最新七年级数学有理数的减法教案范文(16篇)
一份成功的教案还应该包含形式多样的教学活动和评价方式,以适应不同学生的学习需求。教案的编写要注重培养学生的实践操作能力。这里有一些优秀的教案实例,供大家参考和学习。
七年级数学有理数的减法教案篇一
1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数。
2、能力目标:能应用正负数表示生活中具有相反意义的量。
3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系。教学重难点。
重点:理解有理数的意义。
难点:能用正负数表示生活中具有相反意义的量。
教学过程。
一、创设情境、提出问题。
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分。两个队答题情况见书上第23页。
二、分析探索、问题解决。
分组讨论扣的分怎样表示?
用前面学的数能表示吗?
数怎么不够用了?
引出课题。
讲授正数、负数、有理数的定义。
用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数。启发学生再从生活中例举出用负数表示具有相反意义的数。
三、巩固练习。
1、用正数或负数表示下列各题中的数量:
(2)球赛时,如果胜2局记作+2,那么-2表示______;。
(3)若-4万表示亏损4万元,那么盈余3万元记作______;。
(4)+150米表示高出海平面150米,低于海平面200米应记作______.
分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量。
2、下面说法中正确的是().
a.“向东5米”与“向西10米”不是相反意义的量;
b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;
c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;。
d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米。
三、小结回顾、纳入体系。
学生交流回顾、讨论总结,教师补充如下:
概念:正数、负数、有理数。
分类:有理数的分类:两种分法。
应用:有理数可以用来表示具有相反意义的量。
七年级数学有理数的减法教案篇二
1.1正数和负数(2)。
教学目标:
教学重点:
深化对正负数概念的理解。
教学难点:
正确理解和表示向指定方向变化的量。
教学准备:彩色粉笔。
教学过程:
一、复习引入:
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分界,是基准.
二、讲解新课。
度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。
思考:教科书第4页(学生先思考,教师再讲解)。
三、课堂练习课本p4练习1,2,3,4。
四、课时小结。
引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.
五、课外作业教科书p5:2、4。
板书设计:
七年级数学有理数的减法教案篇三
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力。
三、教学重点。
有理数减法法则。
四、教学难点。
有理数减法法则。
五、教学用具。
三角尺、小黑板、小卡片。
六、课时安排。
1课时。
七、教学过程。
(一)、从学生原有认知结构提出问题。
1.计算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化简下列各式符号:
(1)-(-6);(2)-(+8);(3)+(-7);。
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;。
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算。
(二)、师生共同研究有理数减法法则。
问题1(1)(+10)-(+3)=______;。
(2)(+10)+(-3)=______.
教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).
(2)(+10)+(+3)=______.
(2)的结果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教师引导学生归纳出有理数减法法则:
减去一个数,等于加上这个数的。相反数。
教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数。减数变号(减法============加法)。
(三)、运用举例变式练习。
例1计算:
(1)(-3)-(-5);(2)0-7.
