热门人教版五上数学解方程教案(案例22篇)
编写教案可以促进教学的科学性、系统性和规范性。教案应该根据学科特点和学生的学情灵活调整和改进。教案的优劣直接影响教学质量,所以我们要重视教案的编写。
人教版五上数学解方程教案篇一
作为一堂复习课,突出学生在整理知识过程中的主体作用,不仅能调动学生的积极性,还能加深学生对知识的理解。同时,在复习的过程中注重知识间的联系,把用字母表示数、方程的意义、解方程安排到一起复习,有助于学生对简易方程的知识有一个全面的了解。
对于解方程的复习,首先是进行讨论比较:3.4x+1.8=8.6,5x-x=24的解法。要让学生在讨论中发现,其实两类方程的解法有一个共同之处。对于列方程解决问题时,如何找相等关系式,教学时,提示学生举例说明,由于有前几节课的基础,学生不难举例,并知道找出关键句,从关键句中组建相等关系式。但这只是一种方法,由此进一步启发,让学生例举出包含常用等量关系式的例子,并领悟根据常用关系式,可以直接列方程,再引导讨论,明白已经学过的周长和面积等公式,也可直接用来列方程。
复习中的困惑:一是小数乘除法的计算错误比较多。对于这一点,我觉得只是依靠检验是不够的,因而,经常不失时机的对学生进行小数乘除法计算方法的提示,让学生恢复正常的小数乘除法水平。
二是学生对等量关系的中概括性文字的概括水平还不是很高,有时很难合理恰当地概括出数量的意思,主要是过于简单,不能表达应该的意思。对于此,只能通过让同学之间的互相弥补达到理想的方法,这样虽然费时间,但相信这对学生的概括能力是有很大帮助的。
人教版五上数学解方程教案篇二
(第1课时)。
【学习目标】。
1.知道用方程组解决实际问题的一般步骤.
2.会找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.
【重点难点】。
重点:会用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
(第2课时)。
【学习目标】。
1.体会一题多解,学习从多种角度考虑问题.
2.读懂并找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.
【重点难点】。
重点:会从多种角度考虑用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
【学前准备】。
1.小麦、玉米两种作物的单位面积产量的比是1:1.5,你能说明它的含义吗?(可以举例说明)。
2.“甲、乙两种作物的总产量的比是3:4”是什么意思?
3.总产量与哪些量有关?
(第3课时)。
【学习目标】。
1.体会方程组是解决含有多个未知数问题的重要工具.
2.读懂并能找出实际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.
【重点难点】。
重点:用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
人教版五上数学解方程教案篇三
1.从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系.
2.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念.能够利用二次函数的图象求一元二次方程的近似根.
3.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.
教学重点。
二次函数的最大值,最小值及增减性的理解和求法.
教学难点。
二次函数的性质的应用.
人教版五上数学解方程教案篇四
列方程解应用题是在第七册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。共分四个层次,首先教学比较容易的两步计算的应用题,其次教学两、三步计算的应用题,本课内容是第三个层次,第四是用方程和算术方法解应用题的比较。列方程解含有两个未知数的应用题,是第一次出现在全国统编教材上。例6的内容,在算术中称为和倍和差倍问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这两类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识,必须重视这部分内容的教学。
本节课的教学目标是使学生初步掌握含有两个未知数的应用题的解题思路和方法,会解含有两个未知数的应用题;会用把两个未知数的值代入已知条件看是否符合的方法进行验算;在教学解题思路的同时培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。
本节课的重点是正确设未知数和列出方程,关键要找出等量关系,列方程也是教学的难点。
列简易方程解应用题是中学列代数方程解应用题的基础,选择教学方法时,要注意中小学教学的衔接。
本节课首先要考虑正确运用迁移原理,这对中、小学的学习都将具有积极作用。在准备阶段的练习题中,不论是数量关系和解题的方法对学习例6都具有迁移的作用,利用这一原理可引导学生直接去做例6后的想一想,这既能培养迁移推理能力,也能促使学生养成独立思考的习惯。
