分解质因数教学设计(热门20篇)
人际关系是指个人与他人之间相互联系和互动的关系,良好的人际关系对个人的成长和发展非常重要。在写总结的过程中,我们应该尽量避免重复和冗长的叙述。以下是小编为大家收集的总结范文,希望能给大家提供一些启示和参考。
分解质因数教学设计篇一
苏教版义务教育教科书数学》五年级下册第38页例7、例8和练一练你知道吗,第39~40页练习六第4~8题和你知道吗。
教学目标:
1、使学生认识质因数,知道合数能写成质因数相乘的形式,能把合数分解质因数;了解可以用短除法分解质因数。
2、使学生经历探索分解质因数的过程,理解分解质因数的方法,掌握分解质因数的技能,发展分析、推理等思维能力,进一步提升数感。
3、使学生主动参加探究活动,在探索分解质因数的过程中获得成功,相信自己能学会数学,产生学好数学的信心。
教学重点:
教学难点:
教学准备:
小黑板。
教学过程:
1、写出算式。
引导:在这些算式中,哪些数是5的因数?哪些数是28的因数?5和28的这几个因数中,分别有哪些是质数?同桌互相说一说。
交流:能把你们的意见和大家分享吗?
明确:在积是5的乘法算式中,1和5是5的因数,其中5是质数;在积是28的算式中,1和28、2和14,4和7都是28的因数,其中2和7是质数。像这样一个数的因数是质数,这个因数就是它的质因数。(板书:质因数一个数里是质数的因数)。
3、强化认识。
强调:一个数的.质因数要符合两个条件:它是这个数的因数;它又是质数。这时它就是这个数的质因数。比如5是5的因数,又是质数,所以5是5的质因数;2是28的因数,又是质数,所以2是28的质因数。
4、做练习六第4题。让学生阅读习题,独立思考。
分解质因数教学设计篇二
初中数学课堂教学“以学生为主”的思考《因式分解》一节课的反思。
素质教育背景下的数学课堂教学要以学生为主体,从学生的实际情况出发,关注、关心学生的成长,创设良好的课堂学习氛围,激发学生的学习兴趣,教会学生学会学习,学会思考,使学生成为学习的主人。学生是变化的,课堂教学也是变化无穷的,而我们老师在课堂上的角色如何充当,如何处理突发问题,下面以《因式分解》一节课的反思谈谈“以学生为主”自己的一些感悟:
这是《因式分解》的第一节课,内容为因式分解的概念和用提取公因式进行分解因式,这一节课的教学目的是让学生掌握因式分解的概念和学会用提公因式法进行因式分解,在学生对因式分解概念有了初步的了解后,我例举了5a+5b,5a-20b,5am+5bm,4am2+8bm,5am3-25bm2等进行因式分解,一直例举了5a(x+y)+5b(x+y),a(x-y)+b(x-y),到这里学生还勉强接受,再例举下去,对于a(x-y)+b(y-x)与a(x-y)2-b(y-x)2等就模糊了,这连续的例举让学生们有点招架不住了。自己认为这样做感觉不错,但课后我认真总结与反思这一节课,觉得有以下不足:
一。“以学生为主,老师为导”的理念。
落实得不够。特别是在老师出题这一环节上,我想在学生自己自学理解了公因式后,应让学生自己探究,将全班分为若干个小组,在各个小组中要求学生自己编出能用提公因式法分解的题目,再根据学生所编的题目让别的同学说出公因式,分解因式,然后各小组选出最有代表的一题参加小组竞赛活动,看看哪个小组出的题能难倒对方。我想这样做既改变了教的方式,又能促进学生学习,变被动学习为主动学习,不但增加学生学习的兴趣,而且培养学生的竞争能力,这样学生学习才不会感到枯燥,学习才有味。
二。这节课我对学生的实际情况研究不够,应针对学生进行备课。对我们农村学校的学生,他们学习的积极性不高,基础不是很好,在刚刚接触因式分解这个概念后,学生还理解不够,基础也不够扎实,对于公因式是单项式的容易接受,但提出了多项式是公因式的分解,对于部分的学生来说是有点接受不了,所以这节课的效果不是很好。我想应在课前根据班级、学生的实际情况进行备课,从学生的学习接受知识和乐于学习的角度去备好每一节课。
三。课堂上不能“过于求全”。我们总认为每一节课都要按一定的步骤和程序进行,这样才觉得完美,其实不然,关键是如何让学生更好的学会每一个知识点,老师讲清每一个知识点,而一节课的时间是有限的,我们再根据学生、课堂的实际情况去处理好问题与时间,这节课完成不了的内容下节课再讲,可以让学生带着问题走出教室,让学生多思考、多动手、多动口,把学习的主动权还给学生,这也充分体现出以学生为主的思想。
我们老师应走出演讲者、唱主角的角色,成为全体学生学习的组织者、激励者、引导者、协调者和合作者。学生能自己做的事教师不要代劳,我们教师应在学生的学习的过程中,在恰当的时候给予恰当的帮助与引导,让学生在不断的探索过程中获得知识,体验获取知识的乐趣。
(作者通联:445035湖北省恩施市盛家坝民族中学)。
分解质因数教学设计篇三
用因式分解法解一元二次方程.
2.内容解析。
教材通过实际问题得到方程。
让学生思考解决方程的方法除了之前所学习过的配方法和公式法以外是否还有更简单的方法解方程接着思考为什么用这种方法可以求出方程的解从而引出本节课的教学内容.
解一元二次方程的基本策略是降次,因式分解法将一个一元二次方程转化为两个一次式的乘积为零,是解某些一元二次方程较为简便灵活的一种特殊方法.体现了降次的思想,这种思想在以后处理高次方程时也很重要.
基于以上分析,确定出本节课的教学重点:会用因式分解法解特殊的一元二次方程.
