数学竟赛建模论文(汇总15篇)
总结是对自己成长和进步的一种激励和肯定,也是对自己的一种促进和冲击。一个好的总结应该能够启发他人,让他们从中汲取经验和教训。以下是一些总结示例,希望能对大家的总结写作有所帮助。
数学竟赛建模论文篇一
摘要:以文献综述法为主要策略,查阅知网和万方数据库中有关高职数学建模教学的相关文献,对高职数学建模教学现状,存在问题以及优化发展对策的文献研究成果进行梳理,通过研究综述发现:以建模思维构建课堂情境已成为国内众多高职院校数学课程教学的重要方法,对数学教学效果的提升也起到了积极的作用,但在教学方法创新和学生有效引导等方面仍存在一些问题,希望各级高职院校能够针对凸显出的问题进行有效整改。
关键词:高职数学;建模教学;现状与发展;综述分析。
(一)数学模型。
数学模型是一种使用数学语言对现实问题的抽象化表达形式。它是人们用数学方法解决现实问题的工具,基于数学模型的现实问题表达往往有着量化的表现形式,再通过数学方法的推演和求解,将现实问题中蕴含的数学含义表达出来。在数学、经济、物理等研究领域,有很多经典的数学模型,例如:,马尔萨斯人口增长理论模型、马尔维次投资组合选择模型等,这些数学模型的构建帮助人们解决了很多现实的问题,提升了相关领域量化分析的精确度。
数学建模教学是一种基于数学模型的教学方法,在高职院校数学教学中被普遍应用,具体来说数学建模教学的一般步骤为:
(1)模型理论依据分析。在教学中倘若需要以某一个知识点为基础建设数学模型时,教师应该以前人的研究成果为依据,找寻模型建设的理论支撑点,切忌假大空似的模型构建思路。
(2)以教学内容为基础假设模型。根据教学内容的需要,对待研究问题进行模型化假设,提出因变量、自变量等模型语言。
(3)建立模型。在假设的基础上建立模型。
(4)解析模型。将待求解的数学数据代入模型进行解析计算。
(5)模型应用效果检验。将模型解析的结果与实际情况进行比较,以检验模型解析的准确性和实效性。
二、高职数学建模教学现状与问题研究综述。
(一)教学现状综述。
施宁清等人(20xx)采用试验法研究了建模教学在高职数学课程教学中的效果,试验的过程以对照班和实验班对比教学的形式展开,针对试验班的教学采用数学建模的方法,而对照班的教学则采用传统的讲授法展开,通过一段时间的教学实践后设置评估变量对两个班级学生的数学学习效果进行了总结,结果显示:试验班学生的数学考试成绩、建模应用能力等均优于对照班,说明建模法对高职数学教学质量的提升效益明显。危子青等人(20xx)项目教学法与建模思想融合的高职数学教学形式,指出:该种教学的特色在于将高职数学课程的教学内容划分为若干个子項目,对每一个项目都进行模型化构建,并以模型为素材设计和组织项目化教学,通过教学应用后发现学生不仅掌握了项目教学的学习精髓,也掌握了数学模型的构建解析技能,教学效益获得了双丰收。冯宁(20xx)肯定了建模思想对高职数学教学带来的效益,指出:通过引入建模教学,能够最大化锻炼学生的发散性思维,以及数学逻辑应用能力,对教学效果的促进效益明显。
(二)存在问题综述。
尽管建模法对高职数学教学带来的效益十分明显,但在多年的教学实践中一些问题也不断凸显出来有待进一步整改,为此国内一些学者也将研究的视角放在建模法在高职数学教学中存在问题的研究上,例如:孟玲(20xx)从教学方法的教学分析了高职数学建模教学中的问题,指出:很多高职生对数学学习的兴趣不足,加之传统的数学模型又十分抽象,学生理解起来比较困难,一些高职数学教师采用传统的建模教学思路组织教学并不利于学生学习兴趣的激发,而抽象的数学模型与陈旧的教学方法结合反而降低的教学的效果。曹晓军(20xx)则认为:很多数学教师并不注重引导学生科学地理解数学模型,并在此基础上有效地接受学习内容,而是一味地采用灌输法设计教学过程,不利于数学模型在课程教学中的应用效益提升。
三、高职数学建模教学发展对策综述。
针对建模法在高职数学教学中凸显出的问题,一些学者也提出了对策。例如,齐松茹(20xx)认为应创新建模教学的形式和方法,如引入游戏教学法,将深奥的数学模型趣味化,通过组织多元化的教学游戏激发起学生参与建模学习的兴趣。谷志元(20xx)则认为教师应该加大对学生的引导,通过课前、中、后期的有效引导,帮助学生有效地建立起对数学模型的认知,逐步教会学生利用模型解决实际问题,达到学以致用的教学效果,以提升数学模型在课程教学中的价值。周玮(20xx)则提出了结合网络课堂建立研讨式课堂的建模教学新思路,不失为一种高职数学建模教学的创新教法。
四、结语。
通过对已有文献的查阅和梳理发现,高职数学课程教学中引入建模方法对于课程教学实效性提升的效果已经得到了国内众多学者的肯定,但在应用中也存在一些问题,比如:教学方法的创新度不够,学生引导的活动不多等,为此国内一些学者也提出了针对性的教学优化思路。本文的研究认为:建模法对于高职数学教学效益的提升有着积极的价值,在今后的教学实践中各级高职院校教师应该结合教学的实际情况开展科学的建模教学活动,以不断提升高职数学建模教学的实效性。
参考文献:
数学竟赛建模论文篇二
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。数学建模所解决的问题不止现实的,还包括对未来的一种预见。数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.1数学建模引进大学数学教学的必要。教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。1.2数学建模在大学数学教学中的运用。大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用。
2.1数学建模对数学学科和其他学科学生的巨大影响力学习数学建模,能够使一个单独的数学家变成经济学家,物理学家还有金融学家,甚至是艺术家,只要正握数学建模就能指导学生通过掌握数学建模的思维和方法向其他领域学习和进步。数学建模成为连接数学和其他领域的纽带,是当今数学科学在其他领导应用的桥梁,是数学技术转化为其他技术的途径,数学建模在学生中越来越受到关注和欢迎,越来越多的学生开始学习数学建模,尤其是数学界和工程界的学生,这成为当今学生成为现代科技工作者必须掌握的只是能力之一。
2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。通过数学建模的学习和应用,激发大学生学习数学和应用数学的能力,运用数学的思维和方法,利用现代计算机科学,来解决数学及其他领域的问题。
3.数学建模对大学数学及其他学科教师的作用。
数学建模引入大学数学教学,这是时代的进步,是时代对当代大学教师提出的新要求,尤其是大学数学教师,其不再停留在以往的单纯的数学知识讲授方向,而是将数学科学作为基础,引导当代大学生发散思维,发挥主观能动性,从而学习数学科学,并运用数学科学解决现实问题。在这个过程中大学教师的专业知识得到提高,其创新精神也得到了极大的丰富。大学数学教师不止完成数学教学,更重要的是培养了高科技的人才,这对大学数学教师的社会地位也有了相应的改变,在尊重人才,尊重科学的氛围中,大学数学教师及其他学科的教师得到了鼓舞,得到了进步,得到了认可。数学建模越来越重要,关于数学建模的各种国内国际大赛频频举办,这对大学数学教师在知识,体力和创新性上都提出新的要求,为了更好的参与数学建模比赛,大学数学教师投入更多的时间和经历在学生教育和数学建模中,他们成为真正的台前和幕后的指挥者。
随着现代大学学科的丰富,尤其是计算机科学的广泛应用,大学数学教学的跨时代发展,数学建模成为各个高校数学教学的重点内容,数学建模教学吸纳数学家,计算机学家等多个学科专家的意见,从而为培养出综合行的高科技人才做好充分的准备。可以说数学建模教学是当今大学数学教学的主旋律,是数学科学和其他科学进步发展的方向和原动力。
参考文献:
[1]李进华.教育教学改革与教育创新探索.安徽:安徽大学出版社,20xx.8.
[2]于骏.现代数学思想方法.山东:石油大学出版社,.