其次,由于小学生仍处在从形象思维向抽象思维过渡的关键时刻,所以要考虑怎样做好这个过渡,在教学中采用画线段图帮助分析数量关系。线段图能使数量关系明显地呈现出来,有助于帮助学生设未知数,找等量关系和列出方程。
第三还要考虑学法指导。本课要教会学生阅读、分析应用题的方法、验算的方法,从不同角度思考问题的方法。在教学检验方法时,采用阅读的方式,让学生边读边想并说出两个检验式子的含义与作用,从中悟出检验的方法。教完例6后引导学生想不同的解题思路,列出不同的方程,就是教学生如何从不同角度思考问题的方法。这些方法对今后继续学习数学是十分必要的。
主要针对新授的内容和学生不习惯用方程解及感到列方程有困难等问题设计了三个教学环节。一是基本训练,进行列方程的训练,如,x的5倍与x的和是80;根据题意把方程写完全的训练,如,果园里原有桃树x棵,杏树135棵,两种树一共有180棵。=180,=135;根据线段图列方程的训练,如,第二个环节是练习例6前的复习题,对学生再现了三年级的内容是为学习例6架桥。为学习新课予作准备。第三个环节是导入新课。从改变复习题中的问题和一个条件,将复习题变成例6。使学生感到数量关系并不生疏,但由于需要逆向思考,学生又感到难做,以激发学生学习动机,为学习新课提供良好的情感和认知的起点。(第一阶段需5分钟左右)。
按照列方程解应用题的一般步骤安排四个环节。
一是审题。即,全面分析已知数与已知数、已知数与未知数、未知数与未知数之间的关系,画好线段图,找出已知数,并将其中的一个设为x,而另一个则根据题中的一个条件写成含x的代数式。解答例6就应先设桃树为x棵,根据杏树是桃数的3倍这一条件得出杏树为3x棵,画好的线段图如下:
二是找出等量关系列出方程。前面设未知数时已使用了一个条件,现在用另一个条件来列方程。即根据桃树和杏树共180棵列出方程x+3x=180;也可根据桃树和杏树共180棵来设未知数,根据另一条件列方程。这时设桃树为x棵,杏树是(180-x)棵,列出的方程是180-x=3x;也可设杏树为x棵,根据杏树是桃树的3倍,得出桃树是13x棵,列出的方程是x+13x=180;也可根据另一个条件设未知数,即设杏树为x棵,桃树是(180-x)棵,列出的方程是x=3(180-x)。但后几种方程解起来不方便,有的方程目前学生还不会解,教学时可要求学生只列不解。这些方程的列出有利于全面掌握数量关系,也有利于掌握,先根据一个条件设第二个未知数,再根据另一个条件列方程的基本思路和方法。但不能要求全体学生都会列出,特别是中差生,只掌握书中的一种即可。列出这些方程后,学生自然会得出书中列出的方程容易解,为此,教育学生今后学习时,不仅要考虑列出的方程是否正确,还要考虑列出的方程是否易解的问题。
第三个环节是检验。虽不要求写在本子上或卷子上,但这是不可忽视的重要步骤,长期要求下去,就可使学生养成良好的检验习惯,增强责任心和自信心,那种做完题不知对错的做法是后患无穷的。(这个阶段需20分钟左右)。
一是巩固新知的练习,可做128页做一做中的题目。接着做想一想题目,让学生独立用解和倍题的方法解差倍题,完成知识的迁移。第二环节安排课堂上的独立作业(5分钟左右)让学生独立做129页练习三十一的第一、二题,(对较好的学生教师根据实际情况增加题目)做完之后要认真进行讲评、纠正错误和打开思维受阻之处。
最后做课堂小结和布置作业(129页练习三十一第3、4、5题)。
人教版五上数学解方程教案篇五
一、课前预习:
1、某厂今年1月份的总产量为100吨,平均每月增长20%,则:。
二月份总产量为____________吨;三月份总产量为____________吨。(填具体数字)。
2、某厂今年1月份的总产量为500吨,设平均每月增长率是x,则:
二月份总产量为____________吨;三月份总产量为____________吨。(填含有x的式子)。
3、某种商品原价是100元,平均每次降价10%,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填具体数字)。
4、某种商品原价是100元,平均每次降价的百分率为x,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填含有x的式子)。
人教版五上数学解方程教案篇六
稍复杂的方程是五年级数学上册65页的例1,从内容安排上看,这一课时是本册单元-----简易方程中的第七课时,在这一节前,学生已经认识了字母表示数的意义作用,并初步了解了方程的意义和等式的基本性质,并能运用它解简易方程,这一课时是对前期知识进一步深化,是本单元的学习重点,也是教学难点。
新课程标准对于方程这部分内容在本学段有以下几个具体目标:1、在具体情境中会用字母表示数。2、结合简单的实际情境,了解等量关系。
3、了解方程的作用,能用方程表示简单情境中的等量关系。4、能解简单的方程。根据新课标的要求,这节课的教学内容确立了这样三个教学目标:
一是通过分析数量关系,自主探究,初步掌握列方程解决实际问题的一般步骤和方法。
二是会列形如ax+b=c或ax-b=c的方程,并会正确地解答。