1.教学目标。
(1)了解用因式分解法解一元二次方程的概念;会用因式分解法解一元二次方程;。
(2)学会观察方程特征,选用适当方法解决一元二次方程.
2.目标解析。
(2)学生通过对比一元二次方程的结构类型,选用适当的方法合理的解方程,增强解决问题的灵活性.
学生在此之前已经学过了用配方法和公式法求一元二次方程的解,然后通过实际问题,获得一个显然可以用“提取公因式法”而达到“降次”目的的方程,从而引出因式分解法解一元二次方程,体现了从简单的、特殊的问题出发,通过逐步推广而获得复杂的、一般的问题,符合学生的认知规律.
在实际的教学中,学生在利用因式分解法解方程式往往会在因式分解上存在着一定的困难,从而不能将方程化成两个一次式乘积的形式.另外在面对一元二次方程时,缺乏对方程结构的观察,从而在方法的选择上欠佳,缺乏解决问题的灵活性,增加了计算的难度,降低了计算的准确性.为了突破这一难点,应带领学生认真观察方程的结构,对比方法的难易简便,从而选择合理的方法解决一元二次方程.
本节课的难点:学会观察方程特征,选用适当方法解决一元二次方程.
1.创设情景,引出问题。
根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?
师生活动:学生积极思考并尝试列方程,可有学生解释如何理解“落回地面”.
【设计意图】学生首先要理解实际问题背景下代数式的意义,理解落回地面的意义就是高度为零,就是表示高度的代数式的值为零,从而列出方程.在阅读并尝试回答的过程中让他们感受在生活、生产中需要用到方程,从而激发学生的求知欲.
2.观察感知,理解方法。
问题二如何求出方程的解呢?
师生活动:学生从已有的知识出发,考虑用配方法和公式法解决问题,教师再一步引导学生观察方程的结构,学生进行深入的思考,努力发现因式分解法方法解方程.
【设计意图】通过配方法和公式法的选择,更好地让学生对比感受因式分解法的简便,为本节课的教学内容做好知识上的铺垫和准备.
问题三如果,则有什么结论?对于你解方程有什么启发吗?
师生活动:学生很容易回答有或的结论.由此进一步思考如何将一元二次方程化为两个一次式的乘积.
【设计意图】通过观察,引导学生进一步思考,发现用因式分解中提取公因式法解方程更加简便,从而学生会对方法的选择有一定的理解.
问题四上述方法是是如何将一元二次方程降为一次的?
师生活动:学生通过对解决问题过程的反思,体会到通过提取公因式将一元二次方程化为了两个一次式的乘积的形式,得到两个一元一次方程,教师注重引导学生观察方程在因式分解过程中的变化,在学生总结发言的过程中适当引导.
【设计意图】让学生对比不同解法,不是用开平方降次,而是先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种节一元二次方程的方法叫做因式分解法.在反思小结的过程中,理解因式分解法的意义,从而引出本节课的教学内容.
3.例题示范,灵活运用。
例解下列方程。
(1)。
(2)。
师生活动:提问:
(1)如何求出方程(1)的解呢?说说你的方法.
(2)对比解法,说说各种解法的特点.
学生积极思考,积极回答问题,对比解法的不同.
当作一个整体,利用提取公因式的方法直接就化为两个一次式乘积为零的形式.通过问题(2)的思考讨论,让学生体会解法的利弊,注重观察方程自身的结构.
师生活动:提问:(1)方程(2)与方程(1)对比,在结构上有什么不同?
(2)谈谈方程(2)的解法.
学生观察方程(2)与方程(1)的区别,用类比划归的思想解决问题.
【设计意图】问题(2)的方程需要先进行移项,将方程化为右侧等于零的结构,然后得到一个平方差的结构,利用平方差公式将一元二次方程化为两个一次式的乘积为零的结构.
4.巩固练习,学以致用。
完成教材p14练习1,2.
【设计意图】巩固性练习,同时检验一元二次方程解法掌握情况.
5.小结提升,深化理解。
问题五(1)因式分解法的一般步骤是什么?
(2)请大家总结三种解法的联系与区别.
师生活动:学生积极思考,归纳因式分解法的一般步骤.总结各种解题方法的特点,体会各种方法的利弊,在交流的过程中加深对解一元二次方程方法的理解,教师对学生的发言给予鼓励和肯定,对于小结交流中的出现的问题及时进行引导纠正,帮助学生深入理解问题.
【设计意图】学生通过小结反思,深化对问题的理解,体会到配方法需要将方程进行配方降次,公式法需要将方程化为一般形式后利用求根公式求解;而因式分解法需要将一元二次方程化为两个一次项乘积为零的形式;另在还让学生体会到配方法和公式法适用于所有方程,但有时计算量比较大,因式分解法适用于一部分一元二次方程,但是三种方法都体现了降次的基本思想.
解下列方程。
1.
【设计意图】利用提取公因式法解方程.
2.
【设计意图】利用平方差公式解方程.
3.
【设计意图】利用因式分解法不适合的方程可选择用公式法或配方法解决.
4.
【设计意图】选用适当的方法解方程.
