有线传输协议(通用17篇)
在生活和工作中,总结是我们进步的动力之一,我们是否需要好好总结一番呢?总结可以培养我们的思考能力和分析能力。掌握总结的写作要领,可以参考以下范文,丰富自己的写作技巧。
有线传输协议篇一
随着计算机网络的迅速发展,人们社会生活中的各个方面都离不开计算机技术。
然而计算机网络技术给人类带来的不止是更加便利的生活条件,同时也给人们的信息安全带来了一个巨大的挑战。
很多黑客运用计算机技术从其他的计算机上窃取用户的私密资料或者一些保密信息来谋取私利,为计算机用户带来了巨大的利益损失以及精神伤害,这是所有计算机用户不愿意见到的局面。
所以就目前计算机的发展现状而言,要求国家以及企业要加强对计算机网络安全的重视,切实采取一些措施来对计算机的安全性问题以及计算机用户的利益进行保障。
本文就对计算机网络运用过程中出现的一些隐患进行介绍,并针对这些问题提出了对应的解决方案。
希望能够给相关部门一些可用的建议,使计算机用户的安全得到保障。
随着社会生活节奏的加快,计算机网络得到了广泛的应用,在人们生活中的地位也越来越重要。
社会生活中的很多信息都需要通过计算机来处理。
这在给人们生活带来方便的同时,也使不法分子有了可乘之机,人们信息暴露的可能性大大增加。
攻击者可以窃听网上的信息,窃取网络数据库的信息,还可以随意篡改用户计算机的内容,泄露计算机用户的各种数据,使计算机用户被各种不必要的骚扰。
而一些关键信息的泄露,无论是对个人还是对企业或者是对国家带来的损失都是难以估量的。
所以,这种状况就要求我们加大对计算机网络安全的保护,通过一些制度、法律的建设,来确保计算机网络运行环境的安全,为计算机用户的安全带来保障。
1计算机网络安全概述
由于计算机使用者自身的知识储备与认知不同,每个人对于计算机网络安全的认知也有所差异,因此,在这计算机网络安全的人之上面尚未达成共识,但有一点可以确定,即计算机网络安全不应当只局限于硬件方面,系统软件方面的安全问题也应当归属到其中,现如今计算机网络安全问题主要来源于人为网络入侵以及攻击。
网络安全是指保护网络系统中的软件以及硬件免受伤害,进而保障网络系统的正常运转。
2计算机网络安全中可能存在的问题
随着计算机与互联网的快速发展,计算机在人类生活中的运用可谓是人类社会前进的一大步。
它通过互联网的连接,大大地拉近了每一个人之间的距离,使人可以无视空间、时间的距离,完成相关的工作以及加强情感之间的交流。
这样对于提高工作效率以及家庭方面的和谐有着巨大的帮助。
但是与此同时,互联网的广泛使用,使人们的信息更容易被人通过技术手段在神不知鬼不觉中窃取,加以利用,对人们的信息财产安全造成了巨大的威胁。
在计算机网络安全中,一般有着几种较为典型的问题,具体可以归结为下面几点:首先,计算机有着它自己的一个运行系统,这是整个计算机能进行工作的核心。
也正是由于它的重要地位,所以很多黑客也将“工作”的重点放在这里,重点攻克。
当黑客找到计算机核心系统中存在的问题之后,就会从这方面着手,将病毒植入到用户的系统当中去。
这样当用户使用电脑时,他们就可以从远程对用户的电脑进行操控,使用户的电脑瘫痪,为自己谋取私利或者是从中拷贝他们需要的资料,对用户或者是用户的公司以及家庭的安全保障产生的巨大的威胁,严重影响了用户的正常生活,使计算机用户的网络安全无法得到保障。
除了电脑的系统中可能存在问题,一些用户自行下载的电脑软件可能也会有着这方面的隐患,黑客同样是将病毒植入到软件中去,当用户下载并打开软件时,黑客会使用同样的手段侵入系统来对用户的主机进行攻击。
还有一些自动弹出的网页,网页上往往会显示一些很诱人的东西,使人们流连忘返,从而点进页面,给予不法分子的可乘之机,将病毒通过网页植入用户的电脑之中,以此为自己谋取私利,对用户的安全产生危害。
除了以上两点之外,很多黑客还会采用修改域名、修改ip地址的方式来对用户进行麻痹,使用户在不经意间将病毒植入到自己的电脑中去。
当他们将这些东西都隐藏起来之后,很多用户无法辨别问题所在,还会继续访问,这时他们会将隐藏的病毒发动起来,使用户的电脑出现问题,给用户带来巨大的经济损失。
对用户电脑造成威胁较大的还有就是一些专门攻击计算机系统的病毒了。
这些病毒由不法分子编写而成,通过各种各样的软件或者是互联网中的网页以及各种漏洞,进入到用户的电脑中去,并隐藏在关键的部落。
当制造者开始启动病毒所隐藏的程序之时,被病毒侵入的用户的电脑就有可能出现一些特定的图案,或者是数据全部丢失,严重的还会死机。
比如当初在国内引发一阵恐慌的“熊猫烧香”病毒,就是计算机病毒对用户的个人电脑造成巨大威胁的一个典型案例,给计算机用户的安全带来了极大的威胁。
还有很多用户的电脑上没有相应的保护自己电脑的软件,这对于用户来说是一个巨大的挑战。
没有保护计算机的软件就意味着计算机可以随时被不法分子的病毒入侵,毁灭计算机的系统结构,出现蓝屏等一系列症状,很多用户都经常忽视这个问题,熟不知,这样一个软件可以帮助计算机的用户避免绝大多数来自病毒的威胁。
最后,除了“敌方”对计算机网络安全造成威胁之外,我们的“自己人”对网络安全问题也有着一定的责任。
很多用户在上网的时候会不经意的浏览一些网页,黑客们常常将一些对系统具有攻击性的病毒藏入网页当中,当用户打开网页的时候,病毒便会自动植入用户的系统当中,使用户的安全无法得到保障,给用户带来了极大的损失。
还有一些用户对网络安全的保护不够严密,一些密码设置没有做到位,比如123456这种简单的密码,这就相当于给了犯罪分子可乘之机,将自己网络的门户向犯罪分子大开,使自己的信息,金钱以及物品被盗用,这就对个人的计算机网络安全造成了很大的隐患。
3影响网络安全的因素
通过笔者分析,影响网络安全的因素主要有以下几种:(1)用户自身因素。
通过对众多计算机用户进行问卷调查,可以发现许多用户的网络安全意识并不强,这也导致计算机受到恶意破坏的几率增加,有时甚至会将涉及自身的信息泄露出去,这也导致人为因素已经发展成为最大的隐患。
与此同时,管理员在控制管理计算机时,拥有一定的权限,而这种权限很容易被他人所利用,进而导致机密文件的泄露。
(2)网络系统出现漏洞。
系统出现漏洞是一项不容忽视的因素,而这些漏洞的出现一方面是来自于计算机系统,而另一方面是来自软件。
不法人员在侵入计算机时,通常会选择cpu与内存作为攻击对象,通过向服务器发送巨量的数据包,进而占据计算机的内存,导致请求无法予以及时的处理,简单来说,就是无法进入网站,不能进行正常的计算机操作。
(3)黑客攻击手段的多样性。
系统出现安全问题无可避免,几乎每天都会产生新的安全问题,但由于安全系统的更新速度过慢,在遇到新的安全问题时,在解决问题上需要花费大量的时间与精力,一个安全问题尚未解决,已经出现了另一个安全问题。
而黑客攻击手段具有多样性,只需要在原有的入侵方式上进行细微的改动,安全防护软件就需要进行长时间的分析。
4提高计算机网络安全的措施
要想彻底解决计算机网络安全问题,确保计算机网络技术都被用在正当的方面,保护用户的个人信息不被泄露出去,就要采取相关的策略来解决计算机网络频频出现问题的状况。
主要可以从以下五点来考虑:(1)要对计算机的系统时刻不断地进行更新升级。
计算机系统作为计算机中最核心的部分,必须时刻保持在一个能力最强的状态,对病毒进行监视,当新的病毒品种出现的时候,计算机系统必须能够做出相应的升级来应对新出的病毒,为用户的安全提供保护。
病毒是无时无刻的不在更新与升级的,每时每刻都会变得具有更加强大的破坏与入侵功能,其入侵的手段也会不断的变得多样化。
如果系统从建立之后就不进行更新升级,计算机的防线就会不断的“老化”,那么日新月异的病毒就可以很轻易的攻破系统的防线,使计算机内的个人信息造成泄露,对用户造成难以想象的损失。
(2)要建立一个具有丰富病毒资料的病毒库,并且配备相关的防火墙。
计算机系统内应该对目前被人所熟知的所有的病毒情况进行录入,并针对这些病毒建立一个强大的防火墙,随时对新出的病毒进行相应的更新并建立相应的病毒库与防火墙,对用户的网络安全进行最大的保护。
这样当用户被黑客所制造的病毒企图攻入主机的时候,计算机就能快速的将其识别出来,并把它隔离消灭掉,从而保障计算机用户的安全。
(3)要重视对计算机内信息的保护问题。
计算机里的信息往往都是比较重要的,计算机的使用者应该采取一定的防护措施来对其进行保护,比如,对关键的数据进行加密,密码的设置也应该尽量的复杂一点,最好大写字母、小写字母、数字、符号全部都占一部分,这样黑客就会因为密码足够复杂很难对密码进行破译,从而保障了用户计算机的安全。
同样也可以设置多重密码,第一层密码,第二层密码等等,每一层密码都复杂一点,这样即使数据资料被窃取,也可以加大对方破译密码的难度,给予计算机用户足够的反应时间,做出相应的应对措施,有效的防止对方轻易的得到关键的信息,为用户提供相应的安全保障。
(4)要加强用户的安全意识。
黑客将病毒入侵到计算机用户的电脑中,往往都是利用了用户的安全意识不足。
比如:没有及时更新病毒库与防火墙,点进了一个充满各种病毒的网页,从而被病毒入侵,对用户的信息安全造成了巨大的危害。
平时在使用计算机的过程中,要注意保护自己的计算机,尽量少进行一些违法操作。
对计算机用户安全意识的教育,我认为其产生的作用在计算机用户安全保障中是占很大一部分比例的,只有用户自己的安全意识提升了,用户的.安全才能得到真正的全方位的保障。
(5)加强网络安全的管理,为计算机网络安全运行制定合理有效的规章制度。
只有国家指定了相应的法律,有了法律对黑客的制裁,才会使网络黑客在窃取他人信息的时候有所忌惮,从而有所收敛;而加强对网络安全的管理,可以使打击病毒的力度加大,从源头消灭各式各样的病毒,给黑客的入侵造成极大的困难,降低了用户被病毒入侵的概率,减少了病毒的出现,大大降低了用户使用计算机的隐患。
5总结
解决计算机网络安全问题,不是仅仅通过以上的几点就能做到的,这需要每一个人包括你我在内,加强对计算机网络安全问题的重视,并掌握相关计算机网络安全技术的知识并能够运用到实践当中去。
在现实生活中面对计算机网络安全问题时,不至于惊慌失措,能够快速找到最适合最简便的方法去处理计算机遇到的网络安全问题,做好安全隐患的处理,才能充分发挥计算机网络安全技术在现在社会建设中的重要作用。
保护计算机网络运行的安全,才能为包括你我在内的广大计算机用户提供更加良好的使用体验。
参考文献
[1]彭新光.计算机网络安全技术与应用[m].科学出版社,2005.
[2]邵波,王其和.计算机网络安全技术及应用[m].电子工业出版社,2005.
[3]雷渭侣.计算机网络安全技术与应用[m].清华大学出版社,2010.