数学竟赛建模论文篇三
摘要:所谓数学建模,即借助数学模型,处理所遇到的具体问题的课程,在本文中,分别就教学、模型建立以及相应的信息检索来进行研究,通过将这三面进行相应的糅合从而证明可以将计算机技术引入到相应的建模实践中,从而有效促进数学建模的发展,使得教学质量得以有效提升。
关键词:数学建模;计算机应用;融合。
目前计算机在生活中应用极为广泛,借助于计算机能够使得先前较为复杂繁琐的问题得以简化,有效提升计算速率。就数学建模来看,计算机在此方面的作用不言而喻。对于此,人们普遍认为,能够借助于计算机将任何一个数学问题进行简化处理。而对于生活中所遇到的任意一个实际问题,均能够借助于相应的数学模型来进行表示,在建模过程中,也可以根据实际情况来做出一些相应的简化处理,从而将其归属于完全的数学问题,最终建立起能够用变量所描述的数学模型。之后,借助于相应的计算机、软件以及编程方面的知识,来对此模型进行相应的求解计算。
2.计算机技术在数学建模中的应用。
计算机在数学建模中的应用面非常的广泛,限于笔者的水平,本文主要就两个方面展开讨论:第一,确定建模思想;第二,对数学模型进行求解计算。
2.1计算机技术辅助确立数学建模思想。
对于数学建模,其最为重要的目的便是为了能够提升学生对于数学知识的使用性,借助于相关的数学思想来对实际问题进行解决,同时,还能够促进学生数学思想的发展、建模能力发展以及相关数学知识的完善,最终提升其对于数学知识的使用能力。培养数学思维重在将学生所思所想以最快最佳的方式展示出来,计算机技术在数学建模中的应用使得这个设想变得可能。因为数学模型的计算和设计工作量大,传统的计算办法不能迅速解决某个问题,但是在建模的辅助下一切问题迎刃而解。
2.2计算机技术促进数学建模结果求解。
对于数学建模,其属于一项系统性工程,整个过程工作量较多。在前期,对于模型的构想与建立需要不断完善,此后,对于模型的求解也是极为困难的,这主要因为其涉及到非常多的数据处理与计算。在计算数学模型时,不仅速度快,准确度也很高,如表1给出了手动解30维线性方程组和计算机解30维方程组的时间,手动所用时间是计算所用时间的1200倍。
同时,对于一些借助纸和笔而无法实现的计算,通过计算机能够较快实现,其中主要涉及到相关的编程、绘图等操作。
计算机在数学建模领域拥有极为重要的优势与作用。如计算机的计算速度快、可以辅助作图,甚至可以辅助做立体图形。同时,借助于计算机也能够使得模型得以进一步完善,也就是說两者彼此之间相辅相成。
数学建模的出现,主要是为了便于处理同工程或者科研相关的问题的,和试题类有着较大区别。其所处理问题具有一定的特性,即围绕日常具体问题展开,科研背景突出,需要的知识结构复杂,涉及的范围庞大,因素多且难,非常规特征明显,缺乏有效的处理措施,涉及数据多,要选择的算法亦十分繁琐,得出的结果存在波动性,要有限定的前提,通常仅可获取近似解。而计算机的出现,则在一定程度上使这种情况得到缓解。是数学建模多样化,令设计领域更加宽泛,如数学建模可以模范人类大脑的记忆功能。
3.2计算机使数学模型求解更为简单。
计算机在数学建模中的应用使得数学模型求解更为简单体现在以下几个方面:
(1)计算量问题得到解决。以前计算量大是制约数学建模发展的主要因素之一,现在在计算机的帮助下,只要模型完善,计算量大已经不是问题。如德国的神威计算机,计算速度达到了12.5亿亿次/秒。
(2)可视化功能使抽象问题具体化。现代计算机都有强大的作图功能,会使数学模型中的一些抽象概念、问题解决过程都变得可视化。图表的制作更是非常简单。
3.3计算机利用数学建模寻求最优解成为可能。
在3.1节中已经提到,在计算机没有应用到数学建模中之前,很多数学模型的解只是近似解,连精确解都谈不上,更不用说是最优解。其主要原因是模型本身的计算量太大,笔和纸这两样工具更不能在短时间内攻下数学模型计算这块,此外笔和纸根本不可能完成某些图表的制作也是原因之一。计算机有效的解决了这两个问题,这就会使得数学模型得到精确解。在求得精确解的基础之上还可以进一步寻求最优解,因为数学模型的解往往是多解的,不是唯一解。
4.总结。
数学模型,其主要是通过使用相应的数学语言来对实际问题进行相应的表示,也就是说,模型的实质主要是为了有效解决生活中的实际问题。通过借助于计算机能够使得复杂问题得以有效简化,对于促进社会发展起到了重要作用。因而,在未来发展中数学建模也将会像计算机一样得到广泛重视。目前,对于教育界而言,其主要问题在于理论与实践相脱节。我们的教学越来越形式、抽象。在教材中,充斥着大量的定理、理论证明等等,但是并没有将其与实际生活相结合,而对于借助相应的数学教学来实现脑力发展的系统化更是微乎其微。将计算机与数学建模相结合,这是未来数学领域发展所必须经历的一个过程。
参考文献:
数学竟赛建模论文篇四
摘要:高校课程改革要求培养具有适应性和创新性的高素质人才,培养大学生的创造能力和实践能力已经引起了广泛关注。数学建模是提高学生应用意识和数学素质的重要途径之一。学校结合各学科特点及学生情况,开设数学建模课程,改变传统的数学教学方式,在各科教学中穿插数学建模思想,通过课内、课外数学教学的有机结合,培养大学生的数学建模思想,能够使学生应用数学知识解决实际问题的能力增强,有利于提高大学生的创新思维能力和综合素质。
关键词:数学建模;科技创新;实践能力。
一、引言。
加强大学生的创新精神和创新思维能力的培养,已是世界各国教学改革的共同趋势,也是我国实现“科教兴国”战略的基本要求。新的课程改革强调数学与实际生活的联系,多年来的教育实践证明,数学建模的教学在大学生的创新教学中的地位和意义已是举足轻重。学校可以通过数学建模,培养学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力以及交流与合作的能力。数学教育本质上是一种素质教育,从开始受教育,就接触数学学科,数学的重要性可见一斑,不仅仅是要掌握这门课的知识这么简单,现实生活中的很多实际问题都能用数学语言来描述,把实际问题转化为数学问题,再来描述、解决问题的过程就是建立数学模型、求解数学模型的过程。在数学教学中,就不能和现实完全脱离,这种和现实脱轨的传统教学状态使学生虽然掌握了技术,却不能学以致用,填鸭式的教育并不能使学生真正成为现在社会需要的有用人才,数学建模就是将数学和外界联系起来的一个通道。通过数学建模培养大学生对于新问题在短时间之内的解决问题的能力,有利于培养大学生的创新思想。
二、制约大学生创新能力发展的问题。
目前,数学教育主要还是关注在题目上,学习的目的大部分都是为了获取高分。如果高校的教育从公式、定理展开,学生的作业、学习也依葫芦画瓢的积分微分,这种方式训练出来的学生,往往知其然而不知其所以然,虽然按教材中规中矩、按部就班地授课,可以使学生在短时间内掌握知识,也能获得暂时的效果,然而当学生走向社会时,这样学习到的知识往往不能给他们带来更多的帮助,这种情况显然不是在数学教育中理想的状态。书本上看起来或晦涩难懂或明了清楚的概念理论应该不仅仅带给学生在校时的分数、奖学金,应该了解精髓,懂得他们背后的思想和生命力才是数学带给我们远比学习成绩更重要的东西。
无论是以后从事什么岗位,接受过的数学教育锻炼过思维、逻辑,使学生在面对实际问题时更能明白事情的问题所在,更能有逻辑、更有方法的解决问题。这就是要培养学生的自主思考、发散创新的能力。传统的教学过程既然很难做到,那么就要通过别的方法训练大学生面对问题、解决问题的能力。在高校中推广数学建模是一种能实施、易实施又有效的方法。
三、高校大学生数学建模创新活动的建设内容。
针对现状问题,我们以培养大学生的创新能力及实践能力为目的,通过建设高效的数学建模创新活动,激发大学生的创新活力和运用数学方法解决复杂实际问题的综合能力,拓宽学生的知识面,培养学生的创新精神和团队合作意识。
1.从全校相关专业中选拔有实战经验的教师进行培训根据不同专业的特色,从全校范围内选拔优秀的数学建模指导教师团队;根据数学建模特点,对指导教师进行专业培训和学术交流。比如,参加数学建模培训班,与其他高校优秀建模教师进行学术交流。邀请有实战经验的专家做数学建模的学术报告。根据指导教师特点进行分工,研究不同领域的数学建模问题,通过专兼结合达到知识结构的优势互补。
2.将数学建模思想融入学生的认知当中现代认知心理学家布鲁纳说:“探索是数学教学的生命线。”moor教学法提出学习数学最好的方式是“在做数学中学习数学”。因此,在教学中调动学生积极参与数学建模过程中,探索建模方法。在选题时老师应引导学生,开发学生的开放性、探索性,开拓更广阔的探索空间。讲解建模环节,教师要善于把建模材料组织成一个体系,为学生创造探索环境。数学建模环节,教师应尊重学生的主体地位,激励学生独立思考,出错环节协助其自主分析出错原因,并从错误中寻出思维的合理之处。教师引导学生建模主要从两个方面入手:一将实际问题转化为数学问题的能力;二对转化过来的问题,应用数学解决的能力。在教学过程中,教师可以将实际问题还原成所学数学知识,使学生可以借助自己的认知结构主动构建数学模型;从数学问题原型出发,引导学生观察、分析、概括得到数学概念、公式、定理、法则的教学方式符合知识的发生发展的过程,体现教学中解决问题的心理过程。
3.在全校根据文理科专业开设数学建模通识课大一上学期,全校范围内开设数学建模通识课,结合各学科的特点,分别开设文科班和理科班,不仅理科生可以受到数学建模思想的熏陶,文科生也可以根据自身的认知体验到数学建模带来的乐趣。邀请有经验的数学建模指导教师进行讲授,要结合学生感兴趣的问题入手。
