大数据心得体会 大数据之夜心得体会(汇总13篇)
每个人都有自己独特的心得体会,它们可以是对成功的总结,也可以是对失败的反思,更可以是对人生的思考和感悟。心得体会是我们对于所经历的事件、经验和教训的总结和反思。下面是小编帮大家整理的心得体会范文大全,供大家参考借鉴,希望可以帮助到有需要的朋友。
大数据心得体会篇一
大数据已经成为当下的热门话题,越来越多的企业开始将其融入到自己的发展中。在这样的背景下,由中国数据产业领袖峰会举办的“大数据之夜”活动吸引了许多人前来参加。我也深感荣幸能够参加其中,下面我将分享一下我在这次活动中的心得体会。
第二段:活动内容介绍
在本次活动中,一些著名的企业家、学者和专家出席了会议,他们主要从大数据方面给我们进行了分享。在会上,他们分别从不同的角度,就大数据在各个行业中的应用、数据分析技术的发展等方面进行了深入的探讨和阐述。此外,在现场还有一些实际的案例和产品展示,都让我们深刻感受到了大数据技术的强大。
第三段:启发
本次活动最让我印象深刻的是各位嘉宾的演讲。他们不仅仅是为我们介绍了各种大数据技术,在实际的应用中也给予了我们很多启发。其中,有一位演讲者告诉我们:“大数据不是简单地获取数据,而是如何将数据转化为价值”。这让我意识到,我们在使用大数据方面不仅仅要注重数据的收集和分析,更要考虑如何将其转化为实际的应用。
第四段:思考
本次活动给我带来了很多启发和思考。我深感到,大数据技术虽然十分强大,但仅仅是技术的积累和应用还远远不够。我们需要考虑从多个角度进行创新和思考,将大数据技术运用到我们的现实生活中。同时,我们也要深入了解各种大数据技术的适用场景,这样才能更好地运用它,落地实现。
第五段:总结
通过本次活动,我感受到了大数据技术的应用和价值,在思考和学习的过程中,也开启了我对大数据技术的探索。我相信,随着技术的不断发展,大数据将在未来的发展中扮演着越来越重要的角色。我也希望,在这个时代的浪潮下,我们都能够把握机遇,为自己和这个时代创造更多的价值。
大数据心得体会篇二
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
大数据的心得体会篇4
大数据心得体会篇三
大数据时代已经来临,数据的价值日益凸显。为了探讨大数据在各个领域的应用和前景,我参加了一场名为“大数据会议”的专题讨论。在这次会议中,我深深感受到了大数据对各行各业的重要性,以及与会专家和学者们对大数据的热情和追求。在这篇文章中,我将分享我的会议心得体会。
第二段:认识到大数据的重要性与挑战
在会议的开场白中,主持人首先强调了大数据的重要性。大数据不仅是一种技术和工具,更是企业和组织决策的支持和指导。与以往不同的是,大数据能够帮助我们从海量的数据中挖掘出有价值的信息和见解,从而提升决策的准确性和效率。然而,与此同时,大数据也带来了新的挑战。如何采集、存储和处理海量的数据,如何保证数据的隐私和安全,如何提升数据分析和挖掘的能力,都是我们面临的问题和挑战。
第三段:了解大数据在不同领域的应用
在会议的过程中,我还了解了大数据在不同领域的具体应用。比如,在金融领域,大数据可以帮助银行和保险公司更好地进行风险评估和投资决策;在医疗健康领域,大数据可以辅助医生进行疾病诊断和治疗方案的制定;在市场营销领域,大数据可以帮助企业更好地了解消费者的需求和行为,从而提供个性化的产品和服务。这些应用示范了大数据的巨大潜力和创新价值,也让我深入认识到大数据对社会和经济的影响。
第四段:听取专家与学者的观点和建议
会议上,我还有幸听到了多位大数据领域的专家和学者的演讲。他们分享了自己的研究成果和实践经验,对大数据的未来发展进行了展望。他们强调了人工智能和机器学习在大数据中的重要作用,提出了如何提升数据的质量和可信度的建议,讨论了大数据伦理和隐私保护的问题。这些观点和建议让我受益匪浅,也给我在未来的研究和实践中提供了重要的指导和参考。
第五段:总结与展望
通过这次大数据会议的参与,我不仅对大数据的重要性有了更深刻的认识,还了解了大数据在不同领域的应用和发展趋势。同时,我认识到大数据带来的挑战和问题,明确了我在学术和职业发展中需要进一步提升的方向和能力。展望未来,我将继续关注大数据领域的最新动态,深入研究大数据的技术和方法,努力将大数据应用于实际问题解决中,为社会和经济的发展做出贡献。
总之,这次大数据会议给我带来了很多启发和思考,让我深入了解了大数据的重要性和应用前景。我也相信,在不久的将来,大数据将成为推动各行各业发展和创新的重要力量。
大数据心得体会篇四
大数据共享是指将海量数据进行整合、分析和利用,帮助人们更好地理解世界、做出决策。在信息时代,大数据共享变得越来越重要,为各行各业提供了无限的机遇。在过去的几年里,我也积极参与了大数据共享的项目,在这个过程中,我收获了许多经验和体会。