分解质因数教学设计篇四
1、使学生了解每一个合数,都可以写成几个质数相乘的形式。
2、掌握质因数和分解质因数的概念,学会用短除法分解质因数。
一、复习。
学生回答质数的概念,并举例说明。
二、引入新课。
1、教学例2。
把合数10、24和63分别用质因数相乘的形式表示出来。
10=2×5。
24=2×2×2×3。
63=3×3×7。
(1)一个合数可以用几个质数相乘的形式表示。
(2)一个合数可以写成几个质数相乘的形式。
(3)把合数写成质数相乘的形式叫做分解质因数。
2、区别几个概念。
(1)质数,因数,质因数,分解质因数。
(2)分解质因数,是把一个合数用质因数相乘的形式表示出来,
(3)质因数要求因数本身必须是质数。
3、教学例3。
(2)什么是短除法。
(3)练习。
(4)注意:用短除法分解质因数,除数一定要用质数,看被除数能被哪个质数,整除,就用这个质数去除,直到得出的商是质数为止。
三、巩固练习。
1、练一练。
四、总结归纳,布置作业。
我认为这节课最重要的的是:
1、让学生理解短除法的意思。
分解质因数教学设计篇五
本节的教学目标是让学生理解一元二次方程的根与二次三项式因式分解的关系,掌握公式法分解二次三项式。在教学引入中,通过二次三项式因式分解方法的探究,引导学生经历:观察思考归纳猜想论证等一系列探究过程,从而让学生领会和感悟认识问题和解决问题的一般规律:即由特殊到一般,再由一般到特殊,同时培养了的学生动手能力和观察思考和归纳小结的`能力。另一方面通过运用一元二次方程根的知识分解因式,让学生体会知识间普遍联系的数学美。
总的说,建立在对所任教的学生仔细分析和对教学大纲认真研究基础上所作的教材处理和教学预设是贴近学生实际的,经过这节的学习,学生较好的达到了教学目标的要求,较好的完成了教学任务,教学效果良好。此外,整节比较好地体现了多媒体在教学上的辅助作用,特别是实物投影仪的运用可以直观快捷地把学生的练习情况反映在全班学生面前,这些都大大提高了教学效率,增大了教学容量,取得了良好的教学效果。
但本节也有许多不足之处,如:
1、可以压缩第1部分,四道题目可以减半,这样可以节省一些时间,让堂小结更充分些。
2、作业布置这一教学环节作为重要的一环应放入堂上。
3、模仿练习的题目应该把分解好的部分乘出看是否与左边相等,做好返回检验的工作,这样更便于学生的理解。
在今后的教学中应该更好更深刻的研究教材、研究教法、研究我们的学生,备更充分、更完善些,从而更好的提高堂教学的有效性。
分解质因数教学设计篇六
培养分析观察能力,物理思维能力和科学的研究态度。
重点难点分析。
是力的合成的逆预算,是根据力的作用效果,由力的平行四边形定则将一个已知力进行分解,所以平行四边行定则依然是本节的重点,而三角形法则是在平行四边形定则的基础上得到的,熟练应用矢量的运算方法并能解决实际问题是本节的难点。
一、关于的教材分析和教法建议。
是力的合成的逆预算,是求一个已知力的两个分力。在对已知力进行分解时对两个分力的方向的确定,是根据力的作用效果进行的。在前一节力的合成学习的基础上,学生对于运算规律的掌握会比较迅速,而难在是对于如何根据力的效果去分解力,课本上列举两种情况进行分析,一个是水平面上物体受到斜向拉,一个是斜面上物体所收到的重,具有典型范例作用,教师在讲解时注意从以下方面详细分析:
1、对合力特征的描述,如例题1中的几个关键性描述语句:水平面、斜向上方、拉力,与水平方向成角,关于重力以及地面对物体的弹力、摩擦力可以暂时不必讨论,以免分散学生的注意力。
2、合力产生的分力效果,可以让学生从日常现象入手(如下图所示)。由于物体的重力,产生了两个力的效果,一是橡皮筋被拉伸,一是木杆压靠在墙面上,教师可以让学生利用铅笔、橡皮筋,用手代替墙面体会一下铅笔重力的两个分效果。
3、分力大小计算书写规范。在计算时可以提前向学生讲述一些正弦和余弦的知识。
力的正交分解是一种比较简便的求解合力的方法,它实际上是利用了的原理把力都分解到两个互相垂直的方向上,然后就变成了在同一直线上的力的合成的问题了。使计算变得简单。由于学生在初中阶段未接触到有关映射的概念,所以教师在讲解该部分内容时,首先从直角分解入手,尤其在分析斜面上静止物体的受力平衡问题时,粗略介绍正交分解的概念就可以了。
一、引入:
1、问题1:什么是分力?什么是力的合成?力的合成遵循什么定则?
2、问题2:力产生的效果是什么?