有线传输协议篇二
摘要:有线电视光缆网络传输技术具有损耗少、传输效率高、稳定性好的特点,在提高画面质量、丰富有线电视功能方面发挥了重要作用。但光缆网络传输中也会出现多种故障问题,包括熔接不当、熔接记录不准、供电问题、光设备接头接触不良、外部破坏等。维修人员应开展深入的故障分析,采取科学的处理方法,并注重日常维护管理,从而确保有线电视的正常接收。
关键词:有线电视;光缆;网络传输技术;维护;管理。
有线电视在国内的应用已有多年时间,传输技术不断发展,随着光缆网络传输技术的广泛使用,有线电视播放质量得到显著提高,无论是传输速度还是画面清晰度都较原先实现了飞跃。但光缆网络传输过程中也会出现一些故障问题,必须及时加以解决,积极开展日常的维护管理至关重要。
有线传输协议篇三
说明:
1).本文以tcp的发展历程解析容易引起混淆,误会的方方面面
5).本文给出一个提纲,如果想了解细节,请直接查阅rfc
6).翻来覆去,终于找到了这篇备忘,本文基于这篇备忘文档修改。
1.网络协议设计
iso提出了osi分层网络模型,这种分层模型是理论上的,tcp/ip最终实现了一个分层的协议模型,每一个层次对应一组网络协议完成一组特定的功能,该组网络协议被其下的层次复用和解复用。这就是分层模型的本质,最终所有的逻辑被编码到线缆或者电磁波。
分层模型是很好理解的,然而对于每一层的协议设计却不是那么容易。tcp/ip的漂亮之处在于:协议越往上层越复杂。我们把网络定义为互相连接在一起的设备,网络的本质作用还是“端到端”的通信,然而希望互相通信的设备并不一定要“直接”连接在一起,因此必然需要一些中间的设备负责转发数据,因此就把连接这些中间设备的线缆上跑的协议定义为链路层协议,实际上所谓链路其实就是始发与一个设备,通过一根线,终止于另一个设备。我们把一条链路称为“一跳”。因此一个端到端的网络包含了“很多跳”。
和ip协议
终止于ip协议,我们已经可以完成一个端到端的通信,为何还需要tcp协议?这是一个问题,理解了这个问题,我们就能理解tcp协议为何成了现在这个样子,为何如此“复杂”,为何又如此简单。
首先我们认识一下为何ip协议是沙漏的细腰部分。它的下层是繁多的链路层协议,这些链路提供了相互截然不同且相差很远的语义,为了互联这些异构的网络,我们需要一个网络层协议起码要提供一些适配的功能,另外它必然不能提供太多的“保证性服务”,因为上层的保证性依赖下层的约束性更强的保证性,你永远无法在一个100m吞吐量的链路之上实现的ip协议保证1000m的吞吐量...
ip协议设计为分组转发协议,每一跳都要经过一个中间节点,路由的设计是tcp/ip网络的另一大创举,这样,ip协议就无需方向性,路由信息和协议本身不再强关联,它们仅仅通过ip地址来关联,因此,ip协议更加简单。路由器作为中间节点也不能太复杂,这涉及到成本问题,因此路由器只负责选路以及转发数据包。
因此传输控制协议必然需要在端点实现。在我们详谈tcp协议之前,首先要看一下它不能做什么,由于ip协议不提供保证,tcp也不能提供依赖于ip下层链路的这种保证,比如带宽,比如时延,这些都是链路层决定的,既然ip协议无法修补,tcp也不能,然而它却能修正始于ip层的一些“不可保证性质”,这些性质包括ip层的不可靠,ip层的不按顺序,ip层的无方向/无连接。
将该小节总结一下,tcp/ip模型从下往上,功能增加,需要实现的设备减少,然而设备的复杂性却在增加,这样保证了成本的最小化,至于性能或者因素,靠软件来调节吧,tcp协议就是这样的软件,实际上最开始的时候,tcp并不考虑性能,效率,公平性,正是考虑了这些,tcp协议才复杂了起来。
协议
这是一个纯软件协议,为何将其设计上两个端点,参见上一小节,本节详述tcp协议,中间也穿插一些简短的论述。
协议
确切的说,tcp协议有两重身份,作为网络协议,它弥补了ip协议尽力而为服务的不足,实现了有连接,可靠传输,报文按序到达。作为一个主机软件,它和udp以及左右的传输层协议隔离了主机服务和网络,它们可以被看做是一个多路复用/解复用器,将诸多的主机进程数据复用/解复用到ip层。可以看出,不管从哪个角度,tcp都作为一个接口存在,作为网络协议,它和对端的tcp接口,实现tcp的控制逻辑,作为多路复用/解复用器,它和下层ip协议接口,实现协议栈的功能,而这正是分层网络协议模型的基本定义(两类接口,一类和下层接口,另一类和对等层接口)。
我们习惯于将tcp作为协议栈的最顶端,而不把应用层协议当成协议栈的一部分,这部分是因为应用层被tcp/udp解复用了之后,呈现出了一种太复杂的局面,应用层协议用一种不同截然不同的方式被解释,应用层协议习惯于用类似asn.1标准来封装,这正体现了tcp协议作为多路复用/解复用器的重要性,由于直接和应用接口,它可以很容易直接被应用控制,实现不同的传输控制策略,这也是tcp被设计到离应用不太远的地方的原因之一。
总之,tcp要点有四,一曰有连接,二曰可靠传输,三曰数据按照到达,四曰端到端流量控制。注意,tcp被设计时只保证这四点,此时它虽然也有些问题,然而很简单,然而更大的问题很快呈现出来,使之不得不考虑和ip网络相关的东西,比如公平性,效率,因此增加了拥塞控制,这样tcp就成了现在这个样子。
3.2.有连接,可靠传输,数据按序到达的tcp
ip协议是没有方向的,数据报传输能到达对端全靠路由,因此它是一跳一跳地到达对端的,只要有一跳没有到达对端的路由,那么数据传输将失败,其实路由也是互联网的核心之一,实际上ip层提供的核心基本功能有两点,第一点是地址管理,第二点就是路由选路。tcp利用了ip路由这个简单的功能,因此tcp不必考虑选路,这又一个它被设计成端到端协议的原因。
既然ip已经能尽力让单独的数据报到达对端,那么tcp就可以在这种尽力而为的网络上实现其它的更加严格的控制功能。tcp给无连接的ip网络通信增加了连接性,确认了已经发送出去的数据的状态,并且保证了数据的顺序。
3.2.1.有连接
这是tcp的基本,因为后续的传输的可靠性以及数据顺序性都依赖于一条连接,这是最简单的实现方式,因此tcp被设计成一种基于流的协议,既然tcp需要事先建立连接,之后传输多少数据就无所谓了,只要是同一连接的数据能识别出来即可。
疑难杂症1:3次握手和4次挥手
tcp使用3次握手建立一条连接,该握手初始化了传输可靠性以及数据顺序性必要的信息,这些信息包括两个方向的初始序列号,确认号由初始序列号生成,使用3次握手是因为3次握手已经准备好了传输可靠性以及数据顺序性所必要的信息,该握手的第3次实际上并不是需要单独传输的,完全可以和数据一起传输。
tcp使用4次挥手拆除一条连接,为何需要4次呢?因为tcp是一个全双工协议,必须单独拆除每一条信道。注意,4次挥手和3次握手的意义是不同的,很多人都会问为何建立连接是3次握手,而拆除连接是4次挥手。3次握手的目的很简单,就是分配资源,初始化序列号,这时还不涉及数据传输,3次就足够做到这个了,而4次挥手的目的是终止数据传输,并回收资源,此时两个端点两个方向的序列号已经没有了任何关系,必须等待两方向都没有数据传输时才能拆除虚链路,不像初始化时那么简单,发现syn标志就初始化一个序列号并确认syn的序列号。因此必须单独分别在一个方向上终止该方向的数据传输。
疑难杂症2:time_wait状态
为何要有这个状态,原因很简单,那就是每次建立连接的时候序列号都是随机产生的,并且这个序列号是32位的,会回绕。现在我来解释这和time_wait有什么关系。
任何的tcp分段都要在尽力而为的ip网络上传输,中间的路由器可能会随意的缓存任何的ip数据报,它并不管这个ip数据报上被承载的是什么数据,然而根据经验和互联网的大小,一个ip数据报最多存活msl(这是根据地球表面积,电磁波在各种介质中的传输速率以及ip协议的ttl等综合推算出来的,如果在火星上,这个msl会大得多...)。
现在我们考虑终止连接时的被动方发送了一个fin,然后主动方回复了一个ack,然而这个ack可能会丢失,这会造成被动方重发fin,这个fin可能会在互联网上存活msl。
如果没有time_wait的话,假设连接1已经断开,然而其被动方最后重发的那个fin(或者fin之前发送的任何tcp分段)还在网络上,然而连接2重用了连接1的所有的5元素(源ip,目的ip,tcp,源端口,目的端口),刚刚将建立好连接,连接1迟到的fin到达了,这个fin将以比较低但是确实可能的概率终止掉连接2.