比如,20xx年高教社杯全国大学生数学建模竞赛题目b题“拍照赚钱”的任务定价,通过学生感兴趣的“拍照赚钱”等实际问题让学生切身体会到数学建模思想与生活息息相关,让学生带着问题学习。对一些同学难以理解的数学模型的讲解时,教师可以将数学问题转化为学生已有的认知当中,既通俗易懂,又能够让学生通过数学建模产生乐趣。比如,学生在学习难理解的贝叶斯模型时,先验概率对后验概率的影响,不知其意而死记硬背,教学中可以用原型引出贝叶斯模型:已知外界的环境变化影响最终决策者的判断;高等数学中的矩阵,矩阵分解可通过数学建模应用于人脸图像识别、矩阵的特征值及特征向量可以用于数据降维等。通过模型学习概念,强化数学来源于生活的思想教育,理论联系实际的数学课堂教学模式让学生看到问题的提出,有利于学生的创造性思维能力的培养,以此激发学生对数学建模的学习兴趣。学期结束时,要求学生根据教师提供的数学问题提交一份数学建模论文。
4.成立数学建模兴趣小组成立数学建模课外兴趣小组群,通过qq、微信等社交平台,充分发挥大学生的主观能动性,形成良好的学习氛围。学生通过数学建模学习如何在团队中发挥自己的长处,如何合作完成共同的任务。在数学建模课外兴趣小组中,学生互相讨论时,不同的思维碰撞会产生不同的想法,能激励大学生养成勤于动脑、善于思考的能力,能在一定程度上锻炼学生的灵活性和思考问题的多面性。课外小组中,学校举办数学建模系列讲座,可以邀请有经验的专家教师给大家讲解数学在实际中的不同应用,宣传数学建模基本思想,使学生全面理解模型的适用范围、典型特征、建模及求解过程。通过对模型深入的理解,学生了解数学建模全过程,进而举一反三。此外,根据学生的不同特点,分配给学生不同的学习任务,既激起大学生对数学建模的兴趣,又保证个性化的培养教育,学生们在小组中能体会到团队协作的重要性。学校可以开展数学文化节,依托丰富多彩的数学课外阅读活动,使学生感受数学文化,学会用数学的眼光看待世界,用数学的头脑解决身边的问题,以此提升学生的数学素养,重点培养学生的发散思维,以及以新颖独特的方式解决问题的思维方式。
5.参赛人员层级选拔及实训。
(1)校内选拔。全校选拔人员采取自愿报名的方式。自愿参加的成员能积极、主动地学习,积极地思考问题,将他们的能力最大限度地发挥出来。指导教师给定几个经典题目,按照全国大学生数学建模竞赛的所有规则进行模拟竞赛,通过赛前鼓励调动学生的创造性思维能力,让学生积极参与。赛中指导教师根据每一位参赛队员的特点进行有针对性的指导,发扬每个学生的优点,提高每一位参赛队员的学业素质及水平。赛后根据每位学生在活动中的表现,评出各个学生的等级奖(一、二、三等奖及优秀奖)。根据成绩及学生在比赛中的表现,选拔出前20组优秀学生团队。
(2)优秀学生培训。学校有针对地对在校内选拔的优秀创新人才进行集中培训和实训,从实际出发,以学校培养创新性人才的目标为指导思想。在数学建模过程中,邀请往届参赛得奖的学生进行交流,介绍经验。教师带领学生观摩其他学校的数学建模培养方式,促进大学生中优秀人才的脱颖而出、健康快速成长,加强各高校之间以及高校与企业之间的研究,让大学生从中获得知识,并让学生有竞争意识。学院设立数学建模暑期培训,主要涉及有建模所需数学知识讲解、建模案例分析、建模案例练习、全国大学生优秀作品分析、最终的建模考试检测。
(3)基于理论方法和具体实战的培训。理论课方面,主要介绍数学建模基本思想、常用建模方法,以及较为经典的建模案例。在教学方法上,教师可以采用启发式教学,引领学生参与建模的全过程,使学生领悟数学建模的精髓,激发对数学建模的兴趣。实验课方面,为提高学生分析解决问题、设计实现算法的能力,介绍主要软件(matlab、spss、r和python)及其软件包,教学生直接利用软件编程求解一些简单的数学模型。实验课中,教师给出建模案例,让学生练习,包括(分析问题、提出假设、建立模型、算法设计、实验操作、结果检验、撰写论文),最后带领学生参加全国大学生数学建模竞赛。英语基础比较好的学生可以参加美国大学生数学建模竞赛。
四、结束语。
创新人才的培养是时代发展的需要,是时代对教育提出的新要求。数学建模竞赛对大学生的实践创新能力十分有效,因此学校改变传统数学方式的局限性,要结合最新的科学前沿问题,通过课堂数学教学、课外活动将数学建模融入学生的认知当中,通过数学建模思想的培养,提高当代大学生的创造性思维能力,培养学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力以及交流与合作的能力。
参考文献:
[1]杨艳琦.基于数学建模培训大学生创新能力[j].产业与科技论坛,20xx。
[4]姜启源,谢金星.数学模型(第三版)[m].北京:高等教育出版社,20xx。
数学竟赛建模论文篇五
概率论与数理统计是一门研究随机现象及其统计规律的数学学科,它是高等院校各专业开设的重要的基础数学课程之一。以下是“概率统计中融入数学建模思想的教学探索论文”,希望能够帮助的到您!
如何运用该课程的理论知识解决实际问题具有非常重要的研究意义。每年一次的全国大学生数学建模竞赛是目前各高校的规模较大的课外科技活动之一。数学建模是一门运用数学工具和计算机技术,通过建立数学模型来解决现实中各种实际问题的新学科。它通过调查,收集数据、资料,观察和研究其固有的内在规律,提出假设,经过抽象简化,建立反映实际问题的数学模型,即将现实问题转化为数学问题。纵观历年数学建模竞赛试题,像高等教育的学费问题、北京奥运会人流分布、dna序列分类问题、dvd在线租赁问题及医院病床的合理安排等问题都不同程度地涉及到了概率论与数理统计的相关知识。笔者多年来一直为理工科的本科生讲授概率论与数理统计课程,并每年辅导和指导全国大学生数学建模竞赛,所以与同事们一直都在探索如何深化概率论与数理统计这门课程的教学改革,使其与数学建模思想能有机结合。本文将从以下几方面进行探讨研究。
一、概率统计教学中融入数学建模思想的重要性。
传统的概率论与数理统计课程的教学,可以简单地归纳为:数学知识+例子说明+解题+考试。这种模式虽然使学生在一定程度上掌握了基础知识,提高了计算能力,也学会了运用所学知识解决课后作业和应付考试。但也不难看出,这种教学方式与实际严重脱节,学生学会了书本知识,但却不知在所学专业中该如何运用,这不仅与素质教育的宗旨相违背,也极大地削弱了学生学习这门课程的能动性,从而也影响了教学效果。数学建模的指导思想恰恰在于培养学生运用所学理论知识来解决现实实际问题。这不仅仅是这门课程对学生的教育问题,更是顺应当前素质教育和教学改革的需要问题。
二、在课堂教学中融入数学建模思想。
对于讲授概率论与数理统计这门课程的教师来说,有着非常重要的任务,那就是如何教好这门课程,即如何使学生通过对这门课程的学习而增强其对概率统计方法的理解与实际应用能力。
1.教学内容上数学建模思想的渗透。众所周知,教师对教学内容的把握起着不容忽视的作用。有效的教学是依赖于教师对该课程的内容有着全面的和深刻的理解。概率统计中的一些概念、性质、模型的应用确实有些难度,在日常教学中可以通过精选例题、切近现实生活,使学生逐渐深化对相关知识的理解,即讲课的内容生活化、趣味化,生活中的概率统计问题模型化。在概率统计里这些趣味性的例子比比皆是!比如摸球、投掷骰子等常见的游戏,“父母的身高对子女的影响”、“男女生人数的均衡对一个班级学习效果的影响”等发生在身边的事。在概率统计这门课程中数学模型的影子也随处可见!比如像降雨概率、人体舒适度指数、超市银台处的等待服务时间等这样的随机现象问题都需要将实际问题数量化,然后对研究对象做出判断,从而解决问题。教学内容中也可插入一些反映社会经济生活的背景与热点问题,使课堂教育跟上时代步伐。如有奖促销问题、保险赔偿金确定问题、交通事故问题等,这样的内容都旨在培养学生利用数学工具分析解决实际问题的意识和能力,也就是培养学生的建模能力。
2.教学方法中融入数学建模思想。在教学中,教师的责任更大地体现在对学生的引导能力,通过引导使学生运用自己的能力来解决相关的问题。这样使学生不但能够学到严谨的理论知识,同时也提高了学生分析问题和解决问题的能力。在教学中,我们主要采用精讲与导学相结合的方法,同时在课堂教学的各个环节中也可恰当运用讨论式、启发式、归纳类比式等教学方法。在运用各种教学方法中都要充分关注学生的参与性,在与学生的互动中挖掘出课本内容中的数学建模思想,使其“显化”出来。比如在讲解随机事件和古典概型中,可以讲解摸球问题、生日巧合及配对问题、确诊率及血清化验问题等,这样既活跃了课堂氛围,又培养了学生爱思考的习惯。必须提及的是“案例教学法”,它是概率统计课程融入数学建模思想的有效而常用的教学方法之一。在教学中可以直接给出案例,然后从求解具体问题中找出相应的理论和方法。此方法缩短了数学理论与实际应用的距离,不仅可以提高学生学习的积极性,同时也使学生明白概率统计是建立在现实生活基础上的一门课程。比如在随机变量的数字特征中,可以给出“报童的收益问题”案例;在参数估计中,可以给出“湖中鱼的数量估计”案例;在大数定律和中心极限定理中,可以给出“保险公司的收益问题”案例;等等。由于受到课时限制,可能不能充分有效地对案例进行完整讲解,通常将“案例分析法”和“现代教育技术法”相结合进行教学,利用多媒体教学手段可以将案例中出现的大量统计计算均由统计软件(如spss,sas,r等)来实现。这样既易于被学生接受,也有助于学生掌握统计方法和实际操作能力。
三、发挥课后作业作为课堂教学的补充与延伸作用。
作为数学课程,课后作业是十分重要的组成部分,是进一步理解、消化和巩固课堂教学内容的重要环节。
1.课后试验。在概率统计这门课程中有很多随机试验,并且很多统计规律也都是在随机试验中获得的。比如通过投掷均匀的硬币和均匀的六面体骰子,可以很好地理解频率与概率之间的关系;双色球的有(无)放回抽样,有助于理解随机事件的相互独立性;统计某书上的错别字,并判断是否服从泊松分布等。通过让学生们亲自做实验,不仅使他们能够探索随机现象的统计规律性,还能帮助他们更深刻的理解、巩固和深化理论。
2.课后作业。除常规概率统计练习题目外,可以增加一些有趣的、与日常生活中密切相关的概率统计题目。比如在给出了摸彩票规则和中奖规则后,解决下面三个问题:
(1)中奖概率与摸彩票的次序有关系吗?