例2计算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通过计算上面一组有理数减法算式,引导学生发现:
在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数。
阅读课本63页例3。
(四)、小结。
1.教师指导学生阅读教材后强调指出:
由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2.不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。
(五)、课堂练习。
1.计算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
2.计算:
3.计算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
(4)(-5.9)-(-6.1);。
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理数减法解下列问题。
八、布置课后作业:
课本习题2.6知识技能的2、3、4和问题解决1。
九、板书设计。
2.5有理数的减法。
(一)知识回顾(三)例题解析(五)课堂小结。
例1、例2、例3。
(二)观察发现(四)课堂练习练习设计。
十、课后反思。
七年级数学有理数的减法教案篇四
经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、
三、情感态度与价值观。
体会数学与现实生活的联系,提高学生学习数学的兴趣、
教学重点、难点与关键。
1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、
2、难点:省略括号和加号的加法算式的运算方法、
投影仪、
四、教学过程。
一、复习提问,引入新课。
1、叙述有理数的加法、减法法则、
2、计算、
(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
(4)(—8)—6;(5)5—14、
五、新授。
我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、
六、巩固练习。
1、课本第24页练习、
(1)题是已写成省略加号的代数和,可运用加法交换律、结合律、
原式=1+3—4—0。5=0—0。5=—0。5。
(2)题运用加减混合运算律,同号结合、
原式=—2。4—4。6+3。5+3。5=—7+7=0。
(3)题先把加减混合运算统一为加法运算、
原式=(—7)+(—5)+(—4)+(+10)。
=—7—5—4+10(省略括号和加号)。
=—16+10。
=—6。
七、课堂小结。
八、作业布置。
1、课本第25页第26页习题1、3第5、6、13题、
九、板书设计:
第四课时。
1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便、
归纳:加减混合运算可以统一为加法运算、
用式子表示为a+b—c=a+b+(—c)、
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思。
本课教学反思。
本节课主要采用过程教案法训练学生的听说读写。过程教案法的理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为。它包括写前阶段,写作阶段和写后修改编辑阶段。在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务。课堂是写作车间,学生与教师,学生与学生彼此交流,提出反馈或修改意见,学生不断进行写作,修改和再写作。在应用过程教案法对学生进行写作训练时,学生从没有想法到有想法,从不会构思到会构思,从不会修改到会修改,这一过程有利于培养学生的写作能力和自主学习能力。学生由于能得到教师的及时帮助和指导,所以,即使是英语基础薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心。
这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣,在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。
在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。
在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。
七年级数学有理数的减法教案篇五
2、会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想。
把有理数的加减法混合运算统一为加法运算。
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变。
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算。
1、完成下列计算:
(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。
归纳:根据有理数的减法法则,有理数的`加减混合运算可以统一为运算;
省略负数前面的加号和()后的形式是______________________;
展示交流。
1、把下列运算统一成加法运算:
2、将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
3、将下列运算先统一成加法,再省略加号:
=___[]______________________。
4、仿照本p37例6,完成下列计算:
盘点收获。
个案补充。
1.计算:
本p39习题2。5第6题(1)、(3)、(5),第7题。
七年级数学有理数的减法教案篇六
学习过程:
一、自主学习不动笔墨不读书!请拿出你的笔和你的激情,探究新知:
1.小学学过的加法运算律有哪些?举例说明运用运算律有何好处?
2.加法的交换律:
两个数相加,交换_______的位置,和不变.用式子表示:a+b=_______.
3.加法的结合律:
七年级数学有理数的减法教案篇七
理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。
二、过程与方法。
经历对有理数进行分类的探索过程,初步感受分类讨论的思想。
三、情感态度与价值观。
通过对有理数的学习,体会到数学与现实世界的紧密联系。
教学重难点及突破。
在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。
教学准备。
用电脑制作动画体现有理数的分类过程。
教学过程。
四、课堂引入。
2.举例说明现实中具有相反意义的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意义?
4.举两个例子说明+5与-5的区别。
七年级数学有理数的减法教案篇八
学习目标:。
1、理解加减法统一成加法运算的意义.
2、会将有理数的加减混合运算转化为有理数的加法运算.
3、培养学习数学的兴趣,增强学习数学的信心.
教学方法:讲练相结合。
教学过程。
1、一架飞机作特技表演,起飞后的高度变化如下表:
高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
记作+4.5千米—3.2千米+1.1千米—1.4千米。
请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米.
2、你是怎么算出来的,方法是。
1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!
2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.
如:(-20)+(+3)-(-5)-(+7)有加法也有减法。
=(-20)+(+3)+(+5)+(-7)先把减法转化为加法。
=-20+3+5-7再把加号记在脑子里,省略不写。
可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.
4、师生完整写出解题过程。
1、解决引例中的问题,再比较前面的方法,你的感觉是。
2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4。
3、练习:计算1)(—7)—(+5)+(—4)—(—10)。
1、小结:说说这节课的收获。
2、p241、2。
3、计算。
1)27—18+(—7)—322)。
五、作业。
1、p2552、p26第8题、14题。
七年级数学有理数的减法教案篇九
1、(6分)把下列各数填在相应的集合内:
-23,0.25,,-5.18,18,-38,10,+7,0,+12。
正数集合:{………}。
整数集合:{………}。
分数集合:{………}。
2、某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:
2-103-2-310。
(1)这8名男生的达标率是百分之几?