首先,大数据共享需要有一个良好的数据管理平台。数据是所有的大数据共享项目的核心,数据管理的好坏直接影响到项目的运行效果。一个良好的数据管理平台应该包括数据的采集、存储、处理和分析等功能,并具备高效、安全、可靠的特点。在自己的工作中,我发现,一个优秀的数据管理平台能够帮助我们更好地管理和利用数据,提高工作效率,为决策提供可靠的依据。
其次,大数据共享需要各方积极参与和合作。大数据共享是一个复杂的过程,需要各方的积极参与和合作才能取得成功。数据的获取、整合和分析需要不同的部门和团队的配合,只有形成合力,才能从数据中挖掘出更深入的价值。在我参与的大数据共享项目中,我经常需要与其他团队进行协作,在协作过程中,我学到了倾听和沟通的重要性,也认识到只有相互信任和合作,才能达成共同的目标。
第三,大数据共享需要深入理解数据背后的故事。大数据不仅仅是一堆数字,它背后蕴含着无穷无尽的故事。我们需要从数据中挖掘这些故事,理解其中的关联和逻辑,才能真正把大数据转化为有价值的信息。在我的工作中,我经常会通过数据分析来解读数据背后的故事,帮助客户更好地理解市场趋势和用户需求。深入理解数据背后的故事,可以帮助我们更好地把握数据的内涵和价值。
第四,大数据共享需要不断更新的技能和知识。大数据领域的技术和知识不断发展和更新,我们要保持对新技术和新知识的学习和掌握,才能跟上时代的步伐。在我参与的大数据共享项目中,我不断学习新的技术和知识,提高自己的技能水平,使自己能够更好地适应和应对各种数据挑战。保持学习的态度,不断更新自己的技能和知识,是大数据共享工作的必备条件。
最后,大数据共享需要注重数据的隐私与安全保护。在大数据共享的过程中,我们不能忽视数据的隐私与安全保护。大数据包含大量的个人和敏感信息,如果泄露或滥用,将对个人和社会造成巨大的伤害。在我的工作中,我始终注重数据的隐私与安全保护,采取各种措施来保护数据的隐私和安全,确保数据的合法使用。数据的隐私与安全保护是大数据共享工作的一项重要责任,也是我们应该始终坚守的底线。
综上所述,大数据共享是一个复杂而有挑战的工作,需要具备良好的数据管理平台、各方积极参与和合作、深入理解数据背后的故事、不断更新的技能和知识以及数据的隐私与安全保护。在未来的工作中,我将继续努力学习和探索,不断提升自己的专业能力,在大数据共享的道路上不断取得进步。相信通过共享大数据,我们可以更好地认识世界、解决问题、推动社会发展。
大数据心得体会篇五
如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔——舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。
一读
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分“大数据时代的思维变革”中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。“大数据的简单算法比小数据的复杂算法更有效。”更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。“不是因果关系,而是相关关系。”不需要知道“为什么”,只需要知道“是什么”。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出“不是因果关系,而是相关关系。”这一论断时,他在书中还说道:“在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。”[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可“量化”,大数据的定量分析有力地回答“是什么”这一问题,但仍然无法完全回答“为什么”。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节“掌控”中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:“大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。”谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
再读
概念是研究的逻辑起点,“大数据”到底是什么?在百度上搜索到的解释是,“大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”大数据的4v特点:数量(volume)、速度(velocity)、品种(variety)和真实性(veracity)。但舍恩伯格认为大数据并非一个确切的概念。他在书中的一段诠释更具人文色彩和社会意义:“大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府与公民关系的方法。”[ii]其实,概念的界定要看研究者从哪个角度来研究它而定。