(2)假设发行了100万张彩票,中一、二等奖的概率是多少?
(3)若你打算摸彩票,在什么条件下中奖概率会大一些?
3.课外实践。针对概率统计实用性强的特点,有目的地组织学生参加社会实践活动,深入实际,调查研究,收集数学建模的素材。只有将某种思想方法应用到实践中去,实际解决几个问题,才能达到理解、深化、巩固和提高的效果。教师可以从现实中寻找素材,选择具有丰富现实背景的学习材料,可以让学生自由组队,深入实际,运用统计方法调查、观察和收集一些数据,在教师指导下运用所学知识和计算机技术,分析解决一些实际问题,写出书面报告。比如利用闲暇时间观察校门口某路公交车各时段乘车人数,根据观察数据,为该线路设计一个便于操作的公交车调度方案:包括发车时刻表;共需多少辆车;以怎样的程度能够照顾乘客和公交公司双方的利益。
四、改变传统单一的考核方式。
考核是教学过程中不可缺少的一个教学环节,是检验学生学习情况,评估教师教学质量的手段。传统的概率论与数理统计课程均采用期末闭卷考试,教师通常都会按照固定的内容和格式出题,学生为了应付考试,往往把过多的精力花费在对公式和概念的死记硬背上,而忽略了所学知识在实际中的应用。虽然综合成绩是由平时成绩和期末成绩的各占比例计算而成,但平时成绩的考核主要看课后习题所做的作业,而学生的学习积极性对作业的态度差异性是很大的。为此,有必要改革传统单一的考核方式,培养学生综合运用知识的能力。考核结果包括两部分:一部分是闭卷考试,占60%,主要考察学生对概率统计的基本知识、基本运算和基本理论的掌握程度;另一部分是开放性考核,由各占20%的平时成绩和课后试验、课外实践构成,其中平时成绩主要考查学生的作业情况、考勤情况、课堂表现情况等方面;课后试验、课外实践主要考核学生对概率统计知识的应用能力,可以给学生一些实际问题,或者让学生参加社会实践调查收集数据,学生可以自由组队也可单独完成,通过运用概率统计知识建立数学模型并借助计算机处理大量数据对实际问题得到解决,最后提交一份书面研究报告。如此灵活多变的考核机制,才能充分调动学生学习的积极性和主动性,才有利于学生应用能力的培养。
通过在各个环节中融入数学建模思想,不但充分体现了概率统计的实用价值,搭建起概率统计知识与实际应用的桥梁,而且也使得工科类学生对概率统计这门课程的理解、认识增强了,数学的应用能力也得到了提高。
数学竟赛建模论文篇六
数学核心素养是数学课程的基本理念和总体目标的体现,可以有效地指导数学教学实践。《普通高中数学课程标准(实验)》修订稿提出了数学学科的六种核心素养,即数学抽象、直观想象、数学建模、逻辑推理、数学运算和数据分析。其中,数学建模是六大数学核心素养之一。提升数学核心素养,要求数学教师在课堂教学中强化学生的建模意识。教师在教学中通过设置数学建模活动,培养学生的建模能力。
数学建模是将实际问题中的因素进行简化,抽象变成数学中的参数和变量,运用数学理论进行求解和验证,并确定最终是否能够用于解决问题的多次循环。数学建模能力包括转化能力、数学知识应用能力、创造力和沟通与合作能力。
1.精心设计导学案,引导学生通过自主探究进行建模。
在新授课前,教师设计前置性学习导学案,为学生扫除知识性和方向性的障碍。通过导学案,引导学生去探究问题的关键,对模型的构建先有一个初步的自主学习过程。通过自主学习探究,让学生充分暴露问题,提高模型教学的针对性。在前置性学习导学案设计的问题的启发与引导下,学生会逐步学习、研究和应用数学模型,形成解决问题的新方法,强化建模意识和参与实践的意识。例如,教师在引导学生构建关于测量类模型时,设计的导学案应提醒学生对测量物体进行抽象化理解,并掌握基本常识。教师应鼓励学生采用多种不同的测量方式,分析并优化所得数据。通过引导学生自主探究,让学生探索并归纳不同条件下的模型建立的方法,培养学生的建模维能力。
2.在教学环节中融入数学模型教学。
教师在教学的各个环节都可以融入数学模型教学。例如,教师在新课教学时,应注意渗透数学建模思想,让学生将新授课中的数学知识点与实际生活相联系,将实际生活中与数学相关的案例引入课堂教学,引导学生将案例内化为数学应用模型,以此激发学生对数学学习的兴趣。在不同教学环节,教师通过联系现实生活中熟悉的事例,将教材上的内容生动地展示给学生,从而强化学生运用数学模型解决实际问题的能力。
教师通过描述数学问题产生的背景,以问题背景为导向,开展新授课的学习。教师在复习课教学环节,注重提炼和总结解题模型,培养学生的转换能力,让学生多方位认识和运用数学模型。相对而言,高中阶段的数学问题更加注重知识的综合考查,对思维的灵活性要求较高。高中阶段考查的数学知识、解题方法以及数学思想基本不变,设置的题目形式相对稳定。因此,教师应适当引导,合理启发,对答题思路进行分析,逐步系统地构建重点题型的解题模型。
3.结合教学实验,开展数学建模活动。
教师在开展数学建模活动时,应结合教学实验。开展活动课和实践课,可以促使学生进行合作学习。教师要适时进行数学实验教学,可以每周布置一个教学实验课例,让学生主动地从数学建模的角度解决问题。在教学实验中,以小组合作的形式,让学生写出实验报告。教师让学生在课堂上进行小组交流,并对各组的交流进行总结。教学实验可以促使学生在探索中增强数学建模意识,提升数学核心素养。
4.在数学建模教学中,注重相关学科的联系。
教师在数学建模教学中,应注重选用数学与化学、物理、生物等科目相结合的跨学科问题进行教学。教师可以从这些科目中选择相关的应用题,引导学生通过数学建模,应用数学工具,解决其他学科的难题。例如,有些学生以为学好生物是与数学没有关系的,因为高中生物学科是以描述性的语言为主的。这些学生缺乏理科思维,尚未树立理科意识。例如,学生可以用数学上的概率的相加和相乘原理来解决生物上的一些遗传病概率的计算问题,也可以用数学上的排列与组合分析生物上的减数分裂过程和配子的基因组成问题。又如,在学习正弦函数时,教师可以引导学生运用模型函数,写出在物理学科中学到的交流图像的数学表达式。这就需要教师在课堂教学中引导学生进行数学建模。因此,教师在数学建模教学中,应注意与其他学科的联系。通过数学建模,帮助学生理解其他学科知识,强化学生的学习能力。注重数学与其他学科的联系,是培养学生建模意识的重要途径。
总之,教师在数学教学过程中,应以学生为本,精心设计导学案,鼓励学生自主探究和应用数学模型。通过建模教学,让学生形成数学问题和实际问题相互转化的数学应用意识和建模意识。教师通过强化数学建模意识,让学生掌握数学模型应用的方法,可以使学生奠定坚实的数学基础,提升数学核心素养。
参考文献:
[1]郑兰,肖文平.基于问题驱动的数学建模教学理念的探索与时间[j].武汉船舶职業技术学院学报,20xx(4).
[2]王国君.高中数学建模教学[j].教育科学(引文版),20xx(8).
[3]李明振,齐建华.中学数学教师数学建模能力的培养[j].河南教育学院学报(自然科学版),20xx(2).