(2)这8名男生共做了多少个俯卧撑?
答案。
1、
正数集合:{0.25,18,10,+7,+12………}。
整数集合:{-23,18,-38,10,+7,0,+12………}。
分数集合:{0.25,,-5.18………}。
2、
(1)50%,(2)56个。
七年级数学有理数的减法教案篇十
1.同号相加,取相同符号,并把绝对值相加。
2.绝对值不等的异号相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.相反数相加结果一定得0。
注意。
一是确定结果的符号;二是求结果的绝对值.在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则。在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了.多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算.
减法。
法则。
有理数减法法则:减去一个数,等于加上这个数的相反数。其中:两变:减法运算变加法运算,减数变成它的相反数做加数。一不变:被减数不变。可以表示成:a-b=a+(-b)。
乘法。
法则。
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。例:(-5)×(-3)=15(-6)×4=-24。
(2)任何数同0相乘,都得0。例:0×1=0。
(4)几个数相乘,有一个因数为0时,积为0。例:3×(-2)×0=0。
(5)乘积为1的两个有理数互为倒数(reciprocal)。(乘积为-1的互为负倒数)例如,—3与—1/3,—3/8与—8/3。
除法。
法则。
(1)除以一个数等于乘以这个数的倒数。(注意:0没有倒数)。
(2)两数相除,同号为正,异号为负,并把绝对值相除。
(3)0除以任何一个不等于0的数,都等于0。
注意:
0在任何条件下都不能做除数。
七年级数学有理数的减法教案篇十一
2.使学生能够熟练地按有理数运算顺序进行混合运算;
3.注意培养学生的运算能力.。
教学重点和难点。
重点:有理数的混合运算.。
难点:准确地掌握有理数的运算顺序和运算中的符号问题.。
课堂教学过程设计。
一、从学生原有认知结构提出问题。
1.计算(五分钟练习):
(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
(24)3.4×104÷(-5).。
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、讲授新课。
1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.。
审题:(1)运算顺序如何?
(2)符号如何?
七年级数学有理数的减法教案篇十二
2、培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3、渗透分类讨论思想?
重点:有理数乘方的运算?
难点:有理数乘方运算的符号法则?
1、求n个相同因数的积的运算叫做乘方?
2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
例1计算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察。
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察。
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a。
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)。
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2计算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
让三个学生在黑板上计算?
课堂练习。
计算:
(1),,,-,;
(2)(-1)2001,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
让学生回忆,做出小结:
1、乘方的有关概念?
2、乘方的符号法则?3?括号的作用?
1、计算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2、填表:
3、a=-3,b=-5,c=4时,求下列各代数式的值:
4、当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6、若(a+1)2+|b-2|=0,求a2000b3的值?
七年级数学有理数的减法教案篇十三
1了解平行线的概念,理解学过的描述图形形状和位置关系的语句
3通过画平行线和按几何语句画图的题目练习,培养学生画图能力
4通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力
1教师教法:尝试法、引导法、发现法
2学生学法:在教师的引导下,尝试发现新知,造就成就感
(一)重点
平行公理及推论
(二)难点
平行线概念的理解
(三)解决办法
通过引导学生尝试发现新知、练习巩固的方法来解决
投影仪、三角板、自制胶片
1通过投影片和适当问题创设情境,引入新课
2通过教师引导,学生积极思维,进行反馈练习,完成新授
3学生自己完成本课小结
(-)明确目标
(二)整体感知
(三)教学过程
创设情境,引出课题
学生齐声答:不是
师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)
[板书]24平行线及平行公理
探究新知,讲授新课
师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?
学生:窗户相对的棱,桌面的对边,书的对边……
师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线
[板书]在同一平面内,不相交的两条直线叫做平行线
教师出示投影片(课本第74页图2?17)
师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?