教师总结:如果几个力产生的效果跟原来的一个力产生的效果相同,这几个力就叫做原来那个力的分力。求几个力的合力叫做力的。合成;力的合成遵循力的平行四边形定则。反之,求一个已知力的分力叫做。
引出课程内容。
1、是力的合成的逆运算,也遵循力的平行四边形定则。
教师讲解:是力的合成的逆过程,所以平行四边形法则同样适用于。如果没有其它限制,对于同一条对角线,可以作出无数个不同的平行四边形(如图)。这就是说一个已知的力可以分解成无数对不同的共点力,而不像力的合成那样,一对已知力的合成只有一个确定的结果。一个力究竟该怎样分解呢?(停顿)尽管没有确定的结果,但在解决具体的物理问题时,一般都按力的作用效果来分解。下面我们便来分析两个实例。
2、按照力的作用效果来分解。
例题1:放在水平面上的物体受到一个斜向上的拉力的作用,该力与水平方向夹角为,这个力产生两个效果:水平向前拉物体,同时竖直向上提物体,因此力可以分解为沿水平方向的分力、和沿着竖直方向的分力。
例题2:放在斜面上的物体,常把它所受的重力分解为平行于斜面的分量和垂直于斜面的分量(如图),使物体下滑(故有时称为“下滑力”),使物体压紧斜面。
3、练习(学生实验):
(1)学生实验1:观察图示,分析f力的作用效果,学生可以利用手边的工具(橡皮筋、铅笔、细绳、橡皮、三角板)按图组装仪器、分组讨论力产生的效果,并作出力(细绳对铅笔的拉力)的分解示意图。
教师总结并分析:图中重物拉铅笔的力常被分解成xx和xx,压缩铅笔,拉伸橡皮筋。
(2)学生实验2,观察图示,分析力的作用效果,用橡皮筋和铅笔重复实验,对比结论是否正确。
教师总结并分析:图中重物拉铅笔的力分解成xx和xx,压缩铅笔,拉伸橡皮筋。
尽管没有确定的结果,但在解决具体的物理问题时,一般都按力的作用效果来分解。
4、课堂小结。
分解质因数教学设计篇七
1、使学生认识质因数,知道合数能写成质因数相乘的形式,能把合数分解质因数;了解可以用短除法分解质因数。
2、使学生经历探索分解质因数的过程,理解分解质因数的方法,掌握分解质因数的技能,发展分析、推理等思维能力,进一步提升数感。
3、使学生主动参加探究活动,在探索分解质因数的过程中获得成功,相信自己能学会数学,产生学好数学的信心。
一、练习导入。
1.口算。
0.16×5=。
0.7×0.01=。
0.4×0.5=。
53×2=。
1.25×8=。
2.37+6.3=。
2.下面的数中,哪些是合数,哪些是质数。
1、13、24、29、41、57、63、79、87。
合数有:
质数有:
3.判断:
(1)任何一个自然数,不是质数就是合数。()。
(2)偶数都是合数,奇数都是质数。()。
(3)2是偶数也是合数。()。
(4)1是最小的自然数,也是最小的质数。()。
(5)除2以外,所有的偶数都是合数。()。
1.写出算式。
要求:你能把5和28分别写成两个数相乘的形式吗?自己写一写。
交流:你是怎样写的?(板书:5=1×528=1×2828=2×1428=4×7)。
2.认识质因数。
引导:在这些算式中,哪些数是5的因数?哪些数是28的因数?5和28的这几个因数中,分别有哪些是质数?同桌互相说一说。
交流:能把你们的意见和大家分享吗?
明确:在积是5的乘法算式中,1和5是5的因数,其中5是质数;在积是28的算式中,1和28、2和14,4和7都是28的因数,其中2和7是质数。像这样一个数的因数是质数,这个因数就是它的质因数。(板书:质因数——一个数里是质数的因数)。
3.强化认识。
1.引入课题。
谈话:我们认识了质因数,就可以学习新的知识,学会新的本领,这就是分解质因数。(板书课题)。
出示例题,明确把30用质数相乘的形式表示出来。
让学生在课本上尝试表示,把30写成质数相乘的结果。
交流:把30写成质数相乘的形式可以怎样做?(根据交流板书,写成质数相乘的形式)。
说明:把30写成质数相乘的形式,先写成质数2乘15;15是合数,把它写成质数3乘5,这时乘数全部是质数;就把30写成这几个质数相乘的形式:30=2×3×5。可见,要写成质数相乘的形式,可以把合数先写成质数和另一个数相乘的形式;如果另一个数是合数,再把这个合数写成质数和另一个数相乘的形式,直到分解成全部是质数相乘为止。像这样把一个合数用质数相乘的形式表示出来,叫作分解质因数。
(板书:分解质因数——把合数用质数相乘的形式表示)。
3.总结。
我们在上面是用逐次相乘的形式分解质因数的,人们在分解质因数时,经常用短除法。看看你能不能明白短除法是怎样分解质因数的。
交流:能说说短除法是怎样分解质因数的吗?
结合交流说明方法:每次用质数做除数,除到商是质数为止,再把每个除数和商写成连乘的形式。
说明:我们上面分解时,每次用质数乘一个数,直到所有乘数都是质数为止、,和用短除法的思考方法是相同的,只是用短除法分解质因数过程简便一些。
4.尝试短除法。
引导:你能用短除法把42分解质因数吗?
学生尝试,指名板演。
交流:能说说这里用短除法怎样分解质因数的吗?
说明:用42每次除以质数,除到商是质数为止,把42写成除数和商连乘的形式。
四、练习巩固。
612。
交流:6和12分解成哪些质数相乘的形式?(板书结果)你是怎样想的?
指出:6分解质因数,可以先想质因数2,写成2×3,全部是质数,于是得到6=2×3;12分解质因数,也是先想质因数2,写成2×6,因为6还不是质数,再分解为12=2×2×3,已经全部是质数,得出12=2×2×3。
2、做一做。
先圈一圈,交流哪些是合数,再让学生独立把9和16分解质因数。
检查板演题分解质因数的过程,确认结果。
五、拓展视野。
学生阅读后,围绕上述问题交流,说说知道了些什么;教师适当说明。
六、课堂小结。
教学反思:本节课体现了教师是学生学习的促进者,教师在教学过程中引导学生思考,为学生解答疑难问题,为学生总结知识点,教师应该放手让学生多想,从学习中感悟方法。
分解质因数教学设计篇八
因式分解这部分的内容是八年级数学第一学期重难点,因因式分解与乘法公式是相反方向的变形,故结合着单项式*多项式的整式乘法讲授什么是因式分解及提公因式法。
提取公因式进行因式分解关键在于正确找到公因式。如何找公因式?
1、系数部分:各项系数的最大公约数作为公因式的系数;
2、字母部分:相同字母作为公因式的字母部分;
3、相同字母指数部分:各项中相同字母指数中最低的一个作为相同字母的指数。
找到公因式后,第一步,把各项都转化成公因式与某个因式积的形式。
第二步,提出公因式,且把各项剩余的部分用括号括起来作为一项。
学生课堂板演中暴露的问题主要有:
1、找不全公因式,或直接不会找公因式。
2、提出公因式后,不知道接下来如何去做。
我总结的原因主要有:
1、思想上不重视,只是将它作为一个简单的内容来看,听起来觉着会了,做起来就不容易了。
2、最好结合例子说明提取公因式进行因式分解的步骤。
3、拿到题目先观察各项特点,再动笔写。
将本文的word文档下载到电脑,方便收藏和打印。
分解质因数教学设计篇九
2.内容解析。
教材通过实际问题得到方程,让学生思考解决方程的方法除了之前所学习过的配方法和公式法以外,是否还有更简单的方法解方程,接着思考为什么用这种方法可以求出方程的解,从而引出本节课的教学内容.解一元二次方程的基本策略是降次,因式分解法将一个一元二次方程转化为两个一次式的乘积为零,是解某些一元二次方程较为简便灵活的一种特殊方法.体现了降次的思想,这种思想在以后处理高次方程时也很重要。
基于以上分析,确定出本节课的教学重点:会用因式分解法解特殊的一元二次方程.