为何说是概率比较低呢?这涉及到一个匹配问题,迟到的fin分段的序列号必须落在连接2的一方的期望序列号范围之内。虽然这种巧合很少发生,但确实会发生,毕竟初始序列号是随机产生了。因此终止连接的主动方必须在接受了被动方且回复了ack之后等待2*msl时间才能进入close状态,之所以乘以2是因为这是保守的算法,最坏情况下,针对被动方的ack在以最长路线(经历一个msl)经过互联网马上到达被动方时丢失。
为了应对这个问题,rfc793对初始序列号的生成有个建议,那就是设定一个基准,在这个基准之上搞随机,这个基准就是时间,我们知道时间是单调递增的。然而这仍然有问题,那就是回绕问题,如果发生回绕,那么新的序列号将会落到一个很低的值。因此最好的办法就是避开“重叠”,其含义就是基准之上的随机要设定一个范围。
要知道,很多人很不喜欢看到服务器上出现大量的time_wait状态的连接,因此他们将time_wait的值设置的很低,这虽然在大多数情况下可行,然而确实也是一种冒险行为。最好的方式就是,不要重用一个连接。
疑难杂症3:重用一个连接和重用一个套接字
这是根本不同的,单独重用一个套接字一般不会有任何问题,因为tcp是基于连接的。比如在服务器端出现了一个time_wait连接,那么该连接标识了一个五元素,只要客户端不使用相同的源端口,连接服务器是没有问题的,因为迟到的fin永远不会到达这个连接。记住,一个五元素标识了一个连接,而不是一个套接字(当然,对于bsd套接字而言,服务端的accept套接字确实标识了一个连接)。
3.2.2.传输可靠性
基本上传输可靠性是靠确认号实现的,也就是说,每发送一个分段,接下来接收端必然要发送一个确认,发送端收到确认后才可以发送下一个字节。这个原则最简单不过了,教科书上的“停止-等待”协议就是这个原则的字节版本,只是tcp使用了滑动窗口机制使得每次不一定发送一个字节,但是这是后话,本节仅仅谈一下确认的超时机制。
怎么知道数据到达对端呢?那就是对端发送一个确认,但是如果一直收不到对端的确认,发送端等多久呢?如果一直等下去,那么将无法发现数据的丢失,协议将不可用,如果等待时间过短,可能确认还在路上,因此等待时间是个问题,另外如何去管理这个超时时间也是一个问题。
疑难杂症4:超时时间的计算
绝对不能随意去揣测超时的时间,而应该给出一个精确的算法去计算。毫无疑问,一个tcp分段的回复到达的时间就是一个数据报往返的时间,因此标准定义了一个新的名词rtt,代表一个tcp分段的往返时间。然而我们知道,ip网络是尽力而为的,并且路由是动态的,且路由器会毫无先兆的缓存或者丢弃任何的数据报,因此这个rtt是需要动态测量的,也就是说起码每隔一段时间就要测量一次,如果每次都一样,万事大吉,然而世界并非如你所愿,因此我们需要找到的恰恰的一个“平均值”,而不是一个准确值。
这个平均值如果仅仅直接通过计算多次测量值取算术平均,那是不恰当的,因为对于数据传输延时,我们必须考虑的路径延迟的瞬间抖动,否则如果两次测量值分别为2和98,那么超时值将是50,这个值对于2而言,太大了,结果造成了数据的延迟过大(本该重传的等待了好久才重传),然而对于98而言,太小了,结果造成了过度重传(路途遥远,本该很慢,结果大量重传已经正确确认但是迟到的tcp分段)。
因此,除了考虑每两次测量值的偏差之外,其变化率也应该考虑在内,如果变化率过大,则通过以变化率为自变量的函数为主计算rtt(如果陡然增大,则取值为比较大的正数,如果陡然减小,则取值为比较小的负数,然后和平均值加权求和),反之如果变化率很小,则取测量平均值。这是不言而喻的,这个算法至今仍然工作的很好。
疑难杂症5:超时计时器的管理-每连接单一计时器
很显然,对每一个tcp分段都生成一个计时器是最直接的方式,每个计时器在rtt时间后到期,如果没有收到确认,则重传。然而这只是理论上的合理,对于大多数操作系统而言,这将带来巨大的内存开销和调度开销,因此采取每一个tcp连接单一计时器的设计则成了一个默认的选择。可是单一的计时器怎么管理如此多的发出去的tcp分段呢?又该如何来设计单一的计时器呢。
设计单一计时器有两个原则:1.每一个报文在长期收不到确认都必须可以超时;2.这个长期收不到中长期不能和测量的rtt相隔太远。因此rfc2988定义一套很简单的原则:
a.发送tcp分段时,如果还没有重传定时器开启,那么开启它。
b.发送tcp分段时,如果已经有重传定时器开启,不再开启它。
c.收到一个非冗余ack时,如果有数据在传输中,重新开启重传定时器。
d.收到一个非冗余ack时,如果没有数据在传输中,则关闭重传定时器。
我们看看这4条规则是如何做到以上两点的,根据a和c(在c中,注意到ack是非冗余的),任何tcp分段只要不被确认,超时定时器总会超时的。然而为何需要c呢?只有规则a存在的话,也可以做到原则1。实际上确实是这样的,但是为了不会出现过早重传,才添加了规则c,如果没有规则c,那么万一在重传定时器到期前,发送了一些数据,这样在定时器到期后,除了很早发送的数据能收到ack外,其它稍晚些发送的数据的ack都将不会到来,因此这些数据都将被重传。有了规则c之后,只要有分段ack到来,则重置重传定时器,这很合理,因此大多数正常情况下,从数据的发出到ack的到来这段时间以及计算得到的rtt以及重传定时器超时的时间这三者相差并不大,一个ack到来后重置定时器可以保护后发的数据不被过早重传。
这里面还有一些细节需要说明。一个ack到来了,说明后续的ack很可能会依次到来,也就是说丢失的可能性并不大,另外,即使真的有后发的tcp分段丢失现象发生,也会在最多2倍定时器超时时间的范围内被重传(假设该报文是第一个报文发出启动定时器之后马上发出的,丢失了,第一个报文的ack到来后又重启了定时器,又经过了一个超时时间才会被重传)。虽然这里还没有涉及拥塞控制,但是可见网络拥塞会引起丢包,丢包会引起重传,过度重传反过来加重网络拥塞,设置规则c的结果可以缓解过多的重传,毕竟将启动定时器之后发送的数据的重传超时时间拉长了最多一倍左右。最多一倍左右的超时偏差做到了原则2,即“这个长期收不到中长期不能和测量的rtt相隔太远”。
还有一点,如果是一个发送序列的最后一个分段丢失了,后面就不会收到冗余ack,这样就只能等到超时了,并且超时时间几乎是肯定会比定时器超时时间更长。如果这个分段是在发送序列的靠后的时间发送的且和前面的发送时间相隔时间较远,则其超时时间不会很大,反之就会比较大。
疑难杂症6:何时测量rtt
目前很多tcp实现了时间戳,这样就方便多了,发送端再也不需要保存发送分段的时间了,只需要将其放入协议头的时间戳字段,然后接收端将其回显在ack即可,然后发送端收到ack后,取出时间戳,和当前时间做算术差,即可完成一次rtt的测量。
3.2.3.数据顺序性
基本上传输可靠性是靠序列号实现的。
疑难杂症7:确认号和超时重传
确认号是一个很诡异的东西,因为tcp的发送端对于发送出去的一个数据序列,它只要收到一个确认号就认为确认号前面的数据都被收到了,即使前面的某个确认号丢失了,也就是说,发送端只认最后一个确认号。这是合理的,因为确认号是接收端发出的,接收端只确认按序到达的最后一个tcp分段。
另外,发送端重发了一个tcp报文并且接收到该tcp分段的确认号,并不能说明这个重发的报文被接收了,也可能是数据早就被接收了,只是由于其ack丢失或者其ack延迟到达导致了超时。值得说明的是,接收端会丢弃任何重复的数据,即使丢弃了重复的数据,其ack还是会照发不误的。
标准的早期tcp实现为,只要一个tcp分段丢失,即使后面的tcp分段都被完整收到,发送端还是会重传从丢失分段开始的所有报文,这就会导致一个问题,那就是重传风暴,一个分段丢失,引起大量的重传。这种风暴实则不必要的,因为大多数的tcp实现中,接收端已经缓存了乱序的分段,这些被重传的丢失分段之后的分段到达接收端之后,很大的可能性是被丢弃。关于这一点在拥塞控制被引入之后还会提及(问题先述为快:本来报文丢失导致超时就说明网络很可能已然拥塞,重传风暴只能加重其拥塞程度)。
疑难杂症8:乱序数据缓存以及选择确认
tcp是保证数据顺序的,但是并不意味着它总是会丢弃乱序的tcp分段,具体会不会丢弃是和具体实现相关的,rfc建议如果内存允许,还是要缓存这些乱序到来的分段,然后实现一种机制等到可以拼接成一个按序序列的时候将缓存的分段拼接,这就类似于ip协议中的分片一样,但是由于ip数据报是不确认的,因此ip协议的实现必须缓存收到的任何分片而不能将其丢弃,因为丢弃了一个ip分片,它就再也不会到来了。
现在,tcp实现了一种称为选择确认的方式,接收端会显式告诉发送端需要重传哪些分段而不需要重传哪些分段。这无疑避免了重传风暴。
疑难杂症9:tcp序列号的回绕的问题
tcp的序列号回绕会引起很多的问题,比如序列号为s的分段发出之后,m秒后,序列号比s小的序列号为j的分段发出,只不过此时的j比上一个s多了一圈,这就是回绕问题,那么如果这后一个分段到达接收端,这就会引发彻底乱序-本来j该在s后面,结果反而到达前面了,这种乱序是tcp协议检查不出来的。我们仔细想一下,这种情况确实会发生,数据分段并不是一个字节一个字节发送出去的,如果存在一个速率为1gbps的网络,tcp发送端1秒会发送125mb的数据,32位的序列号空间能传输2的32次方个字节,也就是说32秒左右就会发生回绕,我们知道这个值远小于msl值,因此会发生的。
有个细节可能会引起误会,那就是tcp的窗口大小空间是序列号空间的一半,这样恰好在满载情况下,数据能填满发送窗口和接收窗口,序列号空间正好够用。然而事实上,tcp的初始序列号并不是从0开始的,而是随机产生的(当然要辅助一些更精妙的算法),因此如果初始序列号比较接近2的32次方,那么很快就会回绕。
当然,如今可以用时间戳选项来辅助作为序列号的一个识别的部分,接收端遇到回绕的情况,需要比较时间戳,我们知道,时间戳是单调递增的,虽然也会回绕,然而回绕时间却要长很多。这只是一种策略,在此不详谈。还有一个很现实的问题,理论上序列号会回绕,但是实际上,有多少tcp的端点主机直接架设在1g的网络线缆两端并且接收方和发送方的窗口还能恰好被同时填满。另外,就算发生了回绕,也不是一件特别的事情,回绕在计算机里面太常见了,只需要能识别出来即可解决,对于tcp的序列号而言,在高速网络(点对点网络或者以太网)的两端,数据发生乱序的可能性很小,因此当收到一个序列号突然变为0或者终止序列号小于起始序列号的情况后,很容易辨别出来,只需要和前一个确认的分段比较即可,如果在一个经过路由器的网络两端,会引发ip数据报的顺序重排,对于tcp而言,虽然还会发生回绕,也会慢得多,且考虑到拥塞窗口(目前还没有引入)一般不会太大,窗口也很难被填满到65536。
3.2.4.端到端的流量控制
疑难杂症10:流量控制的真实意义
很多人以为流量控制会很有效的协调两端的流量匹配,确实是这样,但是如果你考虑到网络的利用率问题,tcp的流量控制机制就不那么完美了,造成这种局面的原因在于,滑动窗口只是限制了最大发送的数据,却没有限制最小发送的数据,结果导致一些很小的数据被封装成tcp分段,报文协议头所占的比例过于大,造成网络利用率下降,这就引出了接下来的内容,那就是端到端意义的tcp协议效率。
~~~~~~~~~~~~~~~~~~~~
承上启下
终于到了阐述问题的时候了,以上的tcp协议实现的非常简单,这也是tcp的标准实现,然而很快我们就会发现各种各样的问题。这些问题导致了标准化协会对tcp协议进行了大量的修补,这些修补杂糅在一起让人们有些云里雾里,不知所措。本文档就旨在分离这些杂乱的情况,实际上,根据rfc,这些杂乱的情况都是可以找到其单独的发展轨迹的。
~~~~~~~~~~~~~~~~~~~~
4.端到端意义上的tcp协议效率
4.1.三个问题以及解决
问题1描述:接收端处理慢,导致接收窗口被填满
这明显是速率不匹配引发的问题,然而即使速率不匹配,只要滑动窗口能协调好它们的速率就好,要快都快,要慢都慢,事实上滑动窗口在这一点上做的很好。但是如果我们不得不从效率上来考虑问题的话,事实就不那么乐观了。考虑此时接收窗口已然被填满,慢速的应用程序慢腾腾的读取了一个字节,空出一个位置,然后通告给tcp的发送端,发送端得知空出一个位置,马上发出一个字节,又将接收端填满,然后接收应用程序又一次慢腾腾...这就是糊涂窗口综合症,一个大多数人都很熟悉的词。这个问题极大的浪费了网络带宽,降低了网络利用率。好比从大同拉100吨煤到北京需要一辆车,拉1kg煤到北京也需要一辆车(超级夸张的一个例子,请不要相信),但是一辆车开到北京的开销是一定的...