科学家的治学态度是严谨的,而人文学家更具有想象力。一些对大数据不甚了然的人往往夸大了它的作用,甚至把它神化。舍恩伯格认为大数据的核心是预测。“大数据不是要教机器像人一样思考。相反,把数学算法运用到海量的数据上来预期事情发生的可能性。”[iii]舍恩伯格甚至不回避大数据所产生的负面影响,他在第七章里谈到让数据主宰一切的隐忧。我觉得这是实事求是的科学态度。在量子力学里有一个测不准原理:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。它是解释微观世界的物理现象,信息社会中的大数据会不会也有类似情况呢?如果我们再把凯文·凯利的《失控》对比来读的话就更有意思了,这样我们对整个物质世界及至人类社会就有了更全面更深刻的洞察,从物理王国到生物世界,再到信息社会。从公共卫生到商业应用,从个人隐私到政府管理,大数据无处不在。与此同时,从哪个角度探讨用什么方法研究,舍恩伯格都不会忘记大数据服务人类造福人类的终极目的和价值所在。“大数据并不是一个充斥着运算法则和机器的冰冷世界,其中仍需要人类扮演重要角色。人类独有的弱点、错觉、错误都是十分必要的,因为这些特性的另一头牵着的是人类的创造力、直觉和天赋。偶尔也会带来屈辱或固执的同样混乱的大脑运作,也能带来成功,或在偶然间促成我们的伟大。这提示我们应该乐于接受类似的不准确,因为不准确正是我们之所以为人的特征之一。”[iv]用中国话来说就是“人无完人”,人类在收获大数据带来的红利的同时也要承受它带来的危害。这不是对立统一的辩证唯物主义?我把它看作带着欧洲批判学派色彩的科学发展观。
问题是研究的价值基点,“大数据”不是舍恩伯格研究的问题,而是研究对象,他研究的是数据处理和信息管理问题,同时也讨论信息安全和网络伦理问题,还引发哲学上的思考,哲学史上争论不休的世界可知论和不可知论转变为实证科学中的具体问题。可知性是绝对的,不可知性是相对的。“大数据”之所以为大是因它引发人类生活、工作和思维的大变革,从这个意义上来看,《大数据时代》的意义不仅在于它讨论了若干重大问题,而且对研究者开出了一个问题清单,从而引发更多人来探讨这些有趣的问题。
《大数据时代》实际上主要是一本讨论数据挖掘的书,数据挖掘与数据分析是不同的概念,数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。而数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。数据挖掘主要运用计算机来进行处理,而数据分析既要用计算机也要人工分析,是计算机科学与人文价值判断的统一结合。换言之,《大数据时代》并不是一本讨论大数据所有问题的书。
《大数据时代》也是一本讨论互联网发展的书,从数字化到数据化,同时有浓厚的未来学色彩。当文字变成数据,我们进入了互联网;当方位变成数据,我们进入了物联网;当沟通变成数据,我们进入了下一代互联网。一切可量化,万物皆数据,正是当今互联网世界的真实写照。面对于这样的世界及世界的未来,在《大数据时代》出现最多的词是“思维”和“方法”,因此也可以把这本书视为思维科学应用研究的书。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
三读
今年国庆节前一天,中共中央政治局们来到中关村搞集体学习,调研、讲解、讨论创新驱动发展战略。包括、在内的七位全部出动来到中关村,这是历史上没有过的,百度、联想和小米的负责人,有了一次直面最高层汇报工作的机会。雷军和柳传志,讲解的都是本公司的各种情况,李彦宏则没有讲百度的广告业务发展得如何好,而是讲起了大数据。在讲解中,李彦宏认为大数据有两个重要价值,一是促进信息消费,加快经济转型升级;二是关注社会民生,带动社会管理创新。这些价值也是目前党和国家领导人最为重视的,可见《大数据时代》既有理论价值也有现实意义。
当今大数据正在影响着新闻传媒业,大数据新闻、大数据营销、舆情分析、受众(用户)研究……数据分析师变身新闻编辑,大数据正改变新闻生产流程、大数据在创造传媒新业态。“不妨想象一下,随着数据的进一步增加,坐拥用户资源的新媒体们完全有能力通过数据挖掘,分析用户癖好,向电视台定制一部电视剧甚至向好莱坞定制一部电影。到那个时候,电视台一如那些家电厂商们,曾经产业链的上游‘王者’,将彻底成为一个产业链最低端的内容代工厂。”[v]然而,情形也远没有人们想象的那么乐观,李彦宏指出目前多数所谓的大数据公司其实还是空壳子,因为数据还没有完全开放。他认为必须在政府层面上推动才能真正实现大数据的开发与利用。我在讨论大数据时代的舆情监测与预警时说道:“经典自由主义传播学说对媒体的定位:秉持公正、客观立场的媒体被称为代表公众监督政府行为的‘看门狗’。其实,媒体既是公众利益也是国家利益的‘看门狗’。要看好门就要瞭望、洞察社情民意,传统媒体信息反馈渠道单一,视野、人力十分有限。而开放互动的新媒体平台却大有可为。作为公共信息发布平台的微博可以成为政府及时了解社情民意,从而选择正确治理路径的‘导盲犬’。”[vi]遗憾的是目前我国的数据平台还没有完全开放,真正的大数据时代还没有到来。