二、目标和目标解析。
1.教学目标。
(1)了解用因式分解法解一元二次方程的概念;会用因式分解法解一元二次方程;。
(2)学会观察方程特征,选用适当方法解决一元二次方程.2.目标解析。
(2)学生通过对比一元二次方程的结构类型,选用适当的方法合理的解方程,增强解决问题的灵活性.
三、教学问题诊断分析。
学生在此之前已经学过了用配方法和公式法求一元二次方程的解,然后通过实际问题,获得一个显然可以用“提取公因式法”而达到“降次”目的的方程,从而引出因式分解法解一元二次方程,体现了从简单的、特殊的问题出发,通过逐步推广而获得复杂的、一般的问题,符合学生的认知规律.
在实际的教学中,学生在利用因式分解法解方程式往往会在因式分解上存在着一定的困难,从而不能将方程化成两个一次式乘积的形式.另外在面对一元二次方程时,缺乏对方程结构的观察,从而在方法的选择上欠佳,缺乏解决问题的灵活性,增加了计算的难度,降低了计算的准确性.为了突破这一难点,应带领学生认真观察方程的结构,对比方法的难易简便,从而选择合理的方法解决一元二次方程.本节课的难点:学会观察方程特征,选用适当方法解决一元二次方程.
1.创设情景,引出问题。
根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?
师生活动:学生积极思考并尝试列方程,可有学生解释如何理解“落回地面”.
【设计意图】学生首先要理解实际问题背景下代数式的意义,理解落回地面的意义就是高度为零,就是表示高度的代数式的值为零,从而列出方程.在阅读并尝试回答的过程中让他们感受在生活、生产中需要用到方程,从而激发学生的`求知欲.
2.观察感知,理解方法。
问题二如何求出方程的解呢?
师生活动:学生从已有的知识出发,考虑用配方法和公式法解决问题,教师再一步引导学生观察方程的结构,学生进行深入的思考,努力发现因式分解法方法解方程。
【设计意图】通过配方法和公式法的选择,更好地让学生对比感受因式分解法的简便,为本节课的教学内容做好知识上的铺垫和准备。
问题三如果,则有什么结论?对于你解方程有什么启发吗?师生活动:学生很容易回答有或的结论.由此进一步思考如何将一元二次方程化为两个一次式的乘积.
【设计意图】通过观察,引导学生进一步思考,发现用因式分解中提取公因式法解方程更加简便,从而学生会对方法的选择有一定的理解。
问题四上述方法是是如何将一元二次方程降为一次的?师生活动:学生通过对解决问题过程的反思,体会到通过提取公因式将一元二次方程化为了两个一次式的乘积的形式,得到两个一元一次方程,教师注重引导学生观察方程在因式分解过程中的变化,在学生总结发言的过程中适当引导。
【设计意图】让学生对比不同解法,不是用开平方降次,而是先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种节一元二次方程的方法叫做因式分解法.在反思小结的过程中,理解因式分解法的意义,从而引出本节课的教学内容。
3.例题示范,灵活运用。
例解下列方程。
分解质因数教学设计篇十
1、使学生了解每一个合数,都可以写成几个质数相乘的形式。
2、掌握质因数和分解质因数的概念,学会用短除法分解质因数。
一、复习。
学生回答质数的概念,并举例说明。
二、引入新课。
1、教学例2。
把合数10、24和63分别用质因数相乘的形式表示出来。
10=2×524=2×2×2×363=3×3×7。
(1)一个合数可以用几个质数相乘的形式表示。
(2)一个合数可以写成几个质数相乘的形式,其中每个。
(3)把合数写成质数相乘的形式叫做分解质因数。
2、区别几个概念。
(2)分解质因数,是把一个合数用质因数相乘的形式表示出来,
(3)质因数要求因数本身必须是质数。
3、教学例3。
(2)什么是短除法。
(3)练习。
(4)注意:用短除法分解质因数,除数一定要用质数,看被除数能被哪个质数,整除,就用这个质数去除,直到得出的商是质数为止。
三、巩固练习。
1、练一练。
四、总结归纳,布置作业。
反思:我认为这节课最重要的的.是:
1、让学生理解短除法的意思。
分解质因数教学设计篇十一
2.培养学生的观察能力、比较能力、分类能力和归纳概括能力.。
教具、学具准备:教师准备视频展示台,学生准备1~12的数字卡片,画圈的作业纸.。
教学过程。
一、学习准备.。
教师:什么是约数?(学生回答略)写出下面这些数的所有约数:
15182026344155。
学生写完后,将一学生的作业在视频展示台上展示出来,集体订正.。
教师:请同学们拿出1~12的数字卡片,把这些卡片分成两堆,可以怎样分?