数学竟赛建模论文篇七
大学数学包含微积分、线性代数、概率论与数理统计三门基础课程,这是高校经管类专业必修课程;更高级的数学课程还有运筹学、最优化理论,这些在中高级西方经济学中会经常用到。现实经济中存在很多问题都与数学紧密相关,都需要严谨的数学方法去解决,因此数学的学习是非常重要的。数学的学习,一方面能够培养学生的逻辑思维能力和空间想象能力,另一方面,数学的系统学习为经管专业后续课程(如西方经济学、计量经济学)提供了数学分析工具和计算方法。除了需要掌握数学分析和计算能力,经管专业应该更加注重培养学生的经济直觉和数学建模能力,让学生形象地理解数学定义和经济现象。虽然现在高校中经管类专业的数学教育过程融合了一些本专业的知识,但仍存在很多问题。笔者根据自己以及同行的教学经验,提出相应的改革措施以更好挖掘数学方法在经管中的有效作用。
一、经管类专业大学数学的特点。
每个专业都有其独特的学习内容和方法。经管专业作为我国培养经济工作人员的特殊专业而成为国家重视、社会关注的专业。大学数学是社会科学和自然科学的基础,因此其在经济学理论中有着举足轻重的地位,数学可以为经济学中的很多问题提供思想和方法的支持。经管类专业数学的学习有如下特点。
1.经管专业的数学和经济学问题紧密相关。
经管专业要学习和解决经济相关内容,因此,经济类的数学教育要围绕着经济问题展开讨论,例如简单的经济问题有价格函数、需求函数、供给函数以及边际成本的分析,复杂一些的还有竞争性市场分析、垄断竞争和寡头垄断、博弈论和竞争策略、生产和交换的帕累托最优条件、信息不对称的市场,这些都需要用微积分的知识理解。把数学知识融入经济学,能够给解决经济学问题提供有效的技术支持。例如通过画出各种函数的图像,可以让学生更直观地了解价格、需求、供给的关系,可以更形象地看出它们之间的依赖关系。微积分中导数的学习应用到经济中为经济利益最大化提供了分析方法,例如需求理论可以转化成一个约束最优化问题,用拉格朗日乘数法进行求导计算,从而求出目标函数的最优值。另外,消费者剩余可以转化成定积分进行计算,人口阻滞增长模型可以用微分方程解释。
2.经管专业的数学学习注重经济直觉培养。
数学的学习可以训练和培养学生的逻辑思维能力,一般自然科学专业的数学学习注重于各种问题的来源以及证明。然而经管专业的数学主要为学生培养经济直觉并引导其进行有效计算,因此需要着重培养经管专业学生的数学计算能力。例如,在讲最值问题时可以让学生计算利润最大化的例子,利用微积分的知识计算出最大利润,这样既培养了学生的数学计算能力,又让学生理解了经济学概念。
二、经管类专业学习数学的过程中出现的问题。
近年来,大学数学教育改革取得了一定效果,但是还存在很多问题。例如,有些学校不重视大学数学课程的学习,只注重专业课的学习。实际上数学学习的效果直接影响后续专业课的学习。还有部分院校教师教授经管课程时还停留在纯粹的数学理论上,虽然有的高校在高等数学教育中很大程度上融入了经济中的各类问题,但是由于高校教师都是数学专业出身,对经济类专业中的数学问题不甚了解,因此不能很好地解释相应的经济现象。另外,经管类招生一般同时招收了文科和理科生,从而学生的数学基础大相径庭,使得大学数学的教学存在一定困难。还有大学的学习任务重而老师授课时间有限,对于基础较差的学生,教师又不能非常详细地复习学生高中学过的知识,因而造成基础好的学生学起来轻松自如,学习效果较好,而基础差的学生学起来吃力,学习的效果也不尽如人意。
三、改革措施。
培养学生经济直觉和数学建模能力。
1.优化教学内容,根据专业特点选取相关实例来理解数学定义。
由于大学课程任务重,使得大学数学的学习课时相对变少,这就要求教师上课时要优化教学内容,适当删减纯数学理论的学习,在不影响后续课程的条件下,可以删除一些难度较大的纯理论性的内容,扩充一些和经管专业知识相关的内容。教师在上课时,要根据学生所学专业的特点,选取相关概念、相关实例,让学生更直观、更形象地学习数学知识,从而培养学生的经济直觉。例如,在学习微积分中导数的相关概念时,可选取有关成本函数、收入函数和利润函数的例题来求边际成本、边际收入和边际利润,从而让学生了解导数在本专业中的应用。在讲线性代数的矩阵概念时,可以给学生讲解经济学中投入产出模型。在讲股票投资的时候可以和概率论联系在一起,通过概率论的理论解释可以说明股票投资是具有随机性的,在股票市场没有绝对的赢家。在讲拉格朗日方法的时候可以引入影子价格的概念,从而理解影子价格的经济现象解释。只有让数学和学生所学专业挂钩,才能让学生轻松地学习数学定义,并了解一些经济学专业名词,达到让数学更好的为专业知识服务的目的。
2.教学过程中要注重学生数学建模思想的培养。
经管类专业学生学习数学课程,一方面是为了解决专业内容中的问题,另一方面是还需要培养学生的逻辑思维能力和分析问题、解决问题的能力。因此,在讲授经济中的数学问题时,还要教会学生根据经济问题建立相应的数学模型。建模就是把经济学中一些现象或者问题用数学语言表述出来,然后进行模型求解,从而解释经济现象或者解决相应的经济问题。通过建立数学模型把经管专业中的经济学问题转化成数学问题,然后通过求解数学模型得出相应答案,从而解决该经济问题。因此,建立数学模型非常重要。例如求解最大利润问题、最小成本问题可以引导学生通过建立利润和成本函数,从而转化成一个最优化问题,并且在求解该问题时,需要用到导数(偏导数)的知识,这样既加深了学生对数学知识的理解,又体会到数学知识在经济学中的重要作用。在学习统计学的f检验和t检验时,可以引导学生建立计量经济学中要学习的回归模型,一开始可以引入一元线性回归模型,再过渡到二元线性回归模型,对于二元线性回归模型可以形象地借助二维图像进行说明,最后分析多元线性回归模型,特别地,还可以指出,在回归模型的建立中本质上用到了微积分中学习的最小二乘法。在线性回归模型学习完以后,还要进一步学习更加复杂的非线性模型,以便让学生掌握由简单到复杂的数学建模过程。总之,在整个数学的学习过程中,要经常让学习练习如何正确地建立模型,以提高学生分析问题和解决问题的能力。
3.教师要不断了解经管专业知识,以适应学生学习的需要。
教授经管类专业的任课教师要不断阅读经管类专业相关书籍,充分了解经管类专业知识要用到的数学知识和数学思想,把经济学和数学融会贯通。只有这样,教师在上课时才能做到有的放矢,才能时刻围绕学生所学所需的专业知识来讲授数学知识,真正做到数学为专业服务。整个教学过程中,教师要对经管类专业知识有深入的理解,才能结合数学给学生解释清楚经济学概念和经济学原理,才不至于让所学内容与专业知识脱轨。教师要了解经济学的前沿进展,从而可以在上课过程中引入生动而形象的经济实例,做到学教结合,真正成为学生学习的引路人。
4.教学方法要多元化,以提高学生学习兴趣。
目前,经济数学的教学依然是传统的教学模式,即教师讲授、学生被动接受的模式。这种教学方法严重挫伤了学生学习的积极性和主动性。因此,教学方法的选择至关重要。这就要求教师要根据学生的特点,做到因材施教。讲课过程中也不能一味罗列一些数学定义和数学定理,而要注重与学生的互动,以提高学生学习的积极性。教师在上课过程中还要注重学生兴趣的培养,可以讲一些获得诺贝尔奖的经济学家的事迹,很多获得诺贝尔奖的经济学家都有很好的数学基础,在这些基础上他们进一步在学习的过程中加强了自己的经济直觉培养,最后取得学术的成功。通过经济学家的故事可以启发引导学生去接触最新的经济学理念,从而逐步探索新知识,然后启发学生学习数学和经济学的兴趣。同时要让学生多独立思考,布置一些有趣的课后习题,特别是可布置一些结合生活中的经济实例的数学习题,通过解答这些习题,学生不但可以学习数学知识,还可以让学生体会数学和经济学的生动结合,最后引导学生思考一些更加复杂的经济问题并用数学知识解决问题。只有老师生动讲解、引导和学生快乐、轻松学习的完美结合,才能激发学生的学习兴趣,起到事半功倍的学习效果。
四、结语。
在高校数学教学中,应根据经管专业特点采取有效的教学方法教授数学知识,特别要注意学生经济直觉的培养,这就要求在教学过程中可以适当减少数学的严格证明,注重数学概念在经济学中的应用,从而让学生形象生动的理解数学知识在经济学中的重要作用。另外,教学过程中还需要培养学生的数学建模能力,并培养学生学习数学的兴趣,引导学生将所学数学知识应用到实际工作中,真正做到学有所用,从而培养优秀的经济类人才。
数学竟赛建模论文篇八
摘要:不知不觉中,数学建模已经成为在学生中一个非常热门的名词随着各类数学建模大赛的如火如荼,数学建模的概念已经逐步走入到我们中学生的视线中。很多同学对于数学、对于数学建模的理解还存在着很多偏颇之处,认为数学这门学科太过深奥,比较难以学习领悟透彻,本文通过自身的理解,简要介绍了数学建模的概念与过程,体现了数学思想在问题解决过程中的指导作用,同时揭开数学建模的神秘面纱,让数学以更加平易近人的方式成为我们数学的工具。
关键词:数学建模;过程;应用。
数学是一门高度的抽象并且严密的科学这没错,但是同样的数学中的许多结论与方法,我们可以很好的应用在生活中的方方面面。数学应该是理工科学生最重要的一门基础学科,然而我们大部分的同学,甚至我自己常常都会有“不知道学了数学有什么用,学会了微分与导数日常生活也用不到”的困惑,除了备战考试,“学而无趣”、“学而无用”的现象还是非常明显的。但是伴随着现代社会的高速发展,我们所掌握的科学技术水平也在稳步提高,数学本身的发展也是日新月异。时至今日,数学在其他各个学科之中的应用已经显得尤其重要。如何通过灵活的应用所掌握的数学知识去解决各类生产生活中遇到的实际问题时,建立合理地数学模型就成为至关重要的一点。