与国内不少教科书写法的专著相比,国外的书写得更有趣,尤其是大学者写的,不仅视野开阔,而且能够深入浅出。《大数据时代》不到22万字,却有上百个学术和商业的实例,丰富翔实的例子让读者感到通俗易懂,深奥的理论看起来也不费劲。这恐怕与舍恩伯格既是学者也是专家,既有理论又有实践有关。反观我们些学者故弄玄虚而示高明,实际上是把读者拒之门外。我觉得优秀的科学家也应该是一个科普作家,优秀的学者也应该是一个不错的传播者。当然国外学术著作也有一个翻译问题,这本书译得还不错。此外,《大数据时代》还附有不少it界名流的推荐意见,虽是出版商的发行所为,对解读此书也不无益处。
除了《大数据时代》,舍恩伯格还有一本《删除》也值得一读。要研究大数据不能只读一本书,该书译者周涛教授还推荐了三部国内出版的大数据方面的专著:《证析》、《大数据》、《个性化:商业的未来》。相比《大数据时代》的宏大视野,这些书就大数据某一局部问题给出深刻的介绍和洞见。我也推荐读一读中国工程院李国杰院士和中科院计算所副总工程学旗合写的文章《大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考》。
虽说开卷有益,但是由于每个人的时间精力有限,对于一个研究者来说,不读什么书甚至比读什么书更重要。我认为书有三种:有用的书,主要是应用类的专业书;无用的书,主要是形而上的思想类;无字的书,人间百态,社会现实。可偏重但不应偏废。对于学生来讲这三类“书”都该读一些,对于研究者则要读哪些解决关键问题的书,《大数据时代》就是这样一部书。当然,并非第一个读者都是研究大数据的,但进入大数据时代,还有什么东西与数据完全没有关系呢?麦肯锡全球研究机构认为,未来十年里有12项对经济发展产生重大影响的技术,其中包括三项新媒体技术:移动互联网、物联网和云计算。这三项新媒体技术都与大数据密切相关,而这些新媒体新技术的发展都影响着当今的新闻传播业。阅读此书至少给我们研究新闻传播学带来一些启迪。我觉得一本书的价值不在于让你顶礼膜拜,而是引发广泛而深入的讨论。
“凡是过去,皆为序曲。”读完此书,我们对大数据的认识才刚刚开始。
大数据心得体会篇六
随着科技的不断发展,大数据逐渐成为了现代社会的一个热门话题。大数据的应用能够帮助企业做出更准确的决策,也能够提高各个领域的效率。然而,在实际应用中,大数据的整合和共享面临着许多挑战。在这篇文章中,我将分享我的一些心得体会,探讨大数据共享中所面临的问题并提出一些解决方案。
第一段:大数据的重要性
大数据是指通过收集并分析海量的数据来获得有价值的信息。随着互联网的普及和智能设备的普遍使用,我们能够收集到许多有关消费者喜好和行为的数据。通过对这些数据进行分析,企业能够更好地理解消费者的需求,并制定更加切合实际的营销策略。同时,大数据也对科学研究和公共管理等领域产生了重要影响。因此,大数据的共享对于提高社会效益具有重要意义。
第二段:大数据共享面临的问题
然而,大数据的共享在实践中面临着许多挑战。首先,数据的质量和准确性是共享的基础。如果数据来源不可靠或者数据质量较差,那么共享的结果可能会导致错误的决策。其次,隐私和安全问题也是大数据共享的一大难题。个人信息的泄露可能导致用户的隐私受到侵犯,因此如何保护用户数据成为一个重要问题。此外,大数据的多样性和巨量性也增加了数据共享的复杂性。不同领域的数据需要进行整合和标准化以便进行有效的共享。
第三段:提高大数据共享的解决方案
鉴于大数据共享面临的问题,我们需要采取一系列措施来提高共享效果和保护用户隐私。首先,建立统一的数据标准和规范,以便数据可以顺利地进行交流和共享。其次,加强数据安全的保护措施,采用先进的加密技术和身份验证系统来保护个人信息的安全。此外,加强数据质量的管理,通过数据清洗和验证等手段确保数据的准确性和可信度。最后,制定相关法律法规,对数据共享进行规范和监管,确保数据共享不会侵犯用户的合法权益。
第四段:大数据共享的价值
虽然大数据共享存在一些问题和挑战,但是共享数据所带来的巨大价值是不可忽视的。大数据共享能够促进不同领域的协同创新,提高企业的竞争力和效率。例如,通过共享医疗数据,医生可以更加准确地进行诊断和治疗,为患者提供更好的医疗服务。另外,通过共享能源消耗数据,可以更好地规划能源的使用和分配,提高能源利用效率。因此,大数据共享对于实现可持续发展和改善人们生活质量具有重要意义。
第五段:总结与展望
在大数据时代,共享数据是不可避免的趋势和重要环节。但是,大数据的共享也面临着诸多问题和挑战。为了克服这些问题,我们需要加强数据质量的管理,加强数据安全的保护,制定相关法律法规,并进一步推进全球数据共享的标准化和规范化。只有这样,我们才能充分发挥大数据的潜力,实现共赢和可持续发展的目标。随着技术的进步和社会的发展,我相信大数据共享的未来一定会更加繁荣和有益。
大数据心得体会篇七