二、导入新课。
分解质因数教学设计篇十二
本节课的教学目标有三点:
1、在自主写算式、小组合作验证等学习活动中,经历认识质因数、分解质因数的过程。
2、知道质因数,会把一个数分解质因数。
3、在小组合作中积极与他人交流,体验合作学习的收获和乐趣。
认识质因数、会分解质因数是本节课知识技能目标的重点和难点。而自主探究、合作交流恰恰是突破难点的有效手段,在突破难点的过程中有效地落实过程性目标和情感目标。
在认识质因数的教学中,利用课前学生猜老师的年龄、身高、体重的数据,选取其中具有代表性的数据开展研究。如先研究老师的年龄(36),通过学生自主写算式、比较、分析、交流得出36=2×2×3×3是与众不同的,从而引出“质因数”的概念,而此时学生对质因数的概念并不是真正了解。因为概念的形成大致要经过以下几个过程:展示大量的感性材料——分析、比较、综合、抽象——得出一类事物的本质属性——初步形成概念的表象——试误辨析充分理解概念的内涵和外延——形成概念——付诸实践应用——加深概念的理解。而上述过程中学生只是初步形成了概念的表象。所以,此时,充分利用黑板上板书的大量数据,让学上按要求把他们写成几个质数相乘的形式,使学生在实际的操作过程中、在自我试误辨析中、在同学间的交流中形成质因数的概念。在质因数概念的形成过程中,对分解质因数的基本方法也已基本形成。下面关于分解质因数的教学主要是指导学生书写方法和格式方面的问题了。水到渠成,迎刃而解。
将本文的word文档下载到电脑,方便收藏和打印。
分解质因数教学设计篇十三
通过实验理解力的分解并用力的分解分析日常生活中的问题。
(1)理解分力的概念,清楚分解是合成的逆运算。
(2)会用平行四边形定则进行作图并计算。
(3)掌握根据力的效果进行分解的方法和正交分解法。
(4)能应用力的分解分析生产生活中的问题。
(1)培养学生参与课堂活动的热情。
(2)培养学生将所学知识应用与生产实践的意识和勇气。
加强师生互动,以学生为中心老师做好引导工作,培养学生自主学习能力,注重提高学生实践、观察、分析、思考物理问题的能力。
2:掌握运用平行四边形定则进行力的分解。
力分解时如何判断力的作用效果及确定两分力的方向。
多媒体课件、展示台、投影仪、细绳套、橡皮筋若干等。
一课时。
(在学生满脸惊讶与好奇之中)。
教师:同学们想知道为何会出现这种现象吗?待认真学完这节课后你们就可以自。
己揭开这个谜了。
[演示实验]将钩码挂在橡皮筋的中点,将橡皮筋的两端a、b慢慢靠拢,再将a、
b两端慢慢分开。
教师:观察此过程中橡皮筋的长度,你有什么发现?
学生:橡皮筋的长度在变。靠拢时长度变小,分开时长度慢慢变长。
教师:橡皮筋的长度变化说明橡皮筋的拉力大小,这两个橡皮筋的拉力可以等效。
于一个合力,则这两个橡皮筋的拉力叫分力,在橡皮筋慢慢靠拢和分开的。
过程中,这两个分力变了吗?这两个分力的合力变了吗?
学生:合力相同,但分力不变。
教师引入:已知分力求合力叫做力的合成。力的合成遵循平行四边形定则;已知合力求分力叫力的分解;力的分解是力的合成的逆运算,力的分解是同样遵守平行四边形法则。
(幻灯片展示演示实验中力的分解。)。
总结:有相同对角线的平行四边形有无数个,也就是说同一个力可以分解为无数对大小方向不同的分力。
教师:那么在实际应用中,是否可以随意分解一个力呢?
学生:应该不行。
分解质因数教学设计篇十四
本节课的教学目标有三点:
1、在自主写算式、小组合作验证等学习活动中,经历认识质因数、分解质因数的过程。
3、在小组合作中积极与他人交流,体验合作学习的收获和乐趣。
认识质因数、会分解质因数是本节课知识技能目标的重点和难点。而自主探究、合作交流恰恰是突破难点的有效手段,在突破难点的过程中有效地落实过程性目标和情感目标。
在认识质因数的教学中,利用课前学生猜老师的年龄、身高、体重的数据,选取其中具有代表性的数据开展研究。如先研究老师的年龄(36),通过学生自主写算式、比较、分析、交流得出36=2×2×3×3是与众不同的,从而引出“质因数”的概念,而此时学生对质因数的概念并不是真正了解。因为概念的形成大致要经过以下几个过程:展示大量的感性材料——分析、比较、综合、抽象——得出一类事物的本质属性——初步形成概念的表象——试误辨析充分理解概念的内涵和外延——形成概念——付诸实践应用——加深概念的理解。而上述过程中学生只是初步形成了概念的表象。所以,此时,充分利用黑板上板书的大量数据,让学上按要求把他们写成几个质数相乘的形式,使学生在实际的`操作过程中、在自我试误辨析中、在同学间的交流中形成质因数的概念。在质因数概念的形成过程中,对分解质因数的基本方法也已基本形成。下面关于分解质因数的教学主要是指导学生书写方法和格式方面的问题了。水到渠成,迎刃而解。
分解质因数教学设计篇十五
数学课堂教学应努力营造浓厚的学习氛围,唤起学生的主体意识,培养学生的实践能力,激发学生的主体意识,让学生成为课堂的主人。