人们在对一个现实对象进行观察、分析和研究的过程中经常使用模型,如科技馆里的各类机械模型、水坝模型、火箭模型等,实际上,我们常常接触到的照片、玩具、地图、电路图实验器材等都是模型。通过使用一定的模型,可以能够概括、集中以及更直观的反映现实对象的一些特征,进而可以帮助人们迅速、有效地了解并掌握所研究的对象。而随着现代计算机技术与理论的日渐成熟,以及我们研究对象逐步复杂化、抽象画,可以通过计算机模拟的数学模型应运而生。其实数学模型不过是更抽象些的模型,而数学建模就是建立这一模型的过程,并且能够将建模后计算得到的结果来解释实际问题,同时接受实际的检验。当我们需要对一个实际问题从定量的角度分析和研究时,就需要通过深入调查研究、了解对象信息,并作出作出简化假设、分析内在规律,然后用数学的符号和语言,把这一问题表述为数学式子即为数学模型。这一数学模型再经过反复的检验和修正最终得到的模型结果来解释实际问题,并且可以接受实际的检验。当今时代,数学的应用已经不仅局限在工程技术、自然科学等领域,并以空前的广度和深度向环境、人口、金融、医学、地质、交通等崭新的领域渗透,形成了所谓的数学技术,并成为现代高新技术的重要组成。这其中,建立研究对象的数学模型并计算求解成为首要的和关键的步骤。数学建模和计算机技术在知识经济时代为科学研究提供了重要的帮助。
数学建模的过程可粗略以上方框图表示,其具体步骤可以概述为:1)通过分析问题的实际情况,可以充分了解所面临问题的背景,去大胆分析并且暴漏出问题的本质,针对研究对象提出问题。2)忽略非主要因素,直接列出研究的对象的关键问题。将复杂问题简化,抓住关键点,大大提高问题解决的效率。3)通过应用数学公式与理论,寻找客观规律。必要时可以借助计算机软件,形成合适的数学模型。4)通过运作已建立的数学模型,产生结果,进而通过结果的对比判断所建立的数学模型是否真正符合实际的客观规律。这是一个动态的检验、修改的过程,通常需要多次的模拟和完善才能够建立起合理有效的数学模型。5)将建成的数学模型规律转化为解决实际生活中的各种问题的方法,进而可以直接或间接地提高生产、生活效率。数学建模其实就是连接数学理论知识和数学实际应用两者之间的一条纽带。总有一些同学将数学建模看得多么的高深莫测,其实我们在以前的日常的学习中早就已经接触过了数学建模。现在经常被我们当成搞笑段子来讲的一些小学学习数学的阶段做过的很多应用题,实际就是一种简单的数学建模。数学建模的确切的含义目前尚无定论,但比较莫忠一是的看法为:通过将实际问题的抽象化,归纳并简化问题,进而确定变量跟参数,运用数学的理论和方法,逐步确立比较合理的数学模型;然后再应用数学与其他相关学科中的理论和方法借助计算机等相关技术手段,建立起数学模型;接着我们会对此模型进行反复地验证,分析讨论,不断地对其进行修正,逐渐地改进使它更加的规范化。简单来说,数学建模就是以现实作为背景,用数学科学理论作依托,解决实际生产生活中问题的过程。因而,可以说我们所熟知的任何一个数学上的概念、定理、命题或者结构,都可以看作是数学模型。
进入计算机技术引领的20世纪,随着电子计算机的出现与飞速发展,数学以前所未有的广度和深度向各个领域渗透,而数学建模正是这其中的纽带。在统工程技术领域诸如机械、电机、土木、水利等方面,数学建模已展现了其重要作用。建立在数学模型和计算机模拟基础上的新型技术,已经凭借其快速、经济、方便的优势,大量地替代了传统工程设计中的现场实验和物理模拟等手段。高科技时代下的技术本质上已经成为一种数学技术,源于支撑现代科技的计算机软件是数学建模、数值计算和计算机图形学相结合的产物在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。马克思说过,一门科学只有成功地运用数学时,才算达到了完善的地步。展望21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期。
数学竟赛建模论文篇九
高校数学教育是高等教育的基础学科,占据重要的一席之地。如何改变学生对数学枯燥乏味的学习状态,让学生轻松愉快地参与到数学学习中,是当前高校数学教学者面临的一个重要课题。在高校数学教学中开展数学建模竞赛,不仅能培养学生的创新思维,还能有效提高提高学生的创新能力、综合素质和对数学的应用能力。本文对高校开展数学建模竞赛与创新思维培养进行了分析阐述,并对此进行了一定的思考。
数学建模是一种融合数学逻辑思想的思考方法,通过运用抽象性的数学语言和数学逻辑思考方法,创造性的解决数学问题。当前很多高校中开始引入数学建模思想来加强学生创新能力的培养,可以使学生的逻辑思维能力和运用数学逻辑创新解决问题的能力得到提升。数学建模竞赛起源于1985年的美国,几年后国内几所高校数学建模教师组织学生开始参与美国的数学建模大赛,促进了数学建模思维的快速发展。直到1992中国首届数学建模大赛召开,而后一发不可收拾,至今仍以每年20%左右的速度增长,呈现一派繁荣景象。
2.1数学建模竞赛自主性较强。自主性首先体现在在数学建模过程中学生可以根据自己的建模需要通过一切可以利用的资源、工具来进行资料查阅和收集,建模比赛队员可以根据自己的意见和思维进行灵活自由解答,形式不拘一格。其次体现在数学建模竞赛的组织形式呈现多元化特点,组织制度上也较为灵活多样,数学建模主要侧重于分析思想,没有标准答案可以参考分享。2.2建模队伍呈日益燎原之势。1992年首届中国数学建模大赛开展以来,其影响力与日俱增,高校和社会各界对数学建模颇为重视,参赛队伍、参赛学生的质量一直处于上升状态,数学模型也日渐合理科学,学生团队在国际数学建模大赛中屡创骄人战绩。2.3组织培训日益加强。数学建模竞赛对学生数学知识的掌握及灵活运用、口套表达、语言逻辑思维、综合素质都有着非常高的要求,因此高校遴选参赛选手都投入了很大的精力,组织培训的时间很长,培训内容也很丰富,为数学建模竞赛取得好成绩奠定了坚实的基础。
3.1学生的团队协作能力和意识得到增强。数学建模竞赛的团队组织形式活泼自由,通常采用学生组队模式开展,数学建模竞赛队伍形成一个团结战斗的整体,代表着不仅仅是学校的声誉,还一定程度上展示着国家的形象。经过长时间的培训,对数学模型的研究和分析,根据学生训练中的优势和特长,进行合理科学的小组分工,让学生快速高效地完成整个数学建模,在建模过程中学生统筹协作、密切配合,发挥各自的优势和长处,确保数学建模取得最大效用,学生的团队协作能力和意识得到锻炼,责任感和荣誉感进一步增强,通过建模竞赛彰显团队的合作能力和中国数学建模方面的发展。
3.2高校学生参赛积极性高涨。近年来大学生数学建模竞赛的参与性高涨,参赛人数保持着20%左右的上涨幅度,参赛成绩也较为理想,创新能力得到了较好的锻炼和培养,综合素质得到提高,数学的应用能力提升。
3.3高校学生数学逻辑思维能力和灵活运用知识的能力得到提升。数学建模竞赛充满着刺激性和挑战性,是学生各方面综合能力的一个展示。在数学建模竞赛中,学生不仅要需要扎实丰厚的数学知识储备,还需要具备清晰的数学逻辑思维和语言表达能力。同时要有机智的临场发挥能力和应变能力,不怯场、不惊慌,有充分的思想准备,能轻松应对其他参赛选手和评委的提问,能组织条理性、逻辑性的语言进行表述,将参赛小组数学模型的含义和设计清晰完整的传达给评委和其他参赛选手。在这个过程中,无疑会使学生的数学逻辑思维和语言表达能力及灵活运用数学知识的能力有一个较大的提升。
3.4学生的自学能力和意志力得到锻。数学建模竞赛对参赛学生的综合知识和能力要求非常高,难度也非常大,需要与众不同的智慧和能力。可以说数学建模过程中,有许多高深的知识难于理解,有的日常学习过程中根本接触不到,需要数学建模参赛小组成员的互助合作,充分发挥各自优势和平时培训中的知识积淀,通过借助大量的工具书及参考资料,加上团队的`理解分析去摸索,探寻数学建模所需要的基础知识,无疑这对学生的自学能力培养是一个很好的锻炼。另外,搜寻资料、学习数学建模知识的过程是枯燥乏味的,需要长久的耐力和信心,无疑这对学生的坚毅不畏难的品质是一个很好的培养和磨炼。
3.5创新思维与能力得到有效提升。经过艰苦复杂的数学建模训练,高校学生信息收集与处理复杂问题的能力得到培养锻炼,学生数量观念得到增强,能够养成敏锐观察事物数量变化的能力,数学的严谨推导也使学生养成认真细心、一丝不苟的习惯,逻辑思维能力得到提高,思路变得更加富有条理性,能灵活地处理各种复杂问题,有效解决数学疑难,数学理论能更好第应用于实践,数学素养进一步得到提升。
综上所述,高校学生数学建模竞赛的开展,能较高地提升学生的创新能力和综合素养,团队合作能力、竞争能力、表达交流能力、逻辑思维能力、意志品质能力等都能得到良好的塑造。高校要积极组织和开展数学建模竞赛,使学生的综合素质得到发展和锻炼。学校用重视和鼓励全体学生参与数学建模竞赛,通过竞赛实现学生各方面能力尤其是创新能力的培养。
[1]赵刚.高校数学建模竞赛与创新思维培养探究[j].才智,20xx(06).