学生:不会相交
师:那么它们是平行线吗?
学生:不是
师:也就是说平行线的定义必须有怎样的'前提条件?
学生:在同一平面内
师:谁能说为什么要有这个前提条件?
学生:因为空间里,不相交的直线不一定平行
教师在黑板上给出课本第73页图2
学生:两种相交和平行
由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种
尝试反馈,巩固练习(出示投影)
1判断正误
(1)两条不相交的直线叫做平行线()
(2)有且只有一个公共点的两直线是相交直线()
(3)在同一平面内,不相交的两条直线一定平行()
(4)一个平面内的两条直线,必把这个平面分为四部分()
2下列说法中正确的是()
a在同一平面内,两条直线的位置关系有相交、垂直、平行三种
b在同一平面内,不垂直的两直线必平行
c在同一平面内,不平行的两直线必垂直
d在同一平面内,不相交的两直线一定不垂直
学生活动:学生回答,并简要说明理由
师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)
已知直线和外一点,过点画直线
师:请根据语句,自己画出已知图形
学生活动:学生在练习本上画出图形
师:下面请你们按要求画出直线
注意:(1)在推动三角尺时,直尺不要动;
(2)画平行线必须用直尺三角板,不能徒手画
尝试反馈,巩固练习(出示投影)
1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)
2读下列语句,并画图形
(1)点是直线外的一点,直线经过点,且与直线平行
(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于
(3)过点画,交的延长线于
学生活动:学生思考并回答,能画,而且只能画一条
师:我们把这个结论叫平行公理,教师板书
【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行
学生:思考后,立即回答,能画无数条
师:请同学们在练习本上完成
(出示投影)
已知直线,分别画直线、,使,
学生活动:学生在练习本上完成
师:请同学们观察,直线、能不能相交?
学生活动:观察,回答:不相交,也就是说
师:为什么呢?同桌可以讨论
学生活动:学生积极讨论,各抒己见
学生活动:教师让学生积极发表意见,然后给出正确的引导
师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论
学生活动:学生在教师的启发引导下思考、讨论,得出结论
[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行
学生活动:学生思考,回答:不对,给出反例图形,
例如:如图1所示,射线与就不相交,也不平行
师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?
生:它们所在的直线平行
尝试反馈,巩固练习(投影)
七年级数学有理数的减法教案篇十四
3、培养实事求是、严谨、认真、务实的学习态度、
4、渗透数学公式的结构美、和谐美、
1、教学方法:引导发现法、探究法、讲练法、
(一)重点
准确掌握积的乘方的运算性质、
(二)难点
用数学语言概括运算性质、
(三)解决办法
增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、
一课时、
投影仪或电脑、自制胶片、
3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、
4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、
(一)明确目标
本节课重点学习积的乘方的运算性质及其较灵活地运用、
(二)整体感知
(三)教学过程
1、创设情境,复习导入
前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:
填空:
七年级数学有理数的减法教案篇十五
1.通过与温度计的类比,了解数轴的概念,会画数轴。
2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
过程方法。
1.从直观认识到理性认识,从而建立数轴概念。
2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
3.会利用数轴解决有关问题。
情感态度。
通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。
【教学重点】。
1.数轴的概念。
2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
【教学难点】。
从直观认识到理性认识,从而建立数轴的概念。
【情景引入】。
1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。”
提疑:医生为什么通过体温计就可以读出任意一个人的体温?
(体温计上的刻度)。
2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-10°c,0°c,20°c)。
提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?
(正数、零、负数)。
3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。
七年级数学有理数的减法教案篇十六
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和。
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4、先把正数与负数分别相加,可以使运算简便。
5、在交换加数的位置时,要连同前面的符号一起交换。如。
12-5+7应变成12+7-5,而不能变成12-7+5。
教学设计示例一。
一、素质目标。
(一)知识教学点。
1.了解:代数和的概念.。
2.理解:有理数加减法可以互相转化.。
(二)能力训练点。
培养学生的口头表达能力及计算的准确能力.。
(三)德育渗透点。
(四)美育渗透点。