三是感受数学与现实生活的联系,培养学生的数学应用意识,培养学生初步的代数思想和良好的学习习惯。教学重点是掌握较复杂方程的解法,难点是会正确分析题目中的数量关系。本节在设计上,着重突出以下几点:
一、创设有趣的教学情境,激发学生学习兴趣,调动学生积极性,引发学生的数学思考,帮助学生突破重难点。
二、课程内容的选择上贴近学生生活实际,有利于学生体验、思考与探索。
三、突出学生数学学习的主体地位,教师作为学习的组织者,引导着与合作者参与其中,在生活中注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。在教学方法上,重点以启发引导为主,借助互相合作,自主探究等形式,因势利导,适时调控,努力营造师生互动,生生互动的课堂氛围。从而实现预设的教学目标。
为了达到以上设计的教学目标。抓住重点,突破难点。对本节课的教学设计了以下环节:首先选择学生喜闻乐见的足球提出问题,并随着问题的深入把学生自然带入了立体的情境中。大屏幕出示情境图。然后教师紧紧把握列方程解应用题的基本步骤,对学生进行及时的渗透,引导和点拨。并抓住本节课的重点、难点列方程解方程。让学生互相交流、讨论。都说讨论要有价值,我觉得此处是新知识的生成点,是等式过渡到方程的关键地方,也是学生从学会分析数量关系到能利用数量关系列方程的关键所在。所以此处引导学生进行讨论。如果学生讨论时对解方程有困难,教师可以给予引导,把2x看作一个整体,这样就突破了难点。学生解答就不会有困难了。方程解完后,教师提示学生进行检验,并写好答语。例题完成后,教师对列方程解应用题的步骤进行简单的总结,加深学生的整体印象。接着设计了三个练习题。不列式解答,目的是看学生们对列方程解应用题这一重要的步骤掌握情况,如出现问题教师及时指导。二题是解方程,是在学会解法后进行及时巩固。三题是解决问题,让学生讨论后列式解答。在练习的设计上体现了从具体到抽象的过程。最后三五分钟的时间让学生谈谈本节课有什么收获,同时检验学生对本节课知识的掌握情况。
本节课我力求体现创设情境引导学生自主探究这一主题,体现学生的主体地位,让学生在情境中通过自主探究、感悟、理解、掌握新知识。能否收到预计的效果,还有待于课堂教学实际的检验。
一、从学生喜闻乐见的事物入手,降低问题的难度。
二、放手让学生思考、解答,选择解题最佳方案。
把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生。
学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。
人教版五上数学解方程教案篇七
问题:(投影)。
一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各多少只?
先让学生思考一下,自己做出解答,教师巡视.最后,在学生动手动脑的基础上,教师引导给出各种解法.
解法一:在分析时,可提出如下问题:
1.50只动物都是鸡,对吗?
(不对,因为50只鸡有100只脚,脚数少了.)。
2.50只动物都是兔子对吗?
(不对,因为50只兔子共有200只脚,脚数多了.)。
3.一半是鸡,一半是兔子对吗?
(不对,因为25只鸡,25只兔共有150只脚,多10只脚.)。
怎么办?(在学生思考后,教师指出:我们可采取逐步调整,验算的方法来加以解决.)。
4.若增加一只鸡,减少一只兔,那么动物总只数,脚数分别怎样变化?
(当增加一只鸡,减少一只兔时,动物的总只数不变,脚数比原来少两只.)。
5.现在你是否知道有几只鸡、几只兔?
(若学生回答还是感到困难,教师应引导学生根据一半是鸡,一半是兔时多10只脚,做出5次如问题4所述的方法进行调整,即增加5只鸡,减少5只兔,则多出的10只脚就没有了,故答案是30只鸡、20只兔.)。
此时,教师指出:这个问题是解决了,但它在很大程度上依赖于数字50和140比较小,比较简单,若它们相当大且又很复杂,那么像上述方法这样一次次的试算就很麻烦了.然后提出问题:是否有其他方法来解决这个问题呢?(若学生在思考后,还很茫然,则教师引导学生尝试可否用一元一次方程来解.由一名学生板演,其余学生自行完成)。
解法二:设有x只鸡,则有(50-x)只兔.根据题意,得2x+4(50-x)=140.
(解方程略)。
追问:对于上面的问题用一元一次方程可解,是否还有其他方法可解?(若学生想不到,教师可引导学生注意,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数,列方程.然后请一名学生板演解所列的方程.)。
人教版五上数学解方程教案篇八
1、能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程。
2、理解什么是一元一次方程。
3、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
【重点难点】体会找等量关系,会用方程表示简单实际问题,能验证一个数是否是一个方程的解。
【导学指导】。
一、温故知新。
1:前面学过有关方程的一些知识,同学们能说出什么是方程吗?