问题1解决:窗口通告
对于问题1,很显然问题出在接收端,我们没有办法限制发送端不发送小分段,但是却可以限制接收端通告小窗口,这是合理的,这并不影响应用程序,此时经典的延迟/吞吐量反比律将不再适用,因为接收窗口是满的,其空出一半空间表示还有一半空间有数据没有被应用读取,和其空出一个字节的空间的效果是一样的,因此可以限制接收端当窗口为0时,直接通告给发送端以阻止其继续发送数据,只有当其接收窗口再次达到mss的一半大小的时候才通告一个不为0的窗口,此前对于所有的发送端的窗口probe分段(用于探测接收端窗口大小的probe分段,由tcp标准规定),全部通告窗口为0,这样发送端在收到窗口不为0的通告,那么肯定是一个比较大的窗口,因此发送端可以一次性发出一个很大的tcp分段,包含大量数据,也即拉了好几十吨的煤到北京,而不是只拉了几公斤。
即,限制窗口通告时机,解决糊涂窗口综合症
问题2描述:发送端持续发送小包,导致窗口闲置
这明显是发送端引起的问题,此时接收端的窗口开得很大,然而发送端却不积累数据,还是一味的发送小块数据分段。只要发送了任和的分段,接收端都要无条件接收并且确认,这完全符合tcp规范,因此必然要限制发送端不发送这样的小分段。
问题2解决:nagle算法
nagel算法很简单,标准的nagle算法为:
if数据的大小和窗口的大小都超过了mss
then发送数据分段
else
if还有发出的tcp分段的确认没有到来
then积累数据到发送队列的末尾的tcp分段
else
发送数据分段
endif
endif
可是后来,这个算法变了,变得更加灵活了,其中的:
if还有发出的tcp分段的确认没有到来
变成了
if还有发出的不足mss大小的tcp分段的确认没有到来
这个算法体现了一种自适应的策略,越是确认的快,越是发送的快,虽然nagle算法看起来在积累数据增加吞吐量的同时也加大的时延,可事实上,如果对于类似交互式的应用,时延并不会增加,因为这类应用回复数据也是很快的,比如telnet之类的服务必然需要回显字符,因此能和对端进行自适应协调。
注意,nagle算法是默认开启的,但是却可以关闭。如果在开启的情况下,那么它就严格按照上述的算法来执行。
问题3.确认号(ack)本身就是不含数据的分段,因此大量的确认号消耗了大量的带宽
这是tcp为了确保可靠性传输的规范,然而大多数情况下,ack还是可以和数据一起捎带传输的。如果没有捎带传输,那么就只能单独回来一个ack,如果这样的分段太多,网络的利用率就会下降。从大同用火车拉到北京100吨煤,为了确认煤已收到,北京需要派一辆同样的火车空载开到大同去复命,因为没有别的交通工具,只有火车。如果这位复命者刚开着一列火车走,又从大同来了一车煤,这拉煤的哥们儿又要开一列空车去复命了。
问题3的解决:
rfc建议了一种延迟的ack,也就是说,ack在收到数据后并不马上回复,而是延迟一段可以接受的时间,延迟一段时间的目的是看能不能和接收方要发给发送方的数据一起回去,因为tcp协议头中总是包含确认号的,如果能的话,就将ack一起捎带回去,这样网络利用率就提高了。往大同复命的确认者不必开一辆空载火车回大同了,此时北京正好有一批货物要送往大同,这位复命者搭着这批货的火车返回大同。
如果等了一段可以接受的时间,还是没有数据要发往发送端,此时就需要单独发送一个ack了,然而即使如此,这个延迟的ack虽然没有等到可以被捎带的数据分段,也可能等到了后续到来的tcp分段,这样它们就可以取最大者一起返回了,要知道,tcp的确认号是收到的按序报文的最后一个字节的后一个字节。最后,rfc建议,延迟的ack最多等待两个分段的积累确认。
4.2.分析三个问题之间的关联
三个问题导致的结果是相同的,但是要知道它们的原因本质上是不同的,问题1几乎总是出现在接收端窗口满的情况下,而问题2几乎总是发生在窗口闲置的情况下,问题3看起来是最无聊的,然而由于tcp的要求,必须要有确认号,而且一个确认号就需要一个tcp分段,这个分段不含数据,无疑是很小的。
三个问题都导致了网络利用率的降低。虽然两个问题导致了同样的结果,但是必须认识到它们是不同的问题,很自然的将这些问题的解决方案汇总在一起,形成一个全局的解决方案,这就是如今的操作系统中的解决方案。
4.3.问题的杂糅情况
疑难杂症11:糊涂窗口解决方案和nagle算法
糊涂窗口综合症患者希望发送端积累tcp分段,而nagle算法确实保证了一定的tcp分段在发送端的积累,另外在延迟ack的延迟的那一会时间,发送端会利用这段时间积累数据。然而这却是三个不同的问题。nagle算法可以缓解糊涂窗口综合症,却不是治本的良药。
疑难杂症12:nagle算法和延迟ack
延迟ack会延长ack到达发送端的时间,由于标准nagle算法只允许一个未被确认的tcp分段,那无疑在接收端,这个延迟的ack是毫无希望等待后续数据到来最终进行积累确认的,如果没有数据可以捎带这个ack,那么这个ack只有在延迟确认定时器超时的时候才会发出,这样在等待这个ack的过程中,发送端又积累了一些数据,因此延迟ack实际上是在增加延迟的代价下加强了nagle算法。在延迟ack加nagle算法的情况下,接收端只有不断有数据要发回,才能同时既保证了发送端的分段积累,又保证了延迟不增加,同时还没有或者很少有空载的ack。
要知道,延迟ack和nagle是两个问题的解决方案。
疑难杂症13:到底何时可以发送数据
到底何时才能发送数据呢?如果单从nagle算法上看,很简单,然而事实证明,情况还要更复杂些。如果发送端已经排列了3个tcp分段,分段1,分段2,分段3依次被排入,三个分段都是小分段(不符合nagle算法中立即发送的标准),此时已经有一个分段被发出了,且其确认还没有到来,请问此时能发送分段1和2吗?如果按照nagle算法,是不能发送的,但实际上它们是可以发送的,因为这两个分段已经没有任何机会再积累新的数据了,新的数据肯定都积累在分段3上了。问题在于,分段还没有积累到一定大小时,怎么还可以产生新的分段?这是可能的,但这是另一个问题,在此不谈。
linux的tcp实现在这个问题上表现的更加灵活,它是这么判断能否发送的(在开启了nagle的情况下):
数据分段没有超越窗口边界
then
if分段在中间(上述例子中的分段1和2)||
分段是紧急模式||
通过上述的nagle算法(改进后的nagle算法)
then发送分段
endif
endif
曾经我也改过nagle算法,确切的说不是修改nagle算法,而是修改了“到底何时能发送数据”的策略,以往都是发送端判断能否发送数据的,可是如果此时有延迟ack在等待被捎带,而待发送的数据又由于积累不够或者其它原因不能发送,因此两边都在等,这其实在某些情况下不是很好。我所做的改进中对待何时能发送数据又增加了一种情况,这就是“ack拉”的情况,一旦有延迟ack等待发送,判断一下有没有数据也在等待发送,如果有的话,看看数据是否大到了一定程度,在此,我选择的是mss的一半:
数据分段没有超越窗口边界
then
if分段在中间(上述例子中的分段1和2)||
分段是紧急模式||
通过上述的nagle算法(改进后的nagle算法)
then发送分段
endif
elseif有延迟ack等待传输&&
发送队列中有待发送的tcp分段&&
发送队列的头分段大小大于mss的一半
then发送队列头分段且捎带延迟ack
endif
另外,发送队列头分段的大小是可以在统计意义上动态计算的,也不一定非要是mss大小的一半。我们发现,这种算法对于交互式网路应用是自适应的,你打字越快,特定时间内积累的分段就越长,对端回复的越快(可以捎带ack),本端发送的也就越快(以echo举例会更好理解)。
疑难杂症14:《tcp/ip详解(卷一)》中nagle算法的例子解读
这个问题在网上搜了很多的答案,有的说rfc的建议,有的说别的。可是实际上这就是一个典型的“竞态问题”:
首先服务器发了两个分段:
数据段12:ack14
数据段13:ack14,54:56
然后客户端发了两个分段:
数据段14:ack54,14:17
数据段15:ack56,17:18
可以看到数据段14本来应该确认56的,但是确认的却是54。也就是说,数据段已经移出队列将要发送但还未发送的时候,数据段13才到来,软中断处理程序抢占了数据段14的发送进程,要知道此时只是把数据段14移出了队列,还没有更新任何的状态信息,比如“发出但未被确认的分段数量”,此时软中断处理程序顺利接收了分段13,然后更新窗口信息,并且检查看有没有数据要发送,由于分段14已经移出队列,下一个接受发送检查的就是分段15了,由于状态信息还没有更新,因此分段15顺利通过发送检测,发送完成。
可以看linux的源代码了解相关信息,tcp_write_xmit这个函数在两个地方会被调用,一个是tcp的发送进程中,另一个就是软中断的接收处理中,两者在调用中的竞态就会引起《详解》中的那种情况。注意,这种不加锁的发送方式是合理的,也是最高效的,因此tcp的处理语义会做出判断,丢弃一切不该接收或者重复接收的分段的。
~~~~~~~~~~~~~~~~~~~~
承上启下
又到了该承上启下,到此为止,我们叙述的tcp还都是简单的tcp,就算是简单的tcp,也存在上述的诸多问题,就更别提继续增加tcp的复杂性了。到此为止,我们的tcp都是端到端意义上的,然而实际上tcp要跑在ip网络之上的,而ip网络的问题是很多的,是一个很拥堵网络。不幸的是,tcp的有些关于确认和可靠性的机制还会加重ip网络的拥堵。
~~~~~~~~~~~~~~~~~~~~
网络之上的tcp
5.1.端到端的tcp协议和ip协议之间的矛盾
端到端的tcp只能看到两个节点,那就是自己和对方,它们是看不到任何中间的路径的。可是ip网络却是一跳一跳的,它们的矛盾之处在于tcp的端到端流量控制必然会导致网络拥堵。因为每条tcp连接的一端只知道它对端还有多少空间用于接收数据,它们并不管到达对端的路径上是否还有这么大的容量,事实上所有连接的这些空间加在一起将瞬间超过ip网络的容量,因此tcp也不可能按照滑动窗口流量控制机制很理想的运行。
势必需要一种拥塞控制机制,反应路径的拥塞情况。
疑难杂症15:拥塞控制的本质
由于tcp是端到端协议,因此两端之间的控制范畴属于流量控制,ip网络的拥塞会导致tcp分段的丢失,由于tcp看不到中间的路由器,因此这种丢失只会发生中间路由器,当然两个端点的网卡或者ip层丢掉数据分段也是tcp看不到的。因此拥塞控制必然作用于ip链路。事实上我们可以得知,只有在以下情况下拥塞控制才会起作用:
b.只有一个tcp连接,然而它经过了一个路由器时。