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
大数据心得体会篇八
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
本书从思维、商业、管理三个方面阐述了在大数据时代在下的变革,这些变革涉及到我们生活的方方面面,几乎其影响程度可以与两次工业革命相媲美。作者在第一部分提出了三个比较令人震惊的观点,也就是大数据的精髓在于我们分析信息时的三个转变,这三个转变将改变我们的理解和组建社会的方法。并且作者将生活,工作思维的大变革和这几个方面紧紧联系在一起。
第三个改变是不是因果关系而是相关关系,在大数据时代,我们更需要了解一个东西是什么,而不是为什么,要找到关联无,通过一个良好的关联物的相关关系可以帮助我们捕捉预测未来。
这三个方面是大数据时代所给我们带来的思维上的改变,所谓思路决定出路,思路有了创新,有了拓展,相应的社会也就会有很大的变化。紧接着第二部分作者从万事万物数据化和数据交叉复用的巨大价值两个方面,讲述驱动大数据战车在材质和智力方面向前滚动的最根本动力。第三部分则是阐述了大数据时代下的弊端以及在管理上的措施。个人认为本书的精髓部分是第一部分,第一部分的三个观点涉及的面很广,包括统计学、逻辑学、哲学等。后两个部分都是以第一部分这三个观点为基础展开阐述的。
这本书给我感触最深的.就是这三个转变,或者说是三个观点,可以说是哲学上说的世界观,因为世界观决定方法论,所以这三个观点对传统看法的颠覆,就会导致各种变革的发生。
首先是第一个,作者认为在抽样研究时期,由于研究条件的欠缺,只能以少量的数据获取最大的信息,而在大数据时代,我们可以获得海量的数据,抽样自然就失去它的意义了。放弃了随机分析法这种捷径,采用所有的数据。作者用大数据与乔布斯的癌症治疗例子说明了使用全部数据而非样本的意义,列举了日本“相扑”等来证明使用全体数据的重要性。
这个观点足以引起统计学乃至社会文明的变革,因为统计抽样和几何学定理、万有引力一样被看做文明得以建立牢固的基石。我对这个观点还是比较认同的,如果真能收集到整体的数据而且分析数据的工具也足够先进,自然是全体数据研究得出的结果更令人信服。但是这个观点也过于绝对,就算是在大数据时代要想收集到全体数据还是不太可能实现的,因为收集全体数据要付出的代价有时会很大。比如说,你要检测食品中致癌物质是否超标,你不可能每一件食品你都检测一遍吧。
第二,要效率不要绝对的精确。作者说,执迷于精确性是信息缺乏时代和模拟时代的产物,只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用。作者是基于数据不可能百分之百正确的考虑而做出这样的判断的,如果采用小数据一个数据的错误就会导致结果的误差很大,但是如果数据足够多、数据足够杂那得出的结果就越靠近正确答案。大数据时代要求我们重新审视精确性的优劣,甚至还说到大数据不仅让我们不再期待精确性,也让我们无法实现精确性。谷歌翻译的成功很好地证明了这一点,谷歌的翻译系统不像candide那样精确地翻译每一句话,它谷歌翻译之所以优于ibm的candide系统并不是因为它拥有更好的算法机制,和微软的班科和布里尔一样,谷歌翻译增加了各种各样的数据,并且接受了有错误的数据。
而在阅读这本书时,发现这本书中争议最大的一个观点,不仅是读者,就算是本书的译者也在序言中明确地说到他不认同“相关关系比因果关系更重要”的观点。作者觉得相关关系对于预测一些事情已经足够了,不用花大力气去研究他们的因果关系。作者用林登的亚马逊推荐系统的成功,证实了大数据在分析相关性方面的优势以及在销售中获得的成功。沃尔玛也是充分利用并挖掘各类数据信息的代表,从啤酒和尿布的案例,以及作者举的有关蛋挞和飓风天气的案例,都说明了掌握了相关关系对于他们策略的帮助。
一句话,知道是什么就够了,不用知道为什么。很明显作者所举的例子都是属于商业领域的,但是对于其他领域来说这个观点就值得商榷了。比如说,在科学研究领域,你需要知其然也需要知道其所以然,找到事件发生的原理。用文中的一个例子说明,乔布斯测出整个基因图谱来治疗癌症,但是你治疗癌症你必须知道癌症发病的原理,知道哪一段基因导致了这种疾病,不可能只是说收集各种数据,然后利用其相关性来判断哪里出现了问题。
过度依赖所带来的后果。也用《少数派的报告》这部电影来说明如果痴迷于数据会导致我们将生活在一个没有独立选择和自由意志的社会,如果一切变为现实,我们将被禁锢在大数据的可能性之中。所以书中提出了几种解决方法,一种是使用数据时征询数据所有个人的知晓和授权。第二个技术途径就是匿名化。毫无疑问,大数据将会给社会管理带来巨大的变革。
在这个信息爆炸的时代,大数据给人类社会的方方面面带来了巨大的变革,这是社会发展的潮流,不可逆转,我们只有顺应这种潮流,把握住大数据时代变革的思想,才能在时代潮流中成为佼佼者,在思维上思路上略高一筹,才能在行动中占得先机!