[2]陈羽,徐小红,房少梅.数学建模实践及其对培养学生创新思维的影响分析[j].科技创业月刊,20xx(08).
[3]赵建英.数学建模竞赛对高校创新人才培养的促进作用分析[j].科技展望,20xx(08)5.
[4]毕波,杜辉.关于高校开展数学建模竞赛与创新思维培养的思考[j].中国校外教育,20xx(12).
数学竟赛建模论文篇十
摘要:数学作为很多学科的计算工具,可以说是现代科学的基础,要想利用数学来解决实际问题,首先要建立相应的数学模型,本文在数学建模思想概念和特点的基础上,从计算机软件、实际生活中的应用等方面,对其应用的发展进行了分析,最后从分析问题、建立模型、校验模型三个阶段,对数学建模的方法,进行了深入的研究。
引言。
随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。
数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。
如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。
2.1计算机软件中数学建模思想的应用。
通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。
经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。
从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的.发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。
3.1分析问题。
数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。
在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。
在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。
4结语。
通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。
数学竟赛建模论文篇十一
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化。
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用。
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施。
(一)在公式中使用建模思想。
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的'教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式。
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛。
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语。
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献。
[1]谢凤艳,杨永艳。高等数学教学中融入数学建模思想[j]。齐齐哈尔师范高等专科学校学报,20xx(02):119—120。
[2]李薇。在高等数学教学中融入数学建模思想的探索与实践[j]。教育实践与改革,20xx(04):177—178,189。
[3]杨四香。浅析高等数学教学中数学建模思想的渗透[j]。长春教育学院学报,20xx(30):89,95。
[4]刘合财。在高等数学教学中融入数学建模思想[j]。贵阳学院学报,20xx(03):63—65。
数学竟赛建模论文篇十二
数学,源于人们对生产与生活实际问题,抽象出的数量关系与空间结构发展而成的.近年来,信息技术飞速发展,推动了应用数学的发展,使数学日益渗透到社会各个领域.中考实际应用题目更贴近日常生活,具有时代性、灵活性,涉及的模型有方程、函数、不等式、统计、几何等模型.数学课程标准指出,教师在教学中应引导学生从实际背景中理清数学关系、把握变化规律,能从实际问题中建立数学模型.教师要为学生创造用数学的氛围,引导学生参与自主学习、自主探索、自主提问、自主解决,体验做数学的过程,从而提高解决实际问题的能力.
一是教师未能实现角色转换.建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法.然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高.二是教师的专业素养有待提高.开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式.三是学生的抽象能力较差.在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的关系,影响了学生成功建模.
1.自主探索原则.
学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识.在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的`能力.
2.因材施教原则.
教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。
3.可接受性原则.
数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容.若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题.
数学竟赛建模论文篇十三
将建模的思想有效的渗透到应用数学的教学过程中去,是我们当前开展应用数学教育的未来发展趋势,怎样才能够使应用数学更好的服务社会经济的发展,充分发挥数学工具在实际问题解决中的重要作用,是我们当前进行应用数学研究的核心问题,而建模思想在应用数学中的运用则能够很好的解决这一问题。
数学教育至少应该涵盖纯粹数学和应用数学两方面内容,目前我国数学教育内容以纯粹数学为主,极少包括应用数学内容,这割裂了数学与外部世界的血肉联系,使数学变成了多数学生眼中的抽象、枯燥、无用的思维游戏,而厌学成风。因此,大家对现行的数学教育不满意,期望改革,期望找到方法激发学生的学习兴趣、培养学生利用数学解决各种实际问题的能力。在不改变传统的教学体系的前提下,有机地融入应用数学内容,应是解决现存问题的有效方法。事实上,数学发展的根本原动力,它的最初的根源,是来自客观实际的需要,数学教学中理应突出数学思想的来龙去脉,揭示数学概念和公式的实际来源和应用,恢复并畅通数学与外部世界的血肉联系。伴随着社会生产力的不断发展,多个学科交叉发展,使得应用数学逐渐发展成拥有众多发展方向的学科,应用数学所运用的领域不断延伸,已经不再局限于传统的、而是想着更为宽阔的、新兴的学科以及高新技术领域发展,应用数学目前已经渗透到社会经济发展的各个行业,在这一大背景下,应用数学的研究者就拥有了极大的发展空间以及展示才能的舞台,也迎来了应用数学发展的新机遇。
数学这一学科不仅具有概念抽象性、逻辑严密性、体系完整性以及结论确定性,而且还具备非常明显的应用广泛性,伴随着计算机网络在社会生活中的广泛运用,人们对于实践问题的解决要求越来越精确,这就给应用数学的广泛运用带来了前所未有的机遇。应用数学在这一背景下也已经成为当前高科技水平的一个重要内容,应用数学建模思想的引入与使用能够极大的提升自身应用数学的综合水平以及思维意识,开展应用数学建模不仅能够有效的提升自己的学习热情与探究意识,而且还能够将专业知识同建模密切结合在一起,对于专业知识的有效掌握是非常有益的。
3.1充分重视建模的桥梁作用。
建模是实现数学知识与现实问题相联系的桥梁与纽带,通过进行建模能够有效的`将实际问题进行简化。在这一转化的过程中,应当深入实际进行调查、收集相关数据信息,认真分析对象的独特特征及规律,构建起反映实际问题的数学关系,运用数学理论进行问题的解决。这正是各个学科之间进行有效联系的结合点,通过引进建模思想,不仅能够使我们有效掌握数学理论之外的实践问题,还能够推动创新意识的提升,因此,我们应当充分重视建模的作用。
3.2将建模的方法以及相关理论引入到数学教学中来。
我国当前数学课程教学体系的现状包括高等数学、线性代数、概率论与数理统计等几个部分。当前应用数学的发展,满足这一学科的建设以及其他学科对这一学科的需要,教师在教学中应当将问题的背景介绍清楚,并列出几种解决方案,启发学生进行讨论并构建数学模型。学生们在课堂上就能够获得更多的思考和讨论的机会,能够充分调动学生们的积极性,使其能够立足实际进行思考,这样一来就形成了以实际问题为基础的数学建模教学特色。
3.3积极参加数学模型课等相关课程与活动。
数学应用综合性的实验,要求我们掌握数学知识的综合性运用,做法是老师先讲一些数学建模的一些应用实例,然后学生上机实践,强调学生的动手实践。数学实验课应该说是数学模型的辅助课程,主要培养我们的数学思维和创新能力,还应当组织一些建模比赛,不断提升数学建模的综合水平。
上述几个部分的论述与分析,我们看到,在应用数学中加强建模思想具有非常重要的意义,不仅需要在课堂学习过程中认真掌握数学理论知识,还应当深入了解数学理论在实际生活中的可用之处,尽可能的使应用数学与自身所学专业相联系,这样,才能够使应用数学的能力与水平在日常实践过程中得到提升。就当前高等数学的现状来看,加强创新意识以及将实际问题转化为数学问题能力的培养,提升综合运用本专业知识以来解决实践问题的能力,使创新思维得到最大限度的发挥。
[1]余荷香,赵益民.数学建模在高职数学教学中的应用研究[j].出国与就业(就业版),20xx(10).
[2]关淮海.培养数学建模思想与方法高职高专数学教改之趋势[j].职大学报,20xx(02).
[3]李传欣.数学建模在工程类专业数学教学中的应用研究[j].中国科教创新导刊,20xx(35).
[4]李秀林.高等数学教学中渗透数学建模的探讨[j].吉林省教育学院学报(学科版),20xx(08).
[5]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教.学中的探讨[j].景德镇高专学报,20xx(04).
数学竟赛建模论文篇十四
为了培养小学生良好的数学学习兴趣,激发他们的数学潜能,教师需要采取必要的措施注重数学建模思想的有效培养,促进学生的全面发展。在制定相关培养策略的过程中,教师应充分考虑小学生的性格特点,提高数学建模思想培养的有效性。基于此,文章将从不同的方面对小学生数学建模思想的培养策略进行初步的探讨。
作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的`数学建模能力。
通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。
加强小学生数学建模思想的有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。
总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。
[1]童小艳.小学数学教学中培养学生建模思想的策略[j].学子(教育新理念),20xx(6).
