法研究圆与圆的位置关系。配合几何画板的动画演示,启发学生思考当初是怎样研究判断直线与圆的位置关系的方法?这种方法是不是同样可以运用到研究圆与圆的位置关系上来?能不能用来判断圆与圆的位置关系?使学生很自然地从直线与圆的位置关系的判断方法类比到圆与圆的位置关系的判断方法。
第二,新的课程标准非常重视学生的自主探究,这是学习方式的一次革命,老师的教授过程固然重要,但学生对知识的掌握是在学生自己对知识有体验、有独立的思考和探讨的基础上,才能成为可能。所谓“学在讲之前,讲在关键处”,学生先有一个对知识的认识过程,老师再在关键处进行讲解,使学生真正完成对知识感知、形成和巩固的过程,才是对知识最好的吸收。
第三,学生的学习是在教师引导下的有目的的学习,从而教学的过程就是在教师控制下的学生自主学习和合作探究学习的过程,这个过程中的关键点是怎么样有效地控制学生自主学习和合作探究学习的时间和空间,在教学的过程中,我较好地处理了学生学习的空间与时间,既留给学生充分思考与探索的时间与空间,又严格限定时间,由此培养学生思维的敏捷性,提高课堂效率。
对于问题探究的题型选择的一些思考:
第二个问题研究是研究一个半径变化的圆与定圆相切,求题中参数变化的问题,这道题中同样要注意的是相切的两种情况,并且对于内切,要充分结合数形结合的思想,判断出两圆的半径大小关系。两题都有一定难度,处理时必须牢牢掌握知识,灵活运用。
2、时间把握。课前复习是有必要的,是为了学生类比旧知识,联想新知识,但复习旧知识的时间应该限定在三分钟以内,复习时间长会导致巩固练习的时间不足和问题展开不够充分。
3、限时训练。限时训练的目的是为了让学生更有效率地做题,限定时间过长或是过短都不利于学生提高数学能力,这点还有待研究。
直线和圆的位置关系说课稿篇十五
这是我第一次进入初三进行教学,即紧张又兴奋。经过一个学期的历练,在校领导和组内老教师的无私帮助下我有了一些进步。现以《直线和圆的位置关系》第一课时为例,反思如下。
在初三的教学过程中,我几乎是听一节上一节。而集体备课也给了我很大的帮助。通过集体备课和听课,在《直线和圆的位置关系》这节课中,我首先引导学生回忆了点与圆的位置关系及所对应的点到圆心的距离与圆半径的数量关系。从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:
1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了两道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”“公路边的学校会不会受到噪声的影响?”培养学生解决实际问题的能力。由于这两题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。
总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。
直线和圆的位置关系说课稿篇十六
这节课是义务教育课程标准实验教科书九年级上册第二十四章第2节第2课时的内容。本人在教学过程中紧紧围绕新课程理念展开教学,主要从以下几方面介绍闪光点:
一、创设情境。
1、组织学生发现,寻找,搜集和利用学习资源。
现代课程观认为课程是由教师、教材、学生和环境四要素构成的,教师和学生是课程的开发者和创造者。组织学生发现,寻找,搜集和利用学习资源是教师的一项重要职责。因此,在教学中,本人把日出这一自然现象作为课程资源引入数学教学,学生通过回想日出的景象画出图画:一幅是美术图画;一幅是一条直线和一个圆。在学生都欣赏艺术图画的美时,教师引导学生欣赏一条直线和一个圆的数学美和它的价值,它的价值在于抽象和简化,便与研究它的性质。让学生们看见了自然现象中的数学价值,同时也反应了自然现象和数学之间的联系。然后,我引导学生把变化着的自然现象再抽象成数学问题,引出直线和圆的相交、相切、相离三种关系。
2、创设丰富的教学情境,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性。本人在教学第一环节用现实生活中日出这一景观,让学生享受美的情境中,在充分的想象中,从生活中抽象出数学模型,因此让学生画出两种不同的日出图画,美术的图画让学生看见了生活中的美。但在教学中本人着重引导学生欣赏另一种图画是抽象的数学美,在欣赏美的同时,体会生活中的数学,从而激发学生的求知欲。
3、给学生提供合作交流的空间和时间。首先给学生的自主学习提供时间,让学生自己画出日出情景,接着合作交流两种日出的图画,这样为学生创设合作交流的空间。