答:叫做方程。
人教版五上数学解方程教案篇九
教材内容:
人教版小学数学第十册《解简易方程》及练习二十六1~5题。
教材简析:
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
教学目标:
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
教学重点:
理解方程的意义,掌握方程与等式之间的关系。
教具准备:
天平一只,算式卡片若干张,茶叶筒一只。
教学过程:
一、创设情境,自主体验
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
二、突出重点,自主探索
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
三、自学思考,获取新知
在教学解方程和方程的解的概念时,通过出示两道自学思考题
(1)什么叫方程的解?请举例说明。
(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
四、使用交流,注重评价
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
人教版五上数学解方程教案篇十
教学目标:
1、比较系统地帮助学生掌握图形变换的常用方法,加深学生对图形的平移、旋转、图形的放大和轴对称图形的理解。
2、渗透审美教育,让学生感受几何图形蕴藏的美,产生创造美的欲望,进而培养学生对数学学科的兴趣的情感。教学重点:
让学生感受图形变换的方法之间的相互联系和区别,加深学生对图形变换知识的理解。
教学过程:
回顾图形变换的有关知识。
学生观察、讨论、汇报。
教师指出:图形的变换可以用轴对称图形、平移、旋转、缩放等到方法。
师:下面我们就来复习这些知识。
(一)复习轴对称图形。
师:生活中有哪些轴对称图形?它们有什么共同的特点?学生讨论、汇报。
教师引导学生得出:轴对称图形沿着对称轴对折,两侧图形能够完全重合。
让学生自己设计出轴对称图形。可以画可以用纸折等。
安徽科大讯飞信息科技股份有限公司。
版权所有。
完成练习104第1、2题。
(二)复习旋转。
师:生活中,你看见哪些旋转现象?学生讨论回答。
完成书上第三题。
你能画出三角形绕a点顺时针旋转90度后的图形。学生画完后互相检查。
(三)复习图形的平移。
师:生活中有哪些平移的现象?让学生看上做一做题,说出从a-b-c-d是如何变化过来的?引导学生说出平移时要注意说清平移的方向,以及平移的距离。
(四)复习图形的放大和缩小。
师:一个图形放大或缩小后现原来图形有什么关系?引导学生说出:大小不同,形状相同。完成105页第六题。
(五)设计图案。
让学生根据自己的想象,设计图案。进行展示。
安徽科大讯飞信息科技股份有限公司。
版权所有。
人教版五上数学解方程教案篇十一
3、让学生在实际生活问题中,感受到数学的价值。
【学习重点】用列方程的方法解决打折销售问题。
【学习难点】准确理解打折销售问题中的利润(利润率)、成本、销售价之间的关系。
人教版五上数学解方程教案篇十二
教学目标:
1、了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系,
2、能根据不同情况选择正确方法解决问题。
3、通过摆一摆、画一画、比一比等方法体会在一条直线上植树三种基本情况的联系。
4、在解决实际问题中感受数学的价值。
教学重点:能阐述不同情况下点数与间隔数的关系,
教学难点:能根据不同情况选择正确方法解决问题。
教学准备:图片、小棒、习题
教学过程:
一、初步感知点与间隔数
同学们已经四年级了,在学校里上操,上体育课都少不了要排队,老师要请三位同学到前面按照老师的要求排队。(请三位同学到前面来)
师:面向老师排成一路纵队。相邻两位同学之间间隔1米。
师:排得不错。这路纵队长几米?你是怎么知道的?(生回答)
师讲解:这个同学到最后一个同学的距离叫做队伍的全长(总长);相邻两个同学之间的距离叫做间隔(板书:间隔、强调间的读音是四声);现在3名同学站队有几个间隔;(2个)这三名同学也可以当成三个点(板书:点)。
老师把这几个同学排队的情况抽象成平面图(师板书平面图),你能看懂吗?这几个点表示什么?点与点之间的是间隔。
师:间隔可以是人与人之间的距离,也可以是人与物,物与物之间的距离……
师:请同学们再数一数在平面图上有几个点?几个间隔呢?想象一下,四个同学排成一队会有几个点,几个间隔?试着像老师这样用线段图来表示。(生试画、展示)
师:如果是5名同学、6名同学以至于更多的同学站队会有几个点,几个间隔?请同学们用桌上的小棒来演示验证一下,摆的越多越好。(老师叫停)
师:数一数,5个同学是几个点,几个间隔?6个呢……
师:在刚才同学的站队及你的整个摆小棒的过程中你有什么发现?(排队人数比间隔多1,间隔比人数少1)
师:请同学们把学具整理一下。
师:在我们教室里也有这样点与间隔的现象存在,请同学们用你智慧的眼睛找一找。
生1:四个桌子间有4个点,3个间隔。
生2:三个窗户间有3个点,2个间隔。
生3:棚上有两盏灯,所以就有2个点,1个间隔。
师:大家都抬头来仔细观察、并且认真数一下,两盏灯之间到底有几个点,几个间隔?(2个点、1个间隔)
师:你认为什么是间隔?(灯与灯之间的距离就是间隔)
师:间隔就是距离,它可以是人与人之间的距离,也可以是人与物,物与物之间的距离……灯与灯之间有距离吗?(有)这就是间隔。灯与墙之间有距离吗?(有)那也是间隔。现在请同学们再数一数现在你看到的是几个点,几个间隔?(2个点、3个间隔)
二、引题。
在现实生活中,我们常常会遇到像同学们站队这样与点和间隔有关的问题,数学家把这类问题统称为植树问题,这节课我们就一起研究和解决一些简单的植树问题。(板书:植树问题)
三、植树问题与同学站队建立联系,找出两端都植树棵数与间隔数的关系
师:请同学们默读两遍,通过阅读你获得了哪些数学信息?(生说信息)
师:这里说的种树和刚才的排队活动有什么联系?(同学按自己的理解讲解)
师:请同学们用你桌上的小棒摆一摆,看100米的小路上到底可以栽多少棵树苗?然后将你摆的抽象成平面图在练习本上画出来。(生试摆、试画)(找一生上黑板画线段图,生说是如何想的,可能出现的答案:我是这样表示的。先画一条长的线段表示这条小路,再画出第一个间隔,标出这个间隔的长是20米。)
师:我们可以直接算出什么?列式 100÷20=5
师: 这个5表示什么呢?(有5个间隔,这条小路可以分成20米长的5段)所以5的单位是什么?(个) 完成这道题了吗?(没有)为什么?请同学们在练习本上写出算式。
师:谁来说一说这一题的解题过程。
师:通过摆一摆和画线段图,你发现棵数与间隔数之间的规律吗?(生答:棵数总比间隔数多1)能用一个公式的形式表示它们的关系吗?(板书:棵数=间隔数+1)
师:什么情况下棵数比间隔数多1呢?(师在黑板上画一个两端都不植树的平面图)引导学生得出在两端都植树的情况下。(板书:两端都植树)
过渡小结:刚才,同学们把植树和排队活动联系起来,发现了当两端植树时 棵数=间隔数+1。是不是说只有植树才是植树问题呢?(不是的)对,在我们熟悉的生活中也有植树问题,回忆一下生活中哪些现象属于植树问题。(生说现象)
四、如果两端都不植树(一端植树、一端不植树)棵数与间隔数之间有什么关系
师:动物园里也存在植树问题,请看:
四人小组讨论一下准备多少棵树苗合适,汇报。(60÷12+1=6)
有不同看法吗?