其它情况下是不会拥塞的。因为一个tcp总是希望独享整条网络通路,而这对于多个连接而言是不可能的,必须保证tcp的公平性,这样这种拥塞控制机制才合理。本质上,拥塞的原因就是大家都想独享全部带宽资源,结果导致拥塞,这也是合理的,毕竟tcp看不到网络的状态,同时这也决定了tcp的拥塞控制必须采用试探性的方式,最终到达一个足以引起其“反应”的“刺激点”。
拥塞控制需要完成以下两个任务:1.公平性;2.拥塞之后退出拥塞状态。
疑难杂症16:影响拥塞的因素
我们必须认识到拥塞控制是一个整体的机制,它不偏向于任何tcp连接,因此这个机制内在的就包含了公平性。那么影响拥塞的因素都有什么呢?具有讽刺意味的是,起初tcp并没有拥塞控制机制,正是tcp的超时重传风暴(一个分段丢失造成后续的已经发送的分段均被重传,而这些重传大多数是不必要的)加重了网络的拥塞。因此重传必然不能过频,必须把重传定时器的超时时间设置的稍微长一些,而这一点在单一重传定时器的设计中得到了加强。除此tcp自身的因素之外,其它所有的拥塞都可以靠拥塞控制机制来自动完成。
另外,不要把路由器想成一种线速转发设备,再好的路由器只要接入网络,总是会拉低网络的总带宽,因此即使只有一个tcp连接,由于tcp的发送方总是以发送链路的带宽发送分段,这些分段在经过路由器的时候排队和处理总是会有时延,因此最终肯定会丢包的。
最后,丢包的延后性也会加重拥塞。假设一个tcp连接经过了n个路由器,前n-1个路由器都能顺利转发tcp分段,但是最后一个路由器丢失了一个分段,这就导致了这些丢失的分段浪费了前面路由器的大量带宽。
5.2.拥塞控制的策略
在介绍拥塞控制之前,首先介绍一下拥塞窗口,它实际上表示的也是“可以发送多少数据”,然而这个和接收端通告的接收窗口意义是不一样的,后者是流量控制用的窗口,而前者是拥塞控制用的窗口,体现了网络拥塞程度。
拥塞控制整体上分为两类,一类是试探性的拥塞探测,另一类则是拥塞避免(注意,不是常规意义上的拥塞避免)。
5.2.1.试探性的拥塞探测分为两类,之一是慢启动,之二是拥塞窗口加性扩大(也就是熟知的拥塞避免,然而这种方式是避免不了拥塞的)。
5.2.2.拥塞避免方式拥塞控制旨在还没有发生拥塞的时候就先提醒发送端,网络拥塞了,这样发送端就要么可以进入快速重传/快速恢复或者显式的减小拥塞窗口,这样就避免网络拥塞的一沓糊涂之后出现超时,从而进入慢启动阶段。
5.2.3.快速重传和快速恢复。所谓快速重传/快速恢复是针对慢启动的,我们知道慢启动要从1个mss开始增加拥塞窗口,而快速重传/快速恢复则是一旦收到3个冗余ack,不必进入慢启动,而是将拥塞窗口缩小为当前阀值的一半加上3,然后如果继续收到冗余ack,则将拥塞窗口加1个mss,直到收到一个新的数据ack,将窗口设置成正常的阀值,开始加性增加的阶段。
当进入快速重传时,为何要将拥塞窗口缩小为当前阀值的一半加上3呢?加上3是基于数据包守恒来说的,既然已经收到了3个冗余ack,说明有三个数据分段已经到达了接收端,既然三个分段已经离开了网络,那么就是说可以在发送3个分段了,只要再收到一个冗余ack,这也说明1个分段已经离开了网络,因此就将拥塞窗口加1个mss。直到收到新的ack,说明直到收到第三个冗余ack时期发送的tcp分段都已经到达对端了,此时进入正常阶段开始加性增加拥塞窗口。
疑难杂症17:超时重传和收到3个冗余ack后重传
这两种重传的意义是不同的,超时重传一般是因为网络出现了严重拥塞(没有一个分段到达,如果有的话,肯定会有ack的,若是正常ack,则重置重传定时器,若是冗余ack,则可能是个别报文丢失或者被重排序,若连续3个冗余ack,则很有可能是个别分段丢失),此时需要更加严厉的缩小拥塞窗口,因此此时进入慢启动阶段。而收到3个冗余ack后说明确实有中间的分段丢失,然而后面的分段确实到达了接收端,这因为这样才会发送冗余ack,这一般是路由器故障或者轻度拥塞或者其它不太严重的原因引起的,因此此时拥塞窗口缩小的幅度就不能太大,此时进入快速重传/快速恢复阶段。
疑难杂症18:为何收到3个冗余ack后才重传
这是一种权衡的结构,收到两个或者一个冗余ack也可以重传,但是这样的话可能或造成不必要的重传,因为两个数据分段发生乱序的可能性不大,超过三个分段发生乱序的可能性才大,换句话说,如果仅仅收到一个乱序的分段,那很可能被中间路由器重排了,那么另一个分段很可能马上就到,然而如果连续收到了3个分段都没能弥补那个缺漏,那很可能是它丢失了,需要重传。因此3个冗余ack是一种权衡,在减少不必要重传和确实能检测出单个分段丢失之间所作的权衡。
注意,冗余ack是不能捎带的。
疑难杂症19:乘性减和加性增的深层含义
为什么是乘性减而加性增呢?拥塞窗口的增加受惠的只是自己,而拥塞窗口减少受益的大家,可是自己却受到了伤害。哪一点更重要呢?我们知道tcp的拥塞控制中内置了公平性,恰恰就是这种乘性减实现了公平性。拥塞窗口的1个mss的改变影响一个tcp发送者,为了使得自己拥塞窗口的减少影响更多的tcp发送者-让更多的发送者受益,那么采取了乘性减的策略。
当然,bic算法提高了加性增的效率,不再一个一个mss的加,而是一次加比较多的mss,采取二分查找的方式逐步找到不丢包的点,然后加性增。
疑难杂症20:tcp连接的传输稳定状态是什么
首先,先说一下发送端的发送窗口怎么确定,它取的是拥塞窗口和接收端通告窗口的最小值。然后,我们提出三种发送窗口的稳定状态:
互联网络上接收端拥有大窗口的经典锯齿状
互联网络上接收端拥有小窗口的直线状态
c.直连网络端点间的满载状态下的直线状态
其中a是大多数的状态,因为一般而言,tcp连接都是建立在互联网上的,而且是大量的,比如web浏览,电子邮件,网络游戏,ftp下载等等。tcp发送端用慢启动或者拥塞避免方式不断增加其拥塞窗口,直到丢包的发生,然后进入慢启动或者拥塞避免阶段(要看是由于超时丢包还是由于冗余ack丢包),此时发送窗口将下降到1或者下降一半,这种情况下,一般接收端的接收窗口是比较大的,毕竟ip网络并不是什么很快速的网络,一般的机器处理速度都很快。
但是如果接收端特别破,处理速度很慢,就会导致其通告一个很小的窗口,这样的话,即使拥塞窗口再大,发送端也还是以通告的接收窗口为发送窗口,这样就不会发生拥塞。最后,如果唯一的tcp连接运行在一个直连的两台主机上,那么它将独享网络带宽,这样该tcp的数据流在最好的情况下将填满网络管道(我们把网络管道定义为带宽和延时的乘积),其实在这种情况下是不存在拥塞的,就像你一个人独自徘徊在飘雨黄昏的街头一样...
5.2.4.主动的拥塞避免
前面我们描述的拥塞控制方式都是试探性的检测,然后拥塞窗口被动的进行乘性减,这样在接收端窗口很大的情况下(一般都是这样,网络拥堵,分段就不会轻易到达接收端,导致接收端的窗口大量空置)就可能出现锯齿形状的“时间-窗口”图,类似在一个拥堵的北京x环上开车,发送机发动,车开动,停止,等待,发动机发动,车开动...听声音也能听出来。
虽然tcp看不到下面的ip网络,然而它还是可以通过检测rtt的变化以及拥塞窗口的变化推算出ip网络的拥堵情况的。就比方说北京东四环一家快递公司要持续送快递到西四环,当发件人发现货到时间越来越慢的时候,他会意识到“下班高峰期快到了”...
可以通过持续观测rtt的方式来主动调整拥塞窗口的大小而不是一味的加性增。然而还有更猛的算法,那就是计算两个差值的乘积:
(当前拥塞窗口-上一次拥塞窗口)x(当前的rtt-上一次的rtt)
如果结果是正数,则拥塞窗口减少1/8,若结果是负数或者0,则窗口增加一个mss。注意,这回不再是乘性减了,可以看出,减的幅度比乘性减幅度小,这是因为这种拥塞控制是主动的,而不是之前的那种被动的试探方式。在试探方式中,乘性减以一种惩罚的方式实现了公平性,而在这里的主动方式中,当意识到要拥塞的时候,tcp发送者主动的减少了拥塞窗口,为了对这种自首行为进行鼓励,采用了小幅减少拥塞窗口的方式。需要注意的是,在拥塞窗口减小的过程中,乘积的前一个差值是负数,如果后一个差值也是负数,那么结果就是继续缩减窗口,直到拥塞缓解或者窗口减少到了一定程度,使得后一个差值成了正数或者0,这种情况下,其实后一个差值只能变为0。
疑难杂症21:路由器和tcp的互动
虽然有了5.2.4节介绍的主动的拥塞检测,那么路由器能不能做点什么帮助检测拥塞呢?这种对路由器的扩展是必要的,要知道,每天有无数的tcp要通过路由器,虽然路由器不管tcp协议的任何事(当然排除连接跟踪之类的,这里所说的是标准的ip路由器),但是它却能以一种很简单的方式告诉tcp的两端ip网络发生了拥堵,这种方式就是当路由器检测到自己发生轻微拥堵的时候随机的丢包,随机丢包而不是连续丢包对于tcp而言是有重大意义的,随机丢包会使tcp发现丢弃了个别的分段而后续的分段仍然会到达接收端,这样tcp发送端就会接收到3个冗余ack,然后进入快速重传/快速恢复而不是慢启动。
这就是路由器能帮tcp做的事。
6.其它
疑难杂症22:如何学习tcp
很多人发帖问tcp相关的内容,接下来稀里哗啦的就是让看《tcp/ip详解》和《unix网络编程》里面的特定章节,我觉得这种回答很不负责任。因为我并不认为这两本书有多大的帮助,写得确实很不错,然而可以看出richardstevens是一个实用主义者,他喜欢用实例来解释一切,《详解》通篇都是用tcpdump的输出来讲述的,这种方式只是适合于已经对tcp很理解的人,然而大多数的人是看不明白的。
如果想从设计的角度来说,这两本书都很烂。我觉得应该先看点入门的,比如wiki之类的,然后看rfc文档,793,896,1122等),这样你就明白tcp为何这么设计了,而这些你永远都不能在richardstevens的书中得到。最后,如果你想,那么就看一点richardstevens的书,最重要的还是写点代码或者敲点命令,然后抓包自己去分析。
疑难杂症23:linux,windows和网络编程
6.1.总结
tcp协议是一个端到端的协议,虽然话说它是一个带流量控制,拥塞控制的协议,然而正是因为这些所谓的控制才导致了tcp变得复杂。同时这些特性是互相杂糅的,流量控制带来了很多问题,解决这些问题的方案最终又带来了新的问题,这些问题在解决的时候都只考虑了端到端的意义,但实际上tcp需要尽力而为的ip提供的网络,因此拥塞成了最终的结症,拥塞控制算法的改进也成了一个单独的领域。
在学习tcp的过程中,切忌一锅粥一盘棋的方式,一定要分清楚每一个算法到底是解决什么问题的,每一个问题和其他问题到底有什么关联,这些问题的解决方案之间有什么关联,另外tcp的发展历史也最好了解一下,这些都搞明白了,tcp协议就彻底被你掌控了。接下来你就可以学习socketapi了,然后高效的tcp程序出自你手!