最近我上了“质数、合数和分解质因数”的练习课,这一课的主要任务是让学生通过练习,进一步掌握质因数的概念,进一步学会分解质因数的'方法。但课前我发现课中还有一精彩处,那就是让学生研究一个数的质因数与它的约数之间的关系,及两个数的公有的质因数之积与它们两数的关系。我知道,放手让学生去探究对提高学生的学习兴趣是有益而无害的,而且能让学生探究、发现这些关系比学生单纯掌握几个概念,模仿一些解题方法更为重要,但另一方面也得舍得腾出一些本可用于“多练”的时间让学生去观察、研究。事实证明,我的这一设计是成功的。在这样的活动中,学生的多种感官协同参与学习。不仅能有效地完成学习任务,还能提高观察、操作、分析、语言表达等多种能力。相信,经过长期的训练,定能使我们的教学达到事半功倍的效果。
分解质因数教学设计篇十六
在教学分解质因数时,如何让孩子自己建构出短除法?一直困扰着我,构思了几天,一直没有好办法。
把一个合数分解质因数,大部分学生都能通过图表的方式进行分解,但怎样把图表转化为短除呢?带着这么一个旋而未解的疑问走上了讲台。心想大不了,直接告诉学生得了。
果然,学生很快能用图表的形式把合数分解质因数,当我想把短除法教给学生的时候,一个学生突然说,老师这种方法不好,太麻烦了!这么一说,得到了全班同学的认可。我心想,既然他们认为不简单,干脆,就算他们自己讨论不出来,一节课损失也不大,于是我说:“既然你们认为不简单,能不能想出一个计算的方法,把合数的质因数求出来呢?”全班学生积极的行动起来。(在小组交流的时候,我适当的给学生一定的启示:计算质因数跟哪一种计算比较接近呢?)。
讨论了十分钟,学生真把方法想出来了。
大部分小组采取了两步除法,个别小组把两个除法算式合并成了一个,讨论之后全班同学都认可了第二种方法,在统一意见之后,我问:“同学们你们发现什么问题了吗?”(由于这种算式是从下往上做,由于算式的长度不是预知的,所以往往会出现不知道从本子的什么位置做起的问题,少了,纸张不够,多了就会浪费)孩子们都为他们的发现高兴,根本不会去思考他们的方法有什么缺点,我没有直接点出问题,而是让学生把64分解质因数,孩子们高兴的拿起笔来就做。大部分孩子是擦了做,做了擦,问题发现了。“老师,这样做不行!”“为什么不行呢”“太长了,写不开。”“怎么办?”这时有个学生提供了一条建议:“老师,我们反过来做行不行?”“试试看!”结果孩子们陆续讨论出第三、四种结果。有个孩子还说道:“这样做才舒服。”“为什么舒服了呢?”“它跟我们写字的顺序一样。”
问题解决了,没想到这么简单,赶紧回到办公室,把它记下来,心上石头终于落地了!
分解质因数教学设计篇十七
(1)使学生了解每一个合数,都可以写成几个素数相乘的形式。
(2)掌握质因数和分解质因数的概念,学会用短除法分解质因数。
备注。
一、复习准备。
1、什么叫做素数?什么叫做合数?各举例说明。
2、20以内的素数有哪几个?为什么”1“既不是素数又不是合数?
二、教学新识。
1、教学例2。
(1)10是由哪几个素数相乘得到的?
(2)教学归纳:10是由2和5两个素数乘得到的,板书:10=2×5。
学生答后板书:24=2×2×2×3;63=3×3×7。
(4)把以上3个合数,分别写成了几个素数相乘的形成,是不是每一个合数都可以写成几个相乘的形式呢?再举例说明。
(5):从以上的合数可以看出,每个合数都可以写成几个素数相乘的形式。出示:“一个合数可以写成几个素数相乘的形式,其中一个素数都叫做这个合数的()。把一个合数用质因数相乘的形式表示出来,叫做()。”引导学生看书作答。(板书:“质因数”、“分解质因数”并举例例2说明)。
2、练一练。
(1)p44第1题,同桌讨论后口答反馈,并说出打x的理由。教师:“2和5,都是素数,但不能叫质因数。因为2和5都是10、20......这些合数的素数,离开这些合数,就不能孤立地叫质因数。4和5都是20的因数,但4和5不都是20的质因数。”
(2)p45第2题,提问:“把下面各数分解质因数”是什么意思?学生答后独立作业在书上之后再评讲。
如果:“51=1×51”对吗?为什么?
“42=3×14”对吗?为什么?
我们已经懂得了什么叫做分解质因数。我们通常用短除法来分解质因。
教学过程。
备注。
数,如何用短除法进行分解呢?
3、教学例3。
(1)15可用哪几种素数相乘的形式来表示?
教师说:“用短除法来分解,先用一个能整除15的素数3除。(板书:3),用3去除得出的商是几?(板书:5),商5是素数还是合数?得出的商是素数,就不要再除下去了,就把除数和商写成相乘的形式。板书:15=3×5。这就是用短除法把15分解质因数。
(2)”42“怎样用短除法进行分解呢?学生答后,教师强调先用一个最小的能整除这个合数的素数去除,板书。
商21是素数还是合数?商21是合数还不是素数怎么办”(继续分解?照上面的方法,继续除下去。)第二次除时,把21当被除数,除数应该是几?为什么?(除数必须整除这个合数的素数,其中最小,通常用3作除数。)学生答后,板书。
(4)学生看书上概括用短除法分解质因数的结语。要求分清三层意思,划出没层中的关键词语。
三、巩固练习。
365475123。
(1)口答:
6=21=22=12=。
(2)共同练习:
25=66=16=91=。
3、课内作业:书上p45第4题。
四、教学。
通过这节课的学习,你懂得了什么?学会了什么?