大数据心得体会篇九
随着科技的不断进步,大数据已经成为了当下最热门的话题之一。在信息化时代,数据已成为企业竞争力的重要驱动因素。作为大数据创新的从业者,我在实践中积累了一些心得体会,希望通过本文与大家分享。
首先,大数据创新需要全面的数据支持。在大数据时代,数据的价值不仅仅在于数量,更在于质量和多样化。企业需要收集各种类型的数据,包括内部流程、客户信息、市场调研、社交媒体等,以形成完整的数据体系。只有数据全面、真实,才能为创新提供有效的支持。所以,企业在进行大数据创新前,需要先建立起有效的数据采集和管理机制。
其次,大数据创新需要高效的分析方法。海量的数据需要符合人们的认知方式进行处理和分析,这是大数据创新的核心问题之一。人工智能和机器学习等技术的发展,为大数据的分析提供了全新的思路和方法。同时,还要结合具体业务场景,制定相应的数据分析模型,通过数据预测、数据挖掘等手段,实现对数据的进一步深度挖掘,为企业决策提供准确的依据。
第三,大数据创新需注重合规与保护。大数据的应用和创新需要遵守合法、合规的原则。企业在制定大数据策略时,首先要确保数据的合法性,防止侵犯用户隐私等问题。同时,要加强数据的安全防护,比如加密、权限管理等措施,以保护数据不受到未经授权的访问和使用。只有在安全和合规的情况下,大数据创新才能够持续发展。
第四,大数据创新需要跨界合作。大数据的应用涉及到众多领域,需要不同行业的专业人士进行跨界合作。比如,在金融领域中,可以通过与科技公司合作,整合金融和科技的优势,提供更好的金融服务。而在医疗领域,可以结合人工智能技术和医学专业知识,提高诊断的准确性。在跨界合作中,各方可以互相借鉴和融合,形成更加创新的解决方案。
最后,大数据创新需要与时俱进。大数据的应用和技术发展非常迅速,一直处于不断演进之中。作为从业者,我们需要紧跟时代的步伐,主动学习新技术、掌握新方法,及时更新自己的知识储备。同时,要保持创新思维,敢于尝试新的想法和方法,不断挑战自己的极限。只有不断突破,才能破除旧有的思维框架,实现真正的创新。
总之,大数据的创新是一个动态的过程,需要全面的数据支持、高效的分析方法、合规与保护、跨界合作和时刻与时俱进。希望通过我的分享,能够为大家在大数据创新的道路上提供一些参考和启示。无论是企业还是个人,只有不断追求创新,才能在大数据时代中立于不败之地。
大数据心得体会篇十
如今,大数据时代成为炙手可热的话题。你知道读大数据时代心得体会是什么吗?接下来就是本站小编为大家整理的关于读大数据时代心得体会,供大家阅读!
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
大数据心得体会篇十一
20__年7月5日星期一,再找敏老师和张凤丽老师的指导下,我们开始了一次审计综合模拟实训。目的是为了使我们能比较系统地练习审计的基本流程和技术方法,加深对审计基本理论的理解、基本方法的运用和基本技能的训练,到达理论与审计实务相结合的统一,提高学生的实践操作潜力,缩短学生步入社会的适应期,提高审计学专业学生发现线索、查找错弊问题、综合分析决定和作出评价及提出推荐的综合潜力。
审计实训不仅仅有利于我们加深对审计基本理论的理解、基本方法的运用和基本技能的训练,到达理论与审计实务相结合的统一,提高学生的实践操作潜力,缩短学生步入社会的适应期,提高审计学专业学生发现线索、查找错弊问题、综合分析决定和作出评价及提出推荐的综合潜力;而且透过互相学习、互相督促、团结合作,有利于加深同学们之间、同学与老师之间的友谊,增进感情。实训过程中经过分组分工,明确自我的职责义务,有利于培养同学们团队意识,对以后的学习工作好处重大。
我们都清楚审计学是一门实践性很强的课程。我们只依靠理论知识是不够的,它更需要的是利用我们所学到的理论知识去实践。透过实训我们能够发现自我存在的问题,能够自我多查阅相关资料或向同学请教,以解决问题。从而,以奠定良好的专业基础,也为以后的工作做了铺垫,同时丰富了个人的阅历。作为一名学生,我想学习的目的不在于透过考试,而是为了获取知识,获取工作技能,换句话说,在学校学习是为了能够适应社会的需要,透过学习保证能够完成将来的工作,为社会作出贡献。透过实训了解到工作的实际需要,使得学习的目的性更明确,得到的效果也相应的更好。
二、实训的过程及资料
7月5日实训开始。第一天的实训审计工作并没有真正开始,而是在老师的要求下熟悉软件,了解审计的大致流程。在进行实质性测试之前,我查看了控制测试的结果,发现,广东科丽机械股份有限公司的内部控制基本有效,完全能够进行下一步的实质性测试。