有线传输协议篇四
首先我们有两种基本的加解密算法类型:对称加密,非对称加密(公私钥加密),现在介绍一下这两种加密算法的特点:
对称加密:密钥只有一个,加密解密为同一个密码,且加解密速度快,典型的对称加密算法有des、aes等,示意图如下:
图1对称加密
非对称加密:密钥成对出现(且根据公钥无法推知私钥,根据私钥也无法推知公钥),加密解密使用不同密钥(公钥加密需要私钥解密,私钥加密需要公钥解密),相对对称加密速度较慢,典型的非对称加密算法有rsa、dsa等,示意图如下:
图2非对称加密
根据上面的两种加密方法,现在我们就可以设计一种无法让他人在互联网上知道你的通讯信息的加密方法:
在服务器端存在一个公钥及私钥
客户端从服务器取得这个公钥
客户端产生一个随机的密钥
客户端通过公钥对密钥加密(非对称加密)
客户端发送到服务器端
服务器端接受这个密钥并且以后的服务器端和客户端的数据全部通过这个密钥加密(对称加密)
https通信过程的时序图如下:
图3https通信时序图
正如上图所示,我们能保证下面几点:
客户端产生的密钥只有客户端和服务器端能得到
加密的数据只有客户端和服务器端才能得到明文
客户端到服务端的通信是安全的
有线传输协议篇五
摘要:目前,有线电视技术以其不可比拟的优势在世界广泛应用。在中国,有线电视网络已经覆盖了大部分的城市、乡镇和农村。我国有线电视发展于20世纪70年代初,经过了几代人的努力,我国有线电视事业蒸蒸日上。有线电视技术从自我摸索到向西方先进国家学习,引进了高科技技术和设备,其水平也得到了大幅度提高。在广播电视技术日新月异的当下,只有科学合理地选择有线电视传输技术,才能确保用户在使用过程中能获得良好的体验。本文对有线电视系统构成和传输工程技术进行探究。
关键词:有线电视;传输工程;常用技术。
目前,我国已经成为世界上使用有线电视的最大用户,,我国使用有线电视网络用户总量达到25458万户。随着有线网络技术逐步发展,我国有线电视产业的市场环境已经日趋成熟。同时,由于人们生活水平提高,我国使用有线电视的用户人数也将不断增加。在这种情况下,可以通过网络资源整合的方式,带动我国市场经济的发展。
我国的有线电视系统主要由前端系统、干线传输系统及用户分配系统三部分构成。
1.1前端系统。
前端系统负责信号处理,它处于信号源和传输系统之间,主要功能是对各种传输信号进行技术性的处理和组合。前端系统的设备性能比较良好,因为它对整个系统的信号质量具有至关重要的影响,可以说它是处理系统信号的核心中枢。
1.2干线传输系统。
干线传输系统负责信号的传输,需要指出的是支线也包括在干线系统中,它处于前端系统和用户分配系统之间,主要功能是将前端系统技术处理完成之后的信号通过各个干线进行传输。干线传输系统对载噪比和非线性失真指标的要求比较高。
1.3用户分配系统。
用户分配系统负责将规划好的信号分配给每个终端,它主要是将干线传输系统传递来的信号进行放大和分配,最终在用户终端设备上能够观看电视节目。为了保证各频点间信号互相不干扰,对于用户终端的设备要求就比较高,要求它们之间必须有效隔离,使其互不干扰。
有线传输协议篇六
住址:__________________。
邮编:__________________。
乙方:__________________。
住所:__________________。
邮编:__________________。
第一章服务范围。
第一条甲方营业种类系提供讯框传送业务。
第二条乙方申请讯框传送业务(以下简称(本业务)),依本协议条款办理。
有线传输协议篇七
仲裁协议是指各方当事人自愿以书面形式约定将争议提交鄂尔多斯仲裁委员会金融仲裁院仲裁的协议,包括单独的仲裁协议和在合同中订立的仲裁条款,以及各方当事人在纠纷发生前或发生后以其他书面形式约定将争议提交本院仲裁的文件。当事人向本院申请仲裁的,双方应自愿达成书面仲裁协议,达不成仲裁协议或者仲裁协议不符合本规则规定的,不予受理。
前款中“书面形式”包括但不限于合同书、信件、电报、电传、传真、电子数据交换和电子邮件等可以有形地表现所载内容的形式。
仲裁协议应当写明下列事项:
(一)请求仲裁的意思表示;
(二)仲裁事项;
(三)选定本院的意思表示。
有下列情形之一的,仲裁协议无效:
(一)约定的仲裁事项超出法律规定及本规则规定仲裁范围的;
(二)无民事行为能力人或者限制民事行为能力人订立的仲裁协议
(三)一方采取胁迫手段,迫使对方订立仲裁协议的;
(四)对仲裁事项或者仲裁机构没有约定或者约定不明确,且未达成补充协议的;
(五)当事人约定两个以上仲裁机构,且不能就仲裁机构的选择达成一致的`;
(七)其他导致仲裁协议无效的情形。
仲裁庭有权确认合同的效力。
当事人对仲裁协议的效力有异议的,可以请求本院作出决定或者请求人民法院作出裁定。一方请求本院作出决定,另一方请求人民法院作出裁定的,由人民法院裁定。但本院先于人民法院接受申请并作出决定的,以本院的决定为准。
当事人对仲裁协议的效力有异议,应当在仲裁庭第一次开庭前以书面形式提出;当事人协议不开庭审理的,应当在首次答辩期届满前以书面形式提出。当事人未在上述期限内提出书面异议的,视为同意接受本院仲裁。
当事人对仲裁协议的效力或者仲裁案件的管辖权提出异议的,仲裁庭组成前由本院作出决定,仲裁庭组成后由仲裁庭作出决定。
本院或者经仲裁庭对仲裁案件作出无管辖权决定的,案件应当撤销。仲裁庭组成前,撤销案件的决定由本院作出;仲裁庭组成后,撤销案件的决定由仲裁庭作出。
仲裁庭对当事人的异议可以单独作出决定,也可以在裁决书中一并作出。
仲裁协议书范本
甲方:建筑工程公司
住所:xx省xx市xx区xx路xx号
法定代表人:xxx董事长
委托代理人:xxxxx市xx律师事务所律师
xxxxx建筑工程公司项目经理
乙方:xx机械总公司
住所:xx市xx区xx街xx号
法定代表人:xxx总经理
委托代理人:xxx该公司总经理办公室主任
上述双方当事人曾于xxxx年xx月xx日就综合楼工程签订了《xx市建设工程施工合同》(合同编号为:xxxx)。现双方一致确认凡因该施工合同所引起的或与该合同有关的任何争议,均提请xx仲裁委员会按照该支仲裁规则进行仲裁。仲裁裁决是终局的,对双方均有约束力。
上述合同中对争议解决方式的约定如与本协议有不一致之处,以本协议为准。
本协议签订地点为xx省x市。
本协议自双方委托代理人签字并加盖公章之日起生效。
甲方:xx建筑工程公司(加盖公章)
委托代理人:xxx(签字)
xxxx年xx月xx日
乙方:xx机械总公司(加盖公章)
委托代理人:xxx(签字)
xxxx年xx月xx日
有线传输协议篇八
发包方(以下简称甲方):
承包方(以下简称乙方):
根据xxx《合同法》的有关规定,结合本工程具体情况,经双方协商一致,制定本合同。
第一条 工程概况
第二条 工程主要内容
第三条 工程期限
2,如因自然灾害或不可抗拒的外界影响不能按期完工,乙方需书面报甲方,并由双方共同协商确定新的完工日期。
第四条 双方职责
甲方权利和义务
1、组织工程建设项目的技术交底,向乙方明确施工任务;
2、提供必要的施工条件;
3、负责主材的供应,详见发包人供应材料、设备一览表;
4、指派甲方代表对建设工程项目进行全面协调和监督检查;
5、在乙方提供全套竣工资料和书面竣工验收报告后会同有关部门及时组织验收;
6、按合同约定按时向乙方支付工程款。 乙方权利和义务
2、应编制《工程施工概、预算》,经甲方书面认可后作为签订本合同暂定工程款的依据;
4、非经甲方同意,乙方不得将承包工程的任何部分分包;
5、精心组织施工管理人员、施工人员、材料、施工机械进场施工;
9、线路工程的施工,乙方同时承担电话机及数据终端的安装任务。在施工过程中和工程竣工后半年内,乙方应服从甲方的要求进行该项目范围内的电话机及数据终端的安装工作。安装费用由甲乙双方商议决定。
10、施工过程中必须严格遵守安全操作规程,采取必要的安全防护措施,消除事故隐患,切实做好安全生产工作。乙方在施工中所发生的一切人身伤亡事故和施工单位原因造成的设备事故,事故的责任和因此发生的费用由乙方承担,并不得因此影响工程进度。
第五条:竣工验收
1、工程竣工后,乙方应向甲方提交竣工验收报告。同时乙方应在一周内按《工程竣工文件编制规定》的要求编制完整的竣工文件。
2、甲方收到乙方提供的全套竣工资料和书面竣工验收报告后会同有关部门及时组织验收,验收以施工图纸、图说、技术交底纪要、设计更改通知、国家颁发的施工验收规范和质量检验标准为依据。
3、验收合格后,双方签署竣工验收通过的文件,并将工程移交给甲方管理。验收中如发现有不符质量要求的,由乙方负责修改再进行验收。竣工日期以验收通过的日期为准。
第六条 质量保证
1、保修期限:工程竣工验收通过后十二个月;
2、保修责任:乙方对交付的工程在质量保修期内承担质量保修责任,由于乙方施工原因造成的质量问题,乙方负责无偿修复。
第七条 工程价款的结算与支付
1、本工程采用包工部分包料方式,根据乙方编制的施工预算,合同价暂定为。:元整
2、工程竣工后,由乙方按照邮电部(1995)626号文件《通信建设工程概算、预算编制办法及费用定额》的规定据实编制竣工决算报告,经甲方指定的具有通信工程审计资质的第三方审计。
3、工程最终结算款的确定:工程最终结算款由以下两部分组成:
(1)审计审定价款中乙方采购的材料款和其他费用不作调整,按审计的价款确定;
(2)审计审定价款中的建筑安装工程费部分(扣除材料费以外的部分),乙方同意按规定调整相关费率后下浮 %。
4、乙方向甲方开具建安和材料统一发票后,甲方先行支付工程最终结算价款的98%(甲方有权在该款项中扣除乙方应支付的违约金),待十二个月保修期满后,若无工程质量遗留问题,甲方付清剩余工程价款。
第七条 合同解除
1、双方协商同意可解除本合同。
2、未经甲方同意,乙方将承包工程的任何部分分包给他人的,甲方有权解除本合同。
3、乙方将其承包的全部工程转包给他人或者肢解以后以分包的包义分别转包给他人的,甲方有权解除本合同。
4、有下列情形之一的,甲方、乙方可以解除合同:
(1)因不可抗力致使合同无法履行;
(2)因一方严重违约致使合同无法履行。
5、一方依据本条2、3、4款约定要求解除合同的,应以书面形式向对方发出解除合同的通知,通知到达对方时合同解除,合同解除后乙方应做好已完工程的保护和移交工作,并按甲方要求将自有机械设备和人员撤出施工场地。有过错的一方应当赔偿因合同解除给对方造成的损失。
第八条 争议解决方式
在履行合同时发生争议,双方协商解决,或向有管辖权的人民法院起诉。
第九条 其他
1、本协议未尽事项,双方另行签订补充协议,补充协议与本协议具有同等效力;
2、本协议一式六份,甲乙双方各执三份,协议经双方签字、盖章后生效。
甲方(公章):_________乙方(公章):_________
法定代表人(签字):_________法定代表人(签字):_________
_________年____月____日_________年____月____日
有线传输协议篇九
说到求职简历时有很多公司是不合理的提出要求求职者在个人简历上写家人的职业与联系方式的。这的'确是一件让人不理解的事。说到这一点时按国家规定个人简历只是个人信息可不用填写家人的信息,但就是有过别的公司就要求这点,话又说回来,在个人简历上一定要填写紧急联系人的电话,这个是必须要的,人的一生谁也说不定有没有什么事情发生,只是这一点希望大家还是要理解。小编提供有线传输工程师个人简历模板阅读。
姓名:文书帮
两年以上工作经验|男|27岁(1989年9月15日)
居住地:重庆
电话:155******(手机)
e-mail:
最近工作[1年7个月]
公司:xx有限公司
行业:通信/电信/网络设备
职位:有线传输工程师
最高学历
学历:本科
专业:通信工程
学校:重庆邮电大学
求职意向
到岗时间:一个月之内
工作性质:全职
希望行业:通信/电信/网络设备
目标地点:重庆
期望月薪:面议/月
目标职能:有线传输工程师
工作经验
2013/10 — 2015/5:xx有限公司[1年7个月]
所属行业:通信/电信/网络设备
运维部有线传输工程师
1. 从事过包括网络优化、网管值机、传输设备专业维护等工作。
2. 在网络优化中心期间,参加过多次网优培训,参与过现场设备维护等工作。
3. 在网管值机期间,兼任机房值班班长一职,参加过公司组织的全省应急通道演练等工作。
2012/7 — 2013/8:xx有限公司[1年1个月]
所属行业:通信/电信/网络设备
移动部有线传输工程师
1. 负责通信线路的勘察与设计。
2. 负责项目组人员的工作安排。
3. 负责与运营商沟通协调。
教育经历
2008/9— 2012/6 重庆邮电大学 通信工程本科