师:公园里的实际情况是这样的,师贴图(先贴大象馆和猩猩馆,再从大象馆开始每隔12米贴一棵树)
师:是不是有上当的感觉?有什么办法让大家不再上这样的当呢?怎样把题目改严谨呢?讨论改题。
生重新做题。讨论一下此时棵数与间隔有什么关系。(板书:棵数=间隔数-1)什么情况下?(两端都不植树)
汇报。(在一端植树,一端不植树的情况下,棵数=间隔数。)
五、解决实际问题
你能运用刚才的发现解决一些实际问题吗?试一试吧。
1、口答
(1)如果一排树两头都种,有5个间隔,能种( )棵树。
(2)从头至尾栽了10棵树,那么间隔数是( )。
2、在一条30米的小路一侧摆花盆(两端都不摆),间隔长度是3米,需要多少盆花?
3、彩旗队插旗,每隔6米插一面,共插36面,从第一面到最后一面的距离有多远?
六、小结:
今天我们研究了植树问题,植树问题有哪几种不同的情况呢?有兴趣的同学课下可以继续研究。
人教版五上数学解方程教案篇十三
2、培养学生的比较能力、分析能力和归纳概括能力
掌握列方程解应用题的一般方法
找出应用题中的等量关系
1.口头解下列方程(小黑板出示)
x-35=40x-5×7=40
15x-35=4020-4x=10
2.出示复习题
(1)读题,理解题意。
(2)引导学生用学过的方法解答
(3)要求用两种方法解答。
(4)集体订正:
解法一:35+40=75(千克)
解法二:设原来有x千克饺子粉。
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
二、探究新知
1.教学例1
(1)读题理解题意。
(2)提问:通过读题你都知道了什么?
(3)引导学生知道:已知条件和所求问题;题中涉及到“原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。根据理解题意的过程教师板书:
原有的重量-卖出的重量=剩下的重量
(4)教师启发:等号左边表示什么?等号右边表示什么?(引导学生回答:等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。)
(5)卖出的饺子粉重量直接给了吗?应该怎样表示?(引导学生回答:卖出的饺子粉重量没有直接给,应该用每袋的.重量乘以卖出的袋数)把上面的等式改为:
原有的重量-每袋的重量×卖出的袋数=剩下的重量
(6)启发学生把已知条件在关系式下面注出来。然后引导学生说出要求的问题用x表示即设未知数,教师说明怎样设未知数。
(7)引导学生根据等量关系式列出方程。
(8)让学生分组解答,集体订正时板书如下:
解:设原来有x千克饺子粉。
x-5×7=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
(9)引导学生自己看118页例2上面一段话,提出问题:你能用书上讲的检验方法检验例题1吗?引导学生自己检验。之后请几位学生汇报结果。都认为正确了再板书答语。
小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)
2.教学例2
小青买2节五号电池,付出6元,找回0.4元,每节五号电池的价钱是多少元?
(1)读题,理解题意。结合生活实际帮助学生理解“付出”、
“找回”等词的含义。
(2)提问:要解答这道题关键是什么?(找出题中相等的数量关系)
(3)组织学生分组讨论。
(4)学生自己解答,教师巡视,个别指导。
(5)汇报解答过程。汇报中引导学生讲解题思路,注意照顾中差生。
(6)教师总结订正。如果发现有列:2x=6-0.4和2x+0.4=6两种
方程的,教师要引导学生比较那种方法简单,并强调用较简单的
方法解答。
3.学生自己学26页上面一段话,回顾上边的解题过程,总结列
方程解应用题的一般步骤,总结后投影出示:
列方程解应用题的一般步骤:
(1)弄清题意,找出未知数,并用x表示;
(2)找出应用题中数量间的相等关系;
(3)解方程;
(4)检验,写出答案。
4.完成26页的“做一做”
小黑板出示:商店原来有15袋饺子粉,卖出35千克以后,还剩
40千克,每袋面粉重多少千克?