在第一天的实训课上,老师分配了实训资料并且将专业两个班分成四组,每组20个人。以组为单位,实训结束时上交一份审计结果。我们暂时需要审计的主要资料是货币资金、应收账款、存货、固定资产、长期借款、主营业务收入、主营业务成本、管理费用、实收资本。
7月6日上午,作为一班第一组,我们召开了一个简短的会议。会议上,组长对于本次实训资料作了基本分工:组内20个人又分成四小组,每小组5个人,分别审计上述主要资料;设定主任会计师、部门经理、项目经理(在每小组的小组长任项目经理)。我所在第四小组分到了管理费用审计和实收资本审计两个资料。由于资料比较少,我们并没有进行工作细分,而是5个人每人做一份工作底稿上交,最后由项目经理审核决定用最准确,误差最小的那一份。
为了方便交流,组长还专门建立了名为“一班一组”的qq群,大家在群里热烈的交谈,有什么问题立刻得到解决。
7月8日,每个组基本完成了老师两天前规定的审计任务。由于完成任务的效率高,提前结束老师布置的资料,因此老师又另外补加了几项。
7月11日,实训结束。
三、收获与体会、存在的问题
1、收获与体会
1)自主学习。实训期间不像我们平时的上课,在这期间老师不像之前那样每一节课都和我们一齐,给我们讲课,监督我们的学习……而如今几乎是靠我们自我去把握,我们务必自觉地去学习,遇到不懂的问题时,要自我去查阅相关资料而不是抄同学的实验结果。遇到问题时,只要找到老师,她是会帮忙我们解决的,从而我们又能够从中学会一些东西。
2)用心的态度。在实训期间的确是有点枯燥无味,因为每一天应对的都是同一门课程,一堆数据……这就更需要我们有那份由始至终的用心态度,持续学习的热情,对知识的渴望。我们需要用心的态度,把每一个实验做好,把结果做到。
3)团队精神。在这次的审计实训,其实也需要我们发挥团队精神,我们要学会与人沟通,交流,因为有时候只有透过不断地讨论和交流彼此的意见,这样才能到达实验的最精确的结果。然而别人遇到不懂的问题时,我们要尽自我的潜力去帮忙同学,因为从中我们也是收益的,我们也会收获不少东西。
4)理论和实践相结合。在这次的审计实训周个性深有体会,原以为学到了一些书本知识就能够了,就能够很好地把它运用到实际工作中来。其实我们在学校所学到的书本知识,只是理论知识,我们只有透过实训,使我们的理论指导实践,只有这样,才能更好地与以后的会计工作接轨。我们要做到理论指导实践,从实践中不断总结,从而真正地做到理论与实践相结合。
2、存在的问题
除了中间的系统出现了一点小问题外,审计实训过程基本顺利。我做好“实收资本审定表”存盘后退出,然后再进入发现,已经存盘的数据无法从系统中取出。我询问了其他的同学,发现也有类似的状况。最后我们只好重做一遍,然后进行抓图操作,将做好的表整理出来。
经过这些天的审计实训,是我的审计学知识在实际工作中得到了验证,并具备了必须的基本实际操作潜力。但在取得实效的同时,我也在操作的过程中发现了自身的许多不足:1、比如自我不够细心和没有耐心,经常会因为资料的枯燥而放松自我去想一些不相干的事,以致遗漏了某些细节,导致之后填表时为了谨慎又要重新看一遍,引起了不必要的麻烦;2、虽然实训中有老师指导,但是很容易就发现自我的审计学基础知识没有打好,今后还得加强练习。
由于这次的实训是团体合作的,小组成员间进行了详细的分工,所以某些模块我们没有参与到,自我感觉有点遗憾,因为不一样的模块都是对不一样的会计基础知识进行检验的结果。
我十分感谢学校能够带给我们这次宝贵的实训机会,还要感谢实训过程中赵敏老师和张凤丽老师对我的指导以及同学们的关心和帮忙。透过这次实训,不仅仅熟练掌握了审计操作的基本技能,将审计专业理论知识和专业实践有机的结合起来,开阔了我们的视野,增加了我们对审计实践运作状况的。
大数据审计心得体会范文
大数据心得体会篇十二
近年来,随着科技的快速发展,大数据在各个领域的应用也愈加广泛。特别是在刑事办案领域,大数据技术的引入使得犯罪分析和证据搜集变得更加高效和精准。在长期的办案过程中,我深刻体会到了大数据办案的重要性和优势。以下是我对大数据办案的心得体会,希望能与大家分享。
首先,大数据办案为我们提供了更广阔的信息来源。在传统的办案模式中,我们往往只能通过人工搜集信息,并且很容易受到有限的资源和时间的限制。而大数据办案则可以通过数字化的手段搜集各种各样的数据,包括电话通讯记录、社交媒体信息、银行交易记录等。这些数据的来源广泛、容量庞大,可以为我们提供更多的线索和证据。例如,在一起诈骗案中,我们利用大数据分析软件,通过对被害人的通讯记录、银行账单以及社交媒体信息的分析,找到了犯罪团伙的关键成员和交流方式,为后续打击和抓捕提供了重要线索。