证书
2009/12 大学英语四级
语言能力
英语(良好)听说(良好),读写(良好)
我极富敬业精神、积极开朗、乐观向上,有很强的沟通能力和团队协作能力。能承受压力,喜欢富有挑战性和具有发展空间的工作。我喜欢这个具有挑战性的行业,随着科技的不断发展它也在不断更新,不仅要会工作还要会学习,愿意从事这方面工作。
有线传输协议篇十
_________广播电视局网络信息中心(以下简称甲方)与有线数字电视用户_________(以下简称乙方)就申请安装有线数字电视达成以下协议:
第一条申请。
1.乙方申请开户时,需持本人有效身份证到甲方指定的服务网点办理开户手续。
2.原有线电视用户可直接申请,并于_____个工作日内予以开通,初次入网的用户需缴纳有线电视初装费、入网费。
3.收视有线电视境外电视节目需按规定进行审批。
第二条收费。
1.乙方收看日照有线数字电视,除基本节目外,其他节目可以自行选择,按节目资源收费标准实行年度一次性预缴收视费,逾期没有续缴费的用户,甲方将暂停提供服务。原有线模拟电视基本节目资费标准不变。
2.本协议代为甲方有线数字电视费用托收协议,由甲方提供收费数据给银行作为划款的依据。乙方同意其付款银行通过电脑网络将自己的账户款自动划至甲方账户。并保证提供给甲方的资料正确、真实。
3.乙方应确保在甲方指定的缴费银行账户上有足够的资金,如因账户冻结或余额不足等原因而未能划款向甲方银行支付收视费,甲方有权暂停服务,并每天按应交费总额的_________‰收取违约金。
4.乙方对有线数字电视收费有疑问,可向甲方查询,甲方有责任向乙方提供相关费用查询。
第三条使用与维修。
1.收看数字电视必须是在数字电视已开通的范围内、办理各种注册手续并按时缴纳费用的有线电视合法用户。
2.甲方承诺向乙方提供有线数字电视服务,乙方有权监督服务质量,并提出批评、建议及申告。
3.机顶盒及软件实行_____年内包修、_____天内包换服务(非人为损坏)。包修期以外,负责终身维修,收取维修成本费。
4.乙方私自更改有线电视线路、变更机顶盒使用注册地址和不良操作,导致收视效果不好,甲方不承担责任。
5.甲方传输的有线数字电视节目,若因国家政策变更、不可抗力因素、资费调整等客观原因而无法继续提供给乙方时,甲方有权暂停或调整节目的内容、频道以及节目数量,并且甲方将以业务通告的方式通过公共媒体通知乙方。
6.有线数字电视传输网络如发生意外、出现信号异常情况,甲方应及时处理,乙方收视费不做延续。
7.乙方因故需要报停、恢复、节目变更、机顶盒转让、过户和迁移,应到甲方营业厅办理相关手续,缴纳相关费用。
8.凡因乙方开户时登记不详,联系电话、通信地址和邮编不准确,或变更后未及时办理手续,造成服务延误,甲方不负责任。
9.协议履行过程中如发生争议,双方协商解决,协商不成时,双方都可向人民法院提起诉讼。
10.团购用户除此协议外,需与甲方另行协议。
11.租用机顶盒的有线电视用户,除此协议外,需同意甲方机顶盒租用细则所列的条款。
有线传输协议篇十一
甲方:法定代表人:住所:联系电话:统一社会信用代码:
乙方:法定代表人:住所:联系电话:统一社会信用代码:
电视广播局网络信息中心(以下简称甲方)与有线数字电视用户(以下简称乙方)就申请安装有线数字电视达成以下协议:
第一条申请。
1.乙方申请开户时,需持本人有效身份证到甲方指定的服务网点办理开户手续。
2.原有线电视用户可直接申请,并于个工作日内予以开通,初次入网的用户需缴纳有线电视初装费、入网费。
3.收视有线电视境外电视节目需按规定进行审批。
第二条收费。
1.乙方收看。
有线数字电视,除基本节目外,其他节目可以自行选择,按节目资源收费标准实行年度一次性预缴收视费,逾期没有续缴费的用户,甲方将暂停提供服务。
原有线数字电视基本节目资费标准不变,具体资费标准参见附件一。
2.本协议代为甲方有线数字电视费用托收协议,由甲方提供收费数据给银行作为划款的依据。
乙方同意其付款银行通过电脑网络将自己的账户款自动划至甲方账户。
并保证提供给甲方的资料正确、真实。
‰收取违约金。
4.乙方对有线数字电视收费有疑问,可向甲方查询,甲方有责任向乙方提供相关费用查询。
第三条使用与维修。
1.收看数字电视必须是在数字电视已开通的范围内、办理各种注册手续并按时缴纳费用的有线电视合法用户。
2.甲方承诺向乙方提供有线数字电视服务,乙方有权监督服务质量,并提出批评、建议及申告。
3.机顶盒及软件实行年内保修、天内包换服务(非人为损坏)。
保修期以外,负责终身维修,收取维修成本费。
4.乙方私自更改有线电视线路、变更机顶盒使用注册地址和不良操作,导致收视效果不好,甲方不承担责任。
5.甲方传输的有线数字电视节目,若因国家政策变更、不可抗力因素、资费调整等客观原因而无法继续提供给乙方时,甲方有权暂停或调整节目的内容、频道以及节目数量,并且甲方将以业务通告的方式通过公共媒体通知乙方。
6.有线数字电视传输网络如发生意外、出现信号异常情况,甲方应及时处理。
7.乙方因故需要报停、恢复、节目变更、机顶盒转让、过户和迁移,应到甲方营业厅办理相关手续,缴纳相关费用。
8.凡因乙方开户时登记不详,联系电话、通信地址和邮编不准确,或变更后未及时办理手续,造成服务延误,甲方不负责任。
9.团购用户除此协议外,需与甲方另行签订协议。
10.租用机顶盒的有线电视用户,除此协议外,需同意甲方机顶盒租用细则所列的条款(见附件二)。
第四条争议解决协议履行过程中如发生争议,双方友好协商解决,协商不成时,双方都有权向人民法院提起诉讼。
本协议一式两份,甲乙双方各执一份,具有同等法律效力,自双方签字盖章之日起生效。
甲方(盖章):乙方(盖章):
甲方代表签名:开户银行:
账号:签订地点:乙方代表签名:
开户银行:账号:签订地点:
年月日年月日附件:
有线传输协议篇十二
本协议由下列双方于_________年_________月_________日于中华人民共和国(以下称“中国”)_________订立:
转让方:_________(以下称“甲方”),其法定地址为:_________;
受让方:_________(以下称“乙方”),其法定地址为:_________。
鉴于:
7.甲方、乙方经过友好协商,同意共同进行协作和配合,促使甲乙双方之间资产转让的顺利完成。?就_________有线电视网的资产转让事宜,甲方和乙方在此明确各自的权利和义务,达成协议如下:
第一条?定义。
2.转让资产:即_________有线电视网。依据本协议规定的条件,甲方应将转让资产向乙方转让。
4.评估基准日:_________年_________月_________日。
5.资产评估报告:列载于本协议附件一的以_________年_________月_________日为评估基准日的转让资产的估值报告,由_________编写,并经_________国有资产管理局确认。
6.相关期间:自评估基准日(含评估基准日)至转让生效日(不含转让生效日)之间的期间。
1.根据本协议的约定,甲方同意在本协议所规定的转让生效日依据本协议规定的条件将转让资产转让予乙方。
2.乙方同意根据本协议的约定自甲方受让转让资产。
3.自本协议所规定的转让生效日起,乙方即成为转让资产的合法所有者,享有并承担与转让资产有关的一切权利和义务,甲方则不再享有与转让资产有关的任何权利及利益,也不承担与转让资产有关的任何义务和责任,但本协议另有规定者除外。甲方将确保在转让生效日后的_________日内完成有关的合同(包括本协议附件四及附件五所列的各项合同、保单)变更、房屋、_____权属证明的变更及其他必要的法律手续。
4.自转让生效日起,乙方及其授权人士将完全有权接管转让资产,并使用其从事生产经营活动或依法进行其他处置。
第三条?转让资产。
1.设备动产列载于资产评估报告内的所有用于生产的设备动产,包括但不限于:工具、设备、办公室的陈设及有关装置、计算机、电话、传真机和复印机,以及其它的办公室设备和运输工具。
2.不动产列载于资产评估报告内的机房、播送台站及其他设施。
3.文件和资料与转让资产有关的或附属于转让资产的全部业务记录、财务及会计记录、营运记录、统计资料、说明书、维护手册、培训手册等文件和资料,无论是以文字形式或以电脑软件、硬件形式或其他形式予以记录的。
4.合同权益与转让资产有关的由甲方在转让生效之日前所签订并存在的任何合同、协议、契约及其修正、修改或补充,包括但不限于列载本协议附件四的有关_________、_________、_________、设备购买、租赁、定做、运输及建筑安装的主要合同、列载于本协议附件五的_____单以及其它的所有合同、协议、契约、承诺函、保证函、信用证、提单、货单、各种票据及其他任何有关的法律文件。
第四条?转让价格、支付的时间及方式。
1.甲、乙双方一致同意,根据资产评估报告所反映的评估结果以及_________对该评估结果的确认,本协议所述的转让资产的转让价格总额为人民币_________元整。
2.乙方应当在根据本协议第五条的规定的转让生效日后的十个工作日之内,将本协议前款规定的转让价格总数支付给甲方。
第五条?生效条件。
1.本协议所述转让资产的转让在下述条件获得完全满足时生效:_________。
第六条?甲方的声明、保证及承诺。
甲方在此向乙方声明、保证及承诺如下:
1.甲方是根据中国法律正式设立和合法存续的企业,并具有一切必要的权利、权力及能力订立及履行本协议项下的所有义务和责任;而本协议一经签署即对甲方具有合法、有效的约束力。甲方与乙方签订本协议并不会构成甲方违反任何其他合同、其本身的公司章程及成立文件以及任何所适用的中国法律法规。
2.甲方对转让资产具有合法的、完全的所有权及控制权,有权签署本协议并转让转让资产或其任何部分,而该等资产或与该等资产相关的任何权益,不受任何优先权或其他第三者权利的限制。乙方于本协议所达成的资产转让完成后将享有作为转让资产的所有者应依法享有的一切权利并可依法转让、处分该等产权,并不会受到任何扣押、抵押和负担其他第三者权利的限制。
3.在本协议签署日及转让生效日,没有正在进行的、以甲方为一方的或以转让资产的任何部分为标的的,如作出对甲方不利的判决或裁定即可能单独或综合一起对转让资产状况或业务经营产生重大不利影响的任何诉讼、_____或行政处理程序。
4.与转让资产有关的、影响转让资产的合法性或甲方对其所有权的合法性的所有文件、许可、批准、同意、授权,包括但不限于本协议附件三所列者,甲方均已取得,不存在任何法律上的瑕疵。
6.截至转让生效日,甲方并无任何正在生效的非正常商业条件的生产、经营合同或安排并因此对转让资产的状况产生重大不利影响。
7.甲方在转让生效日之前对转让资产所占用土地的使用是合法的,并不需要补交任何税费,且并不存在任何未正式向乙方披露的因甲方在转让生效日前对土地的使用而需要乙方承担或履行的义务或责任。
8.甲方没有关于有关转让资产的、一旦披露便会影响到签订本协议或本协议任何条款的原意被改变的事实未向乙方披露。
9.于转让生效日,转让资产中的房屋、机器、工具及其他设备均处于良好的运作及操作状态,并经定期及适当保养及维修。
11.在转让生效日后,甲方本身不会(而甲方亦将促使其所有附属公司不会)在中国境内或境外以任何方式(包括但不限于本身经营、或透过合营或持有其他公司或企业的股份或其他权益)参与任何对有关企业的业务实际或可能构成直接或间接竞争的业务或活动。
12.在相关期间按照以往的正常方式对转让资产进行使用及保养及经营管理。
第七条?乙方的承诺、声明及保证。
乙方在此向甲方声明、承诺及保证如下:
1.乙方是依据中国法律成立并合法存续的股份有限公司,其合法拥有其正在拥有的资产,并合法经营其正在经营的业务。
2.乙方有充分的权利进行本协议所述的资产转让,并已经获得签署和履行本协议的一切合法授权。
3.乙方将按照国家法律及有关政策的精神与甲方共同妥善处理本协议所述产权转让过程中的任何未尽事宜。
4.按照本协议的规定向甲方支付转让价款。
第八条?保密。
除中国有关法律、法规或有关公司章程、应予适用的_____有关法律法规或_____联合交易所有限公司的证券上市规则有明文规定或要求外,未经他方同意,任何一方在本协议所述交易完成前,不得将本协议的有关内容向本次交易参与各方之外的任何第三人透露。
第九条?本协议未尽事宜。
甲乙双方同意,在本协议签署后,就本协议未尽事宜将进行进一步的协商,并在转让生效日前达成补充协议。该补充协议构成本协议不可分割的组成部分。
第十条?违约责任。
1.任何一方违反其在本协议中的任何声明、保证和承诺,或本协议的任何条款,即构成违约。违约方应向守约方支付全面和足额的赔偿。而守约方有权决定是否继续执行或终止本协议。