(1)学生独立解答
(2)集体订正,强化解题思路。
三、巩固发展
1.口答:列方程解应用题的关键是什么?
2.完成练习七第1题,在书上填写,集体订正。
3.按列方程解应用题的方法步骤学生独立做练习七4题,集体订正结果。
四、全课总结:引导学生总结本节课学习了什么知识。
五、布置作业
练习七第2题、3题。
六、课后记事:
七、板书设计
列方程解应用题
例1解:设原有的为x千克。
原有的重量-卖出的重量=剩下的重量第一步:弄清题意,找出
x-5×7=40未知数,并用x表示;
x-35=40第二步:找出数量之间的
x=35+40相等关系,列方程;
x=75第三步:解方程;
答:商店原有75千克饺子粉第四步:检验,写出答案。
人教版五上数学解方程教案篇十四
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程
(一)导入新课
(板书:大象的体重=石头的重量)
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课
探究一:学习等式性质
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=12 23+x=45
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x – 19 = 2
(2)x - 12.3 = 3.8
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
板书设计
x+5=7 x-5= 7
解:x+5-5=7-5解:x-5+5=7+5
x=2 x=12
等式的两边同时加上或者减去同一个数,等式仍然成立。
人教版五上数学解方程教案篇十五
一、教材分析
(一)教材的地位和作用
(二)教材的重难点
二、教学目标分析
(一)知识技能目标
1.目标内容
(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.
2.目标分析
(二)过程目标
1.目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识.
2.目标分析
(三)情感目标
1.目标内容
2.目标分析
三、教材处理与教法分析
人教版五上数学解方程教案篇十六
一、教学内容:
教材第94页例1、“练一练”,练习二十―第1―4题。
二、教学要求:
使学生学会用方程解答数量关系稍复杂的求两个数的(和倍、差倍)应用题,能正确说出数量之间的相等关系;学会用检验答案是否符合已知条件来检验列方程解应用题的方法,提高学生列方程解应用题和检验的能力。
三、教学过程:
一、复习导入。
1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)。
2、根据下列句子说出数量之间的相等关系。
杨树和柳树一共120棵。
杨树比柳树多120棵。
杨树比柳树少120棵。
3、出示线段图:梨树:
桃树:
从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?
4、出示条件:母鸡的只数是公鸡的5倍。
5、在括号里填上含有字母的式子。(练习二十一第1题)。
6、交流:板演,你是根据怎样的数量关系来解答的?
7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)。
二、教学新课。
(1)齐读。
(2)这道题已知什么条件,要求什么问题?边问边画出线段图。
(3)“梨树和桃树各有多少棵”是什么意思?
这道题要求的数量有两个,你认为用什么方法做比较简便?
(4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。
(5)交流。
(6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。
校对板演。还可以怎样求桃树的棵树?
(7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。
2、教学想一想。
现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)。
一生板演,其余齐练。
集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?
3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的关键是什么?(找出数量之间的相等关系。)。
4、小结。
从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。
三、巩固练习。
1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?
2、只列式不计算。
一个自然保护区天鹅的只数是丹顶鹤的2.2倍。
(1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?
(2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?
3、选择正确的解法。
明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?
(1)解:设鸡和鸭各有x只。x+3x=56。
(2)解:设鸡有x只,鸭有3x只。x+3x=56。
(3)解:设鸭有x只,鸡有3x只。x+3x=56。
商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?
(1)解:设梨有x千克,苹果有3.6x千克。3.6x-x=26。
(2)解:设梨有x千克,苹果有3.6x千克。3.6x+x=26。
四、课堂总结。
老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。
五、作业:
练习二十一/2―5。
人教版五上数学解方程教案篇十七
今天,我观看了赵震老师的《认识方程》一课。这是一节朴实而又深刻的数学课,在赵老师的引领下,学生经历了一堂轻松而又收获颇多的课堂,被数学的魅力深深地打动。
一、将抽象的概念直观化。
这是一堂数学概念的学习,在课堂上,赵老师充分应用多种方式,帮助学生较好地建立了“等式”、“不等式”以及“方程”的概念。一方面,赵老师借助多媒体,充分应用了天平的直观效果,描述苹果、草莓、桔子等水果的质量,使学生能借助表象进行抽象的描述。同时在描述的过程中,赵老师并不让学生的思维停留于直观。“看谁能把自己的想法清楚、简单地表达出来?”使学生的思维逐渐从直观走向了深刻。整个学习过程,赵老师通过电脑模拟称量情景的创设,引导学生观察,用式子描述关系,从而感知“不等式”、“等式”和方程“的意义和概念,充分以学生学习活动为主体进行新知的学习。
二、注重数学文化的渗透。
赵老师在课中注重学生数学知识的`拓展,向学生介绍方程的历史,了解到数学可以描述生活中的一些现象,除了注重让学生感受数学与生活有着密切的联系,还教育学生学习就像吃饭一样,不能一口气吃个胖子,即我们是站在古人的肩膀上来学习的。
三、巩固练习,由浅入深。
课堂上,赵老师通过多种练习,巩固方程的意义和列方程的方法。根据图意列方程、根据题意列方程和乘坐公交车上下车的实际问题的练习,让学生能够用方程描述生活中的现象,进一步巩固对方程意义的理解和抓住等量关系列方程的方法。
人教版五上数学解方程教案篇十八
教学内容:
教材第88---90页。
教学目标:
1、结合情境,了解方程的意义;
2、会用方程表示简单的等量关系;
3、在列方程的过程中,体会方程与现实世界的密切联系。
教学重难点:
1、了解方程的意义;
2、会用方程表示简单情境中的`等量关系。
教学准备:
情境图、课件、卡片(等式、不等式、方程….)。
教学过程:
一、课前谈话,设疑导入。
1、为什么学习方程?