[2]白宁.先学而后教——小学生数学建模思想培养的捷径[j].数学学习与研究,20xx(16).
数学竟赛建模论文篇十五
随着社会的不断发展和科学技术的进步,数学在现实生活中的应用越来越广泛,尤其是计算机技术的发展及广泛应用,使数学建模思想在解决社会各个领域中的实际问题的应用越来越深入。本文笔者简要谈谈数学建模思想融入大学数学类课程的意义和方法。
所谓数学建模就是指构造数学模型的过程,也就是说用公式、符号和图表等数学语言来刻画和描述一个实际问题,再经过计算、迭代等数学处理得到定量的结果,从而供人们分析、预报、决策与控制。那么数学模型就是利用数学术语对一部分现实世界的描述。数学建模思想是指理论联系实际,将实际的事物抽象成数学模型,然后利用所学的理论来解决问题的一种思想。
在新形势下,传统的数学教学方法已经无法适应现在大学数学教育改革的需求,数学建模思想与大学数学类课程教育融合成为目前高等院校数学教学改革的突破口。
(1)数学知识在各个领域的应用越来越广泛。如今数学知识在各个领域的应用越来越广泛,尤其是在经济学中的应用最为显著。自从1969年创设诺贝尔经济学奖以来,就有不少理论成果来自利用数学工具分析经济问题。事实上,从1969年到20xx年这35年中,一共产生了53位获奖者,其中拥有数学学位的共有19人,所占比例为35.8%;其中拥有理工学位的有9人,所占比例为17%;二者共计占52.8%;其中共有29位诺贝尔经济学奖的获得者是以数学方法为主要的研究方法,约占总人数的63.1%。然而几乎所有的诺贝尔经济学奖获得者都运用了数学方法来研究经济学理论。除了在经济领域,数学建模思想也广泛应用于生物医学,包括超声波、电磁诊断等方面。同时数学建模还将数学与生物学融合进了基因科学,例如基因表达的定型、基因组测序、基因分类等等,在生物学领域需要建立大规模的模拟以及复杂的数学模型。可见数学建模思想的应用是非常广泛的,并对其他领域的发展起着重要的推动作用。
(2)有利于激发学生的学习热情,丰富大学数学课程。一般的数学课,通常只是重视理论知识的讲解和传授,对知识点的推理和思想方法的分析较少。而且多数学生为了应付考试,也只是以“类型题”的方式去复习知识点。这样的方式虽然能够让学生掌握一部分数学知识,可是却不能提高学生的数学素质,不能提高学生对大学数学的学习兴趣。而数学建模思想运用数学知识来解决生活中的实际问题,这样就使数学活了起来,而不是死的理论知识。运用数学建模思想能够让学生在数学中感悟生活,在生活中体会数学的价值,更容易吸引学生的学习兴趣。而兴趣是学习最有效的动力,让学生主动参与学习而非被动学习,取得的教学效果会更好。
(3)是加强数学教学改革,适应时代发展的需要。在大学数学教学活动中,许多学生常常陷入这样的困惑之中:花费了大量的精力,做了很多习题,但是却感受不到数学的作用和价值。而教师在教学中也总是告诉学生数学是一门很有用的课程,但是却举不出现实的例子。并且传统的教学方式也只是教会学生掌握简单的理论知识,并不能提高学生的数学素养和数学意识。而将数学建模思想融入到大学的数学类课程之中就能很好地解决这些问题。因为将数学建模思想运用到数学类课程中,就能够让学生在独立思考和探索中感受到数学在现实生活中的实用价值,提高学生运用数学的眼光去观察、分析以及表示各种事物的空间关系、数量关系和数学信息的能力,提高学生的创造能力和创新意识。
(1)教师在教学过程中较少渗入数学建模思想。目前在高校数学教学中数学建模的思想应用得仍然较少,重视程度不够。不少高校的教师在开展大学数学类课程时,仍然只是停留在数学知识的教学方面,并没有对学生进行研究性学习探索。据调查,大多数高校教师对日常的教学工作能够认真完成规定的教学任务,但能够真正创造性地把数学建模思想融入到数学教学任务中的教师较少。大多数高校数学老师都意识到探索式的数学建模教学很重要,但真正将数学建模思想与数学教学融合的尝试和探索却很少。可见多数高校教师虽然明白数学建模思想的重要性,但是由于缺乏足够的数学建模教学的相关知识及经验,在实际教学中数学建模思想仍未得到充分的运用。
(2)开设的有关数学建模的课程和活动较少。虽然数学建模思想得到了越来越广泛的应用,但是在高校中实际开设的有关数学建模的课程并不多,尤其是应用数学、数学实验以及计算机应用等一些需要渗入数学建模思想的课程在实际的教学过程中并没有创造性地运用数学建模思想。另一方面,校内自主开展的有关数学建模竞赛和活动并不多,宣传力度也不够,无法让更多的学生了解数学建模的意义和价值,更无法参与到数学建模活动中去。
(3)学生对数学的态度和观念还未改变,对数学建模缺乏深入的了解。大学数学是一门较为抽象的学科,其概念、定理和性质都不容易掌握,由于其具有一定的难度,所以不少学生对大学数学类课程以及数学建模没有兴趣。并且这些学生在初中和高中阶段也学习数学,但是不少学生是为了应付考试,并没有见识到数学的应用性,觉得数学是一门纯理论的课程,没有实用价值。同时很多学生对数学建模思想的运用并不够了解,不知道如何将数学知识和数学方法应用到实际的生活中去,觉得数学没有用,也没有深入学习的意义。
(1)提高课堂教学质量,创造性地运用数学建模思想。大学的数学类课程主要有“线性代数”、“高等数学”、“运筹学”、“数学建模”、“概率论与数理统计”等,这些课程的核心部分都跟高等数学有关,所以要注重提高数学类课程的教学质量关键就在于高等数学,而要提高高等数学的教学质量就必须在教学过程中创造性地应用数学建模思想。对于主修数学的学生,要加强对计算机软件和语言的学习,系统性地对数学原理进行剖解和分析,合理运用数学知识和数学方法解决社会实际问题。在教学中多引导、启发学生利用对生活问题和科学问题的深入研究,主动结合自己的课程理论知识和数学建模,使数学建模思想融入到学生的整个学习过程中去。对于非数学领域的问题,要启发学生运用计算机软件建模,从而解决不同领域中的数学建模问题。
(2)多开设跟数学建模有关的数学类课程。例如除了开设跟数学建模有关的必修课,还可以开设一些跟数学建模有关的选修课,为其他专业的学生提供接触和了解数学建模思想的机会,为学生拓展知识领域,为其解决该领域的问题提供有效的方法。例如,经济学有关专业的学生就可以通过选修跟数学建模有关的课程,解决其在经济学中遇到的问题,因为很多跟经济学有关的问题仅仅靠经济学的知识是无法解决的,像贷款计算这样的问题就要将数学与经济学联系起来才能解决实际问题。
(3)广泛宣传,让学生了解数学建模的意义和价值。学生是教学过程中的主体,目前,大学数学建模课程开设效果不佳,学生参与度低的主要原因就是学生缺乏对数学建模的深入了解。那么,要提高学生的参与性,促进数学建模思想与大学数学类课程的融合就必须加强宣传,让学生深入了解什么是数学建模。同时,在课堂上就是也要转变传统枯燥的教学方式,多使用启发式教学和探索式教学,吸引学生的学习兴趣,让他们发现数学对社会实际生活的重要作用,转变他们对数学的态度,并引导学生对数学建模和数学课程感兴趣。
(4)转变数学教育理念及教育方式。要转变传统的教育方式,将教学的重点放在数学知识在生活中的应用问题上,而不是将知识与实际生活割裂开来。同时在教学中要注重证明和推理,加强学生对数学方法的掌握注重培养学生对实际问题的逻辑分析、简化、抽象并运用数学语言表达的能力。也就是说教学的重点在于提高学生的数学学习能力和加强数学意识和数学方法的应用,这样才能够培养出具有创新能力和创新意识的人才。
(5)多开展数学建模活动和竞赛,提高学生参与性。在高校内部要多开展跟数学有关的活动和竞赛以及专家讲座等,一方面加强学生对数学建模的认识,另一方面也提高了学生的参与性。通过专家讲座,不仅可以让学生更深入地了解数学建模的价值,也加强了学术交流,提高学生的数学建模应用能力。通过数学建模竞赛,为学生提供展示自己智慧、充分发挥其能力的平台。同时,竞赛也可以让学生在竞赛中发现自己的不足,在交流中不断完善自己的缺陷,拓展学生的思维。而且,在数学建模比赛中,通过让学生探究跟生活实际有关的例子,提高学生对数学建模的兴趣,加强学生对模型应用的直观性认识,促进学校应用型人才的培养。
总之,数学建模思想和高校数学类课程的融合,对于高等数学教学改革具有非常重要的意义。把数学建模思想融入到高等数学教学中,可以更好地提高学生的数学学习能力,提高他们运用数学思想和数学方法分析问题、解决问题和抽象思维的能力。高校教师要加强数学建模思想的应用,让学生初步掌握从实际问题中总结数学内涵的方法,提高学生的数学学习兴趣,为高校学生专业课的学习奠定坚实的数学基础。