其次,大数据办案使得犯罪分析更加精准。在过去,通过人工分析犯罪信息和线索往往是一个繁琐而耗时的过程。而大数据分析可以利用先进的算法和模型,对大量的数据进行快速筛选和分析,帮助我们发现隐藏的模式和规律。例如,在一起恶性诈骗案中,我们将大量的电话通讯记录和银行交易数据导入到大数据分析软件中,通过对数据的深度挖掘,找到了犯罪团伙的藏身地和犯罪网络的组织结构。这使得我们在后续抓捕行动中能够更加精确地锁定目标,避免了许多不必要的损失。
第三,大数据办案可以提高办案效率。在传统的办案模式中,往往需要耗费大量的时间和人力进行证据搜集和信息整理。而大数据办案可以通过自动化和快速分析的方式,将这些工作大大减少。例如,利用大数据分析软件,我们可以在犯罪分析中自动筛选出相关的数据并进行关联,快速组织形成案件大纲和证据链,大大缩短了办案周期。在一起复杂的跨国犯罪案件中,我们利用大数据分析软件,成功地在短时间内找到了犯罪嫌疑人的藏身地,避免了更多的损失和危害。
第四,大数据办案需要保证数据的安全和隐私。在大数据办案中,我们接触到了大量的个人和敏感信息。因此,保护数据的安全和隐私是至关重要的。我们应该建立完善的数据保护机制和隐私保护法规,加强与数据提供方的合作,确保数据的合法取得和合规使用。同时,我们也需要加强自身的数据安全能力,采取各种技术手段防止数据泄露和滥用。
最后,大数据办案需要人与技术的结合。虽然大数据技术可以提高办案的效率和精确度,但技术本身并不能代替人的判断和决策。在大数据办案过程中,我们仍然需要专业的办案人员进行数据分析和判断。只有人与技术的结合,才能更好地应对犯罪挑战。
总而言之,大数据办案对于提高办案的效率和精确度具有重要意义。通过合理利用大数据技术,我们能够获取更广阔的信息来源,提高犯罪分析的精准度,加快办案的速度,并确保数据的安全和隐私。然而,我们也应该在办案过程中充分发挥人的主观能动性,不断探索和总结办案的经验和规律。只有深入理解和合理运用大数据办案技术,才能更好地维护社会秩序和人民生命财产安全。
大数据心得体会篇十三
随着信息技术的迅猛发展,大数据已然成为了这个时代的新宠。大数据作为一种时尚,越来越多的学生选择了学习与研究这一领域。在大数据学习的过程中,我深刻体会到了大数据技术的魅力和应用的广泛性。以下是我对大数据学习的心得体会。
首先,大数据的学习需要扎实的数学基础。大数据技术的核心是数据分析和数据挖掘,而这两项技术离不开数学的支撑。在大数据学习的过程中,我意识到了数学基础的重要性。数学为我们提供了强大的工具和思维方式,使得我们能够更加深入地理解和掌握大数据技术。因此,在学习大数据的过程中,我努力提升自己的数学水平,加强对概率论、线性代数等数学知识的学习和理解,以便更好地应用到大数据技术中。
其次,大数据学习需要具备良好的编程能力。大数据技术的实现离不开编程语言的支持,而对于学生而言,掌握一门或多门编程语言是必不可少的。在大数据学习的过程中,编程成为了一种常见的操作。学生需要运用编程技术,对数据进行清洗、整理和分析。因此,在学习大数据的过程中,我积极提高自己的编程能力,学习了Python、R、Java等编程语言,并掌握了它们在大数据处理和分析中的应用。
再次,大数据学习需要不断提高自己的数据分析能力。因为在大数据时代,数据是价值的源泉,只有通过对数据的深入分析,才能挖掘出其中的潜在价值。在大数据学习的过程中,我不断提高自己的数据分析能力,学习了数据清洗、数据可视化、模型构建等相关技术。通过对实际数据的分析,我逐渐掌握了数据分析的方法和技巧,能够通过对各种数据进行分析,提取出其中的规律和价值,并为决策提供有力的支持。
最后,大数据学习需要拥有创新思维和团队合作能力。大数据技术总是在不断创新,对学生而言,掌握创新思维和团队合作能力是必不可少的。在大数据学习的过程中,我积极培养自己的创新思维能力,探索新的方法和思路,不断改进和创新。同时,大数据学习也需要与他人进行团队合作,通过与团队成员的合作,共同完成各种大数据项目。通过与他人的交流和协作,我学会了倾听和尊重他人的意见,也更深刻地理解到团队合作所带来的价值。
综上所述,大数据的学习是一项综合能力的培养过程。学生需要具备扎实的数学基础、良好的编程能力、优秀的数据分析能力,同时还要拥有创新思维和团队合作能力。通过大数据学习,我不仅深入了解了大数据技术的魅力和应用的广泛性,还培养了自己的综合素质。我相信,随着大数据技术的不断发展和应用,大数据学习将会为我打开更加广阔的职业发展道路。