2、方程是什么?
二、带着问题自主学习,合作交流,建立方程概念。
问题一:为什么学方程?
(一)出示天平,建立等量概念:
左边=右边。
(二)出示情境图分组学习(如书88页称药丸、称月饼、倒水)。
1、小组合作,看图找出等量关系,用式子表示出来。
2、小组汇报,并将式子板书在黑板上。
问题二:什么是方程?
根据小结板书:含有未知数的等式叫方程。
1、读一读:
师:你认为这句话中哪些词语比较重要,试着用声音传达给大家。
2、圈一圈:
师:根据这句话找一找,黑板上的式子哪些是方程呢?把它们圈出来吧。
3、写一写:
师:在数学世界里只有这几个方程了吗?你还能写几个呢?(无数个)(学生独立完成板书在黑板上)。
4、试一试:
含有未知数的式子就是方程吗?举个例子。
等式一定是方程吗?举例。
5、游戏巩固:听口令做动作。
游戏目的:使学生更清楚地认识方程的两个要素:未知数和等式。
游戏规则:请几位学生手拿卡片听口令,如:发令者说:“等式”跳一跳,拿着等式卡片的人就要跳一跳,其他的人不能动。
三、课堂小结:
1、这节课你有什么收获?
2、第89页练一练第1、2题。
四、布置作业。
人教版五上数学解方程教案篇十九
函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。
本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学i必修本(a版)》第94—95页的第三章第一课时3、1、1方程的根与函数的的零点。
本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形、它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3、1、2)加以应用,通过建立函数模型以及模型的求解(3、2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系、渗透“方程与函数”思想。
总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
知识与技能:
1、结合方程根的几何意义,理解函数零点的定义;
2、结合零点定义的探究,掌握方程的实根与其相应函数零点之间的'等价关系;
3、结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法。
情感、态度与价值观:
2、培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3、使学生感受学习、探索发现的乐趣与成功感。
教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
导学案,自主探究,合作学习,电子交互白板。
(一)、问题引人:
请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根?
学生活动:回答,思考解法。
学生活动:思考作答。
设计意图:通过设疑,让学生对高次方程的根产生好奇。
(二)、概念形成:
预习展示1:
学生活动:观察图像,思考作答。
教师活动:我们来认真地对比一下。用投影展示学生填写表格。
一元二次方程。
方程的根。
二次函数。
函数的图象。
(简图)。
图象与轴交点的坐标。
函数的零点。
问题1:你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与。
轴交点的坐标以及函数零点的关系吗?
学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。
教师活动:我们就把使方程成立的实数x称做函数的零点、(引出零点的概念)。
根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?
学生活动:经过观察表格,得出(请学生总结)。
2)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标、
3)方程有实数根函数的图象与轴有交点函数有零点。
教师活动:引导学生仔细体会上述结论。
再提出问题:如何并根据函数零点的意义求零点?
学生活动:可以解方程而得到(代数法);
可以利用函数的图象找出零点、(几何法)、
设计意图:由学生最熟悉的二次方程和二次函数出发,发现一般规律,并尝试的去总结零点,根与交点三者的关系。
(三)探究性质:
(四)探索研究(可根据时间和学生对知识的接受程度适当调整)。
讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?
[师生互动]。
师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。
生:分组讨论,各抒己见。在探究学习中得到数学能力的提高。
第五阶段设计意图:
一是为用二分法求方程的近似解做准备。
二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。
(五)、课堂小结:
零点概念。
零点存在性的判断。
零点存在性定理的应用注意点:零点个数判断以及方程根所在区间。
(六)、巩固练习(略)。
人教版五上数学解方程教案篇二十
教学内容:
教科书第12~13页,“回顾与”、“练习与应用”第1~4题。
教学目标:
1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。
2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。
教学过程:
一、回顾与
1、谈话引入。
本单元我们学习了哪些内容?
你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?