五、作业《作业本》。
对于分解质因数的形式,学生较易掌握,但在实际分解过程中,往往分解得不彻底,最后的因数不都是质数。强调质因数既是质数又是因数。
在教学“分解质因数”这一课时,反馈阶段“把24分解质因数”,我请做得快的同学上黑板板书,板书情况如下:书写非常端正工整,答题步骤及答案无可挑剔。集体订正时,我表扬了这位同学做题迅速、正确、工整,同时也委婉的指出,今后书写时最好按从左到右的顺序写。这时,一个同学突然举手,我让他说说有什么问题,他大声说:“老师,我不同意你的看法,我认为从右往左写是一种创新,你不是经常要我们多创新,常创新吗?”我怔了一下,然后微笑着肯定了他敢于发表自己不同的见解及自己的想法,同时引导大家来讨论,这算不算是一种创新?许多同学都踊跃的发表自己的看法。
分解质因数教学设计篇十八
分解质因数是五年级第三单元倍数和因数中的内容,是在因数和倍数以及能被2、5、3整除的数的特征的基础上进行教学的。分解质因数是求最大公约数、最小公倍数以及约分、通分的基础。在整个教学过程中,我感觉设计还算流畅,但在个别环节的处理上还是存在一些问题的。课后,经过听课教师的评议及个人总结,感觉有以下几点值得反思:
通过学生自主探究将60写成几个因数相乘的形式,这一环节后,让学生观察式子发现其中的特殊性,这些都引导的较为恰到好处。可之后就匆忙地揭示了质因数的概念,开始进行下一环节了。这样一来学生对质因数的概念只是理论上的了解,而没有实质上的应用。所以,应将揭示质因数概念环节放到举例完成后再进行,让学生观察所有的式子,再说说这些式子有什么特点。学生会说道:所有的式子中因数都是质数。此时再揭示质因数的概念,同时加入让学生找质因数的环节。在此,教师可先以“60”为例找出其质因数,说明2、2、3、5都是60的质因数,其中虽然“2”出现了两次,但不能只说一个。之后,再将举例环节中学生所举出的一些例子做为训练点,再让学生去找每个合数的质因数,这样学生对质因数的理解就更扎实到位了。
在小组合作举例说明时,本想给学生充足的时间去举例验证,让学生在实践中自己找到答案。由于所要求每组举例的个数有些多,班内学生又比较多,这样一来,无论是小组讨论环节还是汇报环节都耽误了不少时间,以至于后面的环节有些拥挤,甚而没有了更多练习的时间。在此应要求举3个例子即可,这样还可以均出时间给更多小组汇报的机会,以此来充实例子进行总结,效果会更好。
在小组合作举例环节,学生在汇报时式子中出现了合数,可教师却没有及时的发现,失去了一次实例教学的机会。如果当时能够及时发现,引导学生讨论,相信学生会对分解质因数的概念有更进一步的理解,也会对学生后期的应用练习起到警示的作用,就不会在后续的练习中屡屡出现有合数的现象了。
在教学短除法时,由于短除法是学生新接触的内容,而且只是一种特定方法而已,在未接触时学生是没有探究能力的,所以采取先由教师利用最简单的例子介绍讲解方法,再由学生探究难点的教学方法来进行。教师先以“6”为例,讲解短除法,只除一步即可,之后写成式子。再举出“18”为例,让学生按刚刚所讲的方法来叙述,学生在叙述完这一步之后就出现了问题“商是9,是否停止?”让学生讨论明白:9是一个合数,还要象上面这样继续除下去,直到商是质数为止。这样,学生对短除理解掌握就更深刻了。接着再紧跟练习,进行尝试训练,由此了解学生掌握情况,再针对所出现的问题进行补充教学。这样,既体现了学生学习的主体作用,又体现了教师的主导作用;既突破了方法教学的难点,又让学生很自然的掌握了方法,效果较好。
总体来说,这节课在整个教学设计上环节清晰紧凑,教师在课堂上语言简练,评价到们,引导适度,但在重难点突破上有些急于求成,希望自己在今后的教学中,能够扬长避短,逐步提高自己的教学水平,实现有效、高效地教学,让自己的教学能力再上新台阶。
分解质因数教学设计篇十九
(课标人教实验教科书24页的学习内容)。
一、教学目标。
理解质因数和分解质因数的意义,并会用一种方法或自己喜欢的方法分解质因数。
二、教学重点、难点。
难点:准确分解。
三、预计教学时间:1节。
四、教学活动。
(一)基础训练。
【口答】。
什么是质数?什么是合数?1是什么?
【解答题】。
下面各数是质数还是合数?把你判断的填在指定的圈里。
(二)新知学习。
引入:今天,我们学习合数与质数之间关系。
【典型例题】。
合数。
1.看合数21。
(1)有多少个因数?并写出:1、3、7、21。
(2)回到今天讨论的问题是合数与质数之间的关系,排除1和它本身21,即121=21。
(3)只剩下研究37=21的问题,表示成21=37。那么,3和7叫做21的质因数。
(4)质因数与因数的分别?(也就是1和合数做质因数,也就是分解质因数中不能有1和合数;什么数都可以做因数)。
2.研究讨论合数的分解方法。
(1)“树枝”图式分解法。
【小结】(分解质因数时,你认为应注意什么?)。
(三)巩固练习(10题)。
【基础练习】。
1.判断下面的横式哪些是分解质因数?哪些不是?理由?
24=2266=12360=2235。
2.把分解不正确的改正过来。
【提高练习】。
【拓展练习】。
1515=。
1818=。
2020=。
(五)教学效果评价(小测题2—3题)。
分解质因数教学设计篇二十
2、掌握质因数和分解质因数的概念,学会用短除法分解质因数。
一、复习。
学生回答质数的概念,并举例说明。
二、引入新课。
1、教学例2。
把合数10、24和63分别用质因数相乘的形式表示出来。
10=2×524=2×2×2×363=3×3×7。
(1)一个合数可以用几个质数相乘的形式表示。
(2)一个合数可以写成几个质数相乘的形式,其中每个。
(3)把合数写成质数相乘的形式叫做分解质因数。
2、区别几个概念。
(2)分解质因数,是把一个合数用质因数相乘的形式表示出来,
(3)质因数要求因数本身必须是质数。
3、教学例3。
(2)什么是短除法。
(3)练习。
(4)注意:用短除法分解质因数,除数一定要用质数,看被除数能被哪个质数,整除,就用这个质数去除,直到得出的商是质数为止。
三、巩固练习。
1、练一练。
四、总结归纳,布置作业。
反思:我认为这节课最重要的的'是:
1、让学生理解短除法的意思。