2.在本协议签署后,当发生针对转让资产或乙方,但起因于本协议签署日前甲方占有、使用转让资产的行为,而在本协议签署日前未曾预料到或未向乙方披露的债务纠纷或权利争议时,甲方同意采取措施予以解决,使转让资产或乙方免受损失。若该等纠纷或争议对转让资产或乙方造成任何损失,则甲方同意作出赔偿。
第十一条?争议的解决。
1.凡因执行本协议发生的与本协议有关的一切争议,协议双方应通过友好协商解决。如果不能协商解决,任何一方均有权向有管辖权的人民法院起诉。
2.根据中国有关法律,如果本协议任何条款被法院裁判为无效,不影响本协议其它条款的持续有效和执行。
第十二条?适用法律。
本协议的订立、效力、解释、执行及争议的解决,均受中国有关法律的管辖。
第十三条?协议权利。
未经另一方的书面同意,任何一方不得转让其依本协议所享有的权利。各方的继承者、经批准的受让人均受本协议的约束。但是,甲乙双方在此互相同意对方指定其各自的有关的附属企业负责本协议的具体履行。甲乙各方在本协议中的所享有的全部权利及承担的全部义务,同时视为由其各自指定的附属企业所享有及承担。
第十四条?不可抗力。
1.“不可抗力”是指本协议各方不能合理控制、不可预见或即使预见亦无法避免的事件,该事件妨碍、影响或延误任何一方根据本协议履行其全部或部分义务。该事件包括但不限于地震、台风、洪水、火灾或其它天灾、战争、_____、_____或任何其它类似事件。
2.如发生不可抗力事件,遭受该事件的一方应立即用可能的最快捷的方式通知对方,并在十五天内提供证明文件说明有关事件的细节和不能履行或部分不能履行或需延迟履行本协议的原因,然后由各方协商是否延期履行本协议或终止本协议。
第十五条?附件。
本协议所有附件是本协议不可分割的组成部分,具有同等法律效力。
第十六条?文本。
本协议以中文书就。正本一式_________份,甲乙双方各持_________份。每份正本均具有同等法律效力。
转让方(盖章):_________受让方(盖章):_________。
法定代表人(签字):_________法定代表人(签字):_________。
附件。
一、资产评估报告(略)。
二、关于资产转让的政府批复(略)。
三、证明转让资产合法性的文件(政府批复等)(略)。
四、合同清单(略)。
五、_____单(略)。
有线传输协议篇十三
一年以上工作经验|男|26岁(1990年4月7日)。
居住地:山东。
电话:138********(手机)。
e-mail:
最近工作[8个月]。
公司:xx有限公司。
行业:通信/电信/网络设备。
最高学历。
学历:本科。
专业:通信工程。
学校:山东交通学院。
求职意向。
到岗时间:随时到岗。
工作性质:全职。
希望行业:通信/电信/网络设备。
目标地点:山东。
期望月薪:面议/月。
工作经验。
/9—/5:xx有限公司[8个月]。
所属行业:通信/电信/网络设备。
1.进行传输线路设计工作,负责有关传输项目的查勘及设计和预算编制。
2.负责与甲方、工程施工人员等进行沟通协调、问题解决。
3.负责项目组内外部接口,协调、指导项目组成员完成工作任务。
2014/3—2014/8:xx有限公司[5个月]。
所属行业:通信/电信/网络设备。
1.负责国内大型电信运营商传输网络设计工作;。
2.曾先后担任本地传输网项目的地市单项负责人;全省本地传输网项目的总负责人;省内二级干线八期项目设计总负责人等。
教育经历。
/9—2014/6山东交通学院通信工程本科。
证书。
2009/6大学英语四级。
语言能力。
英语(良好)听说(良好),读写(良好)。
自我评价。
本人性格开朗、稳重、有活力,待人热情、真诚。工作认真负责,积极主动,能吃苦耐劳。实际动手能力和团体协作精神强,能迅速的适应各种环境,并融合其中。优秀的'心理素质,能承担高负荷工作压力。具备较强的分析和解决问题的能力。具有很强的自学能力,在短时间内能掌握新技术,乐于挑战有难度工作。
有线传输协议篇十四
_________广播电视局网络信息中心(以下简称“甲方”)与有线数字电视用户(以下简称“乙方”)就申请安装有线数字电视达成以下协议:
第一条申请。
1、乙方申请开户时,需持本人有效身份证到甲方指定的服务网点办理开户手续。
2、原有线电视用户可直接申请,并于一个工作日内予以开通,初次入网的用户需缴纳有线电视初装费、入网费。
3、收视有线电视境外电视节目需按规定进行审批。
第二条收费。
1、乙方收看日照有线数字电视,除基本节目外,其他节目可以自行选择,按节目资源收费标准实行年度一次性预缴收视费,逾期没有续缴费的用户,甲方将暂停提供服务。原有线模拟电视基本节目资费标准不变。
2、本协议代为甲方有线数字电视费用托收协议,由甲方提供收费数据给银行作为划款的依据。乙方同意其付款银行通过电脑网络将自己的账户款自动划至甲方账户。并保证提供给甲方的资料正确、真实。
3、乙方应确保在甲方指定的缴费银行账户上有足够的资金,如因账户冻结或余额不足等原因而未能划款向甲方银行支付收视费,甲方有权暂停服务,并每天按应交费总额的_________‰收取违约金。
4、乙方对有线数字电视收费有疑问,可向甲方查询,甲方有责任向乙方提供相关费用查询。
第三条使用与维修。
1、收看数字电视必须是在数字电视已开通的范围内、办理各种注册手续并按时缴纳费用的有线电视合法用户。
2、甲方承诺向乙方提供有线数字电视服务,乙方有权监督服务质量,并提出批评、建议及申告。
3、机顶盒及软件实行一年内包修、30天内包换服务(非人为损坏)。包修期以外,负责终身维修,收取维修成本费。
4、乙方私自更改有线电视线路、变更机顶盒使用注册地址和不良操作,导致收视效果不好,甲方不承担责任。
5、甲方传输的有线数字电视节目,若因国家政策变更、不可抗力因素、资费调整等客观原因而无法继续提供给乙方时,甲方有权暂停或调整节目的内容、频道以及节目数量,并且甲方将以业务通告的方式通过公共媒体通知乙方。
6、有线数字电视传输网络如发生意外、出现信号异常情况,甲方应及时处理,乙方收视费不做延续。
7、乙方因故需要报停、恢复、节目变更、机顶盒转让、过户和迁移,应到甲方营业厅办理相关手续,缴纳相关费用。
8、凡因乙方开户时登记不详,联系电话、通信地址和邮编不准确,或变更后未及时办理手续,造成服务延误,甲方不负责任。
9、协议履行过程中如发生争议,双方协商解决,协商不成时,双方都可向人民法院提起诉讼。
10、团购用户除此协议外,需与甲方另行协议。
11、租用机顶盒的有线电视用户,除此协议外,需同意甲方机顶盒租用细则所列的条款。
甲方(签章):_________乙方(签章):_________。
代表人(签章):_________联系电话:_________。
签订地址:_________签订地址:_________。
有线传输协议篇十五
乙方:_________________
经双方友好协商,本着互惠互利的原则就贵公司委托代发网上直投广告事宜,达成如下协议:
1.甲方委托代发网上直投广告。
2.数量:(____万封)价格:____元(人民币)/ 拾万封
费用总计:____元整(注:先付款,后发送)
3.甲方需预先设定联系业务信箱:
(注意:请不要使用常用工作信箱,以免堵塞!)
4.发送对象:
a:(1)国内(_________省/市 )
(2)港澳台地区
(3)国外
b: 行业
c:(1)企业
(2)个人
d: 备注_______________________
5.付款:甲方通过(1.银行汇款; 2.邮局汇款;3.信用卡划款;4.其他方式)将费用支付给乙方。
6.乙方应采取一切必要措施保护甲方的文件不致丢失或泄露。广告信息的真实性由甲方负责,由于使用代理服务器而引起的其他纠纷,由乙方承担责任。
7.本协议一式两份;签字盖章后生效。双方各持一份。本协议有效期一年。期满双方根据合作意愿续签或终止。传真件与协议书正本一样有效。
有线传输协议篇十六
姓名:个人简历范文三年以上工作经验|男|29岁(1987年5月22日)居住地:南京电话:137********(手机)e-mail:/最近工作[1年4个月]公司:xx有限公司行业:通信/电信/网络设备职位:有线传输工程师最高学历学历:本科专业:法学学校:南京陆军指挥学院求职意向到岗时间:随时到岗工作性质:全职希望行业:通信/电信/网络设备目标地点:南京期望月薪:面议/月目标职能:有线传输工程师工作经验/7—2014/11:xx有限公司[1年4个月]所属行业:通信/电信/网络设备传输设计部有线传输工程师1.负责国内大型电信运营商传输网络设计工作;2.曾先后担任本地传输网项目的地市单项负责人;全省本地传输网项目的总负责人;省内二级干线八期项目设计总负责人等。3.负责并参与从勘察、可研设计、初步设计、施工图设计全流程工作,输出包括文件、图纸、概算等在内的.全套设计文件;4.完成总部及各省公司内的评审等工作。/6—2013/4:xx有限公司[1年10个月]所属行业:通信/电信/网络设备传输设计部有线传输工程师1.只要在从事接入网项目和移动lte项目有线传输勘察设计,以及割接方案和系统录入工作。2.负责所有旗县移动与公司新建基站,现有基站光端机设备数据传输运维,数据配送到站。3.紧急故障处理等。负责通信光缆的布线,熔接及通信设备的安装与调试教育经历/9—2011/6南京陆军指挥学院法学本科证书/6大学英语四级语言能力英语(良好)听说(良好),读写(良好)自我评价在海外工作长达xx年时间,英语听说读写能力强;从事过通信产品以及铁路通信项目,it技术扎实;项目、宣讲经验丰富。我性格热情,诚恳,乐观。善于思考,有强烈的团队精神,喜欢与人交朋友。希望在深圳或海外工作和生活。
有线传输协议篇十七
法定代表人:__________________________。
乙方:
法定代表人:__________________________。
为共同搞好乙方有线电视网络及配套设施的建设、维护管理工作,保障有线电视用户的收视权益,甲、乙双方本着自愿、公平、精诚合作的原则,经认真友好协商,达成如下协议,双方共同遵守。
一、工程概况。
2、工程地点:兴义市。
3、用户数量:户。
4、工程内容:甲方负责乙方有线电视网络及配套设施的设计、安装、调试、开通及维护管理工作。
二、工程造价。
1.户线安装费按物价局筑价费[2006]72号《关于贵州省有线数字电视基本收费维元,勘测费元。
2.地埋管道(包含入孔、管道、井盖)建设由乙方负责,费用由乙方支付;
3.电缆敷设由甲方负责,费用为:_________元;_______方支付。
4.收视维修费按市物价局筑价费[2006]72号《关于贵州省有线数字电视基本收费维护费有关问题的通知》核定的标准从入住当日计收.从年月日收至年月日,每月每户24元/户,合计_______:
5.工程总造价:元。大写人民币:。
三、双方责任和义务。
1、双方签定本协议,乙方将该工程的平面设计图、管道设计图、详细楼栋单元房间等相关资料交甲方技术人员,甲方工程技术人员进行认真勘测设计后出具体施工设计图,并保证按图施工;甲方收到乙方工程预付款后,进场施工。
2、在工程施工过程中,乙方指定专人负责施工协调工作,甲方统一使用经国家广电管理部门或甲方认证的优质材料,严格按照规范进行施工。
3、工程完工后甲方按照省物价局有关文件规定的收费标准收取收视维护费,乙方不得擅自收取。用户在保证按时交纳收视维护费的前提下,甲方保证对其网络用户进行终身维修,一般性故障24小时内修复,特大故障48小时内修复,并不再收取其它维修费用(网络全面升级改造、人为因素和不可抗拒的自然灾害除外)。
5、甲方为乙方新装的用户终端系统属甲方有线电视网络系统的一部分,产权归甲方所有,乙方用户有享受该系统功能的权益,但不得以任何形式对甲方该产权构成侵犯。
四、违约责任。
双方严格执行本合同各项条款,若有异议协商解决,不能协商解决的,移交仲裁。
机构仲裁。
五、免责条款。
因不可抗力导致甲乙双方或一方不能履行或不能完全履行本协议的,甲乙双方不承担违约责任,如遇有不可抗力的一方或双方,应于不可抗力发生一周内将告知对方,并提供有关部门证明,在不可抗力影响消除后,一方或双方应当在协议期限内继续履行协议。
六、其它。
1、本协议未尽事宜,双方可签订补充协议。
2、本协议一式2份,甲方1份,乙方1份。
3、本协议经双方签字、盖章即日起生效。
4、开槽补洞由乙方负责。
5、甲方安装在乙方区域内供乙方使用的用电设备(放大器)由乙方提供电源。
6、甲方按乙方提供的安装位置和协议户数进行安装及数字电视机顶盒配置。
甲方:开户行:
地址:帐号:
法人或委托代理人:联系电话:
维修电话:
经办人:
签订日期:年月日
乙方:
地址:
法人或委托代理人:联系电话:
经办人:
签订日期:年月日