在小组中互相说说。
2、组织讨论。
(1)出示讨论题。
(2)小组交流,巡视指导。
(3)汇报交流。
你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?
(等式与方程都是等式;等式不一定是方程,方程一定是等式。)
(含有未知数的等式是方程。)
(等式性质:)
(求方程中未知数的值的过程叫做解方程。)
同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。
二、练习与应用
1、完成第1题。
(1)独立完成计算。
(2)汇报与展示,说说错误的原因及改正的方法。
2、完成第2题。
(1)学生独立完成。
(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)
3、完成第3题。
(1)列出方程,不解答。
(2)你是怎样列的?怎么想的?大家同意吗?
(3)完成计算。
4、完成第4题。
单价、数量、总价之间有怎样的数量关系?
指出:抓住基本关系列方程,y也可以表示未知数。
三、课堂
通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?
人教版五上数学解方程教案篇二十一
今天听了涂老师的《认识方程》这节课,让我感受颇深。认识方程原来是五年级下册的第一单元的第一课内容,但是涂老师把它放在四年级班级上。虽然是四年级的孩子,但是完全能接受。学生不仅理解了什么是方程,找到未知数与已知数之间的等量关系,就可以列出方程。还学会判断,在脑海中建立方程模型。听完这节课后有以下几点想法:
一、关注实际生活,激发学生的学习兴趣。
涂老师这节课的整个教学过程中的任何一个环节的学习内容都是现实的、与学生已有知识体系有密切联系的。如课前导入以师生之间的轻松愉快的聊天形式给学生明确了“小a已知数”和“小b未知数”。再如给学生介绍天平,虽然学生在三年级科学课上认识天平,但很少有机会进行操作,涂老师在学生已有的知识经验上又给学生介绍了天平的使用方法,并介绍了天平平衡的知识,动态和静态的平衡知识,学生在亲身体验的基础上通过观察对比,体会到等式的意义、不等式的意义、方程的意义,也深刻理解了方程意义中的两个关键点:未知数、等式。整个环节,清晰、自然,真正做到了在无痕中让孩子们知其然,也知其所以然。
二、巧妙设计题组,小题体现大功效。
涂老师在巩固练习的时候设计了一组开放性练习,让学生体验什么是方程,出现两个不同的算式6x+=78,36+=42先让学生独立思考,接着让学生辩一辩其中的原因,感知相同的数量关系和相同的数据才会列出相同的方程,展示方程的魅力。相对于学生来讲其实最难的是找到实际问题中的“等量关系”,我想这是学生数学学习的转折点,以往数学学习的是确定的数量或图形,而进入代数领域之后就进入了“关系”的学习,这样的内容更加抽象,是数学学习的“分水岭”,学生的数学成绩也由此产生了分化。而通过这个小题组,我觉得学生收获了很多,对方程意义的理解也很深刻,懂得列方程需要从实际问题中存在的相等的数量关系思考,而其间学生在说、在想、在辨、在创造,作为听课老师我很是高兴,看到孩子们学得轻松,学有收获,也锻炼了能力。
三、适时见针插缝,感受数学文化。
虽然这一课时教科书上没有安排相关史料,但涂老师在课上确适时地给学生安排了文化大餐,一个是未知数的历史发展,一个是方程的'历史发展,最好还引用数学家陈省身教授说过的名言“数学有‘好’数学和‘不大好’的数学之分,方程,是‘好’的数学的代表”作为本课结束语,让数学文化贯穿于《认识方程》这节课的课前、课中和课尾。
总之,教学有法,教无定法,我相信只要我们的教立足于学生的学,我们的课堂将更精彩,更丰富多彩!
将本文的word文档下载到电脑,方便收藏和打印。
人教版五上数学解方程教案篇二十二
教学目标。
1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。
2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。
3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。
教学重点。
列方程解答数量关系稍复杂的两、三步应用题。
教学难点。
形如:ax+bx=c的数量关系。
教学理念。
培养学生自主探究、合作交流的学习方式。提高学生的检验能力。
教师活动过程。
学生活动过程备注。
一、复习铺垫。
1练习二十一t1。
学生回答。
2根据条件说出数量关系式:
果园里的桃树和梨树一共有168棵。
果园里的桃树比梨数多84棵。
桃树棵数是梨树的3倍。
学生回答数量关系式。
3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!
学生自主编题,口头说题。
4依据学生回答,教师出示题目。
b.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)。
c.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)。
教师巡视,了解情况。
二.探究新知。
1.学生尝试例1。
引导学生画出线段图。
集中反馈:生说师画图。
2.教师组织学生汇报。
学生介绍算术解法时,教师引导学生画线段图理解数量间的'关系。
学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。
3.小组讨论。
解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?
用方程解,设哪个数量为x比较合适?用什么数量关系式来列式呢?
4.学生独立完成想一想。
这一题与例1有什么相同的地方?有什么不同的地方?
明确三点:1、一般设一倍数为x。2、把几倍数用含有x的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。
5完成课本94页练一练。
指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?
三、小结。
本课学习了什么内容?你有哪些收获?
四、作业。