4、组织学生营造教室中的积极的心理氛围。本人在教学中注重这一方面的渗透。教学第一环节中,学生画出两种不同的画面后,及时反馈,给予表扬和鼓励。尤其是教学过程中,我班田文洁同学由于偏科、数学底子薄弱,我发现她在画图中碰到老师的目光马上避开,老师意识到她画图中可能有问题,我便走到她面前,与她交流,启发她如何着手,并且诱导她从数学角度思考又该怎样画,这就给了她知识上的启发和心理上的支持。还有看见胡海林没有动笔和本,便走过去摸摸他的头,并用温和的目光问:“没有思路吗?”我启发引导后,让他和同桌交流,让同桌再帮助他。这样体现了对学生的信任、关心和理解。学生在老师的关爱下,学生的帮助下、受到激励和鼓励,激发了学习的兴趣,从而用自己的爱心与学生一起营造了一个平等,尊重、信任、理解和宽容的教学氛围。这正是新课程理念所倡导的。
二、新课讲解(探究新知)。
这一部分的教学中主要渗透以下几个基本理念:
1、让课堂教学充满创新活力。
(1)合作学习有利于培养学生的创新精神与创新能力。讲述直线和圆相交、相切、相离的概念时,通过师生合作交流得出两种方法,即交点的个数及点到直线的距离d与半径r之间的关系,在合作交流中学生加深了对知识的理解和掌握、同时也有利于创新精神和创新能力的培养。
(2)探究过程是培养创新精神和创新能力的重要途径。例:在讲概念时,提出这一个问题:“通过回忆刚才画出日出的图画,同学们发现直线与圆有三种位置,各自有什么特点?”这就为学生提供了探究的空间,学生很容易得出交点个数,及时抓住探究过程中这一创新的“火花”,给予欣赏和激励,从而掌握基础知识和基本技能。
2、教学活动中尊重学生已有的知识和能力。
(1)尊重学生已有的知识和学生的经验。在讲d与r的关系时,复习了上节所学点和圆的位置关系,这样,学生学习新知识是在原有知识基础上自我构建的过程,了解学生的知识基础是老师备课的一项重要内容。
(2)尊重学生独特的感受和理解。由于学生间认知上、情感上的差异,这一部分教学很多学生对点到直线的距离即d与r关系很难表述,甚至想不到,所以曾多次激励学生谈独特的见解。
(3)把新知识纳入到原有认知结构中去。新知识是学生已获得的知识,是学生自我建构后获得的知识,新知识在获得后,还有一个重要的任务就是把新知识以一定的方式组织起来,纳到原有的认知结构中去,便于记忆和提取。这一环节充分体现,即讲完两种方法后便出示表格进行归纳和总结,从而帮助学生不断优化认知结构。
3、提倡自主,合作,探究的学习方式。这一理念在这一环节的教学中又得到充分体现。采用独立思考、分组讨论,合作交流得出本节的重要内容即本节的重点。
4、注重教师是学习活动的参与者。教师应引导学生在自主探索和合作交流中达到对新知识的理解。教学中我发现冯成同学的第二种方式是大部分学生没有想到的,并且讲述很好,过渡自然。因此异常兴奋,我与同学们同时鼓掌,即达到高潮。充分体现了师生间共同分享感情和认识。
三、巩固练习(深化练习)。
1、练习符合学生的认知规律,难易度适中。
2、练习量适中,题型多样,有选择题,填空题、解答题。
3、注重分层教学和能力培养、持续发展,设计了必做题,选做题。
四、课堂小结:
课堂小结是一个重要的环节,本人给学生一定的思考和交流的空间,除了让学生自己总结本节知识外,还用表格的形式又展现给大家,让同学们再次回顾、反思、记忆。更重要的是让学生总结本节的数学方法和数学思想,以及生活中处处充满数学,数学为生活服务等理念。
不论从新课程理念,还是教学效果来看,这都是一节比较满意的课。另外,教学过程凸现双基,目标落实,教学结构完整有序,层层推进。教师对学生的尊重和爱护也都随处体现,教师对知识的精益求精,让这一节课所有的知识点都清晰地呈现在学生面前,教师对学生间的相互评价,相互合作无疑又为学生间的友谊注入新的动力,作业设计分层教学,有必做题和选做题。
当然,这节课仍有需要改进的地方:
一、语言有待锤炼,在整节课中,老师的提问过于频繁,其中不乏有很多较好的提问起到点拔、引导作用,但仍有一些问题不必要的,且提问时废话较多。
二、时间分配的不太合理,练习时间稍有不足,因前面内容即创设情境和探究新知识占用较多时间,所以后面的练习时间相对较短,对于分层教学处理练习就显得仓促。
三、板书不够规范,因本节书本没有例题,所以应在黑板上板书作业格式,这样在以后作业中有格式示范,书写规范。
四、教学过程不太注重数学思想渗透,例:创设情境中画图,导出直线与圆的三种位置关系,要启发诱导学生采用了什么数学思想。
针对以上问题,在以后的教学中,要加强语言锤炼,要注重分层教学,注重能力培养,要注重数学思想和方法渗透。
总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。