相似三角形的判定教案(优质17篇)
教案的编写需要考虑到学生的特点、教材的内容、教学环境等因素。编写完美的教案需要教师全面了解教学内容和教学要求。编写一份好的教案需要结合学科特点和教学理念,以下是小编为大家整理的一些优秀教案范文。
相似三角形的判定教案篇一
本章有以下几个主要内容:
一、比例线段。
(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。
(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。简称比例线段。
(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项。
(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么][这种分割叫做黄金分割。这个点叫做黄金分割点。
顶角是36度的等腰三角形叫做黄金三角形。
宽和长的比等于黄金数的矩形叫做黄金矩形。
(5)比例的性质。
基本性质:内项积等于外项积。(比例=====等积)。主要作用:计算。
合比性质,主要作用:比例的互相转化。
等比性质,在使用时注意成立的条件。
平行线等分线段------平行线分线段成比例--------平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例------(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似------相似三角形的判定:类比于全等三角形的判定。
1、定义:相似三角形对应角相等。
对应边成比例。
2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比。
4、相似三角形面积的比等于相似比的平方。
四、图形的位似变换。
1、几何变换:平移,旋转,轴对称,相似变换。
----2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。
----3、位似变换:两个图形不但相似,而且对应点连线过同一点的相似变换叫做位似变换。这两个图形叫做位似图形。
4、 位似变换可把图形放大或者缩小。
5、外位似(同向位似图形)位似中心在对应点连线外的位似叫外位似。这两个图形叫同向位似图形。
内位似(反向位似图形)位似中心在对应点连线上的位似叫内位似。这两个图形叫反向位似图形。
6、以原点为位似中心,相似比为k,原图形上点的坐标(x,y)则同向位似变换后对称点的坐标为(kx,ky)。
以原点为位似中心,相似比为k,原图形上点的坐标(x,y) 反向位似变换后对称点的坐标为(-kx,-ky)。
相似三角形的判定教案篇二
2.两边对应成比例,且夹角相等。
3.三边对应成比例。
4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
根据相似图形的特征来判断。(对应边成比例,对应边的夹角相等)。
(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)。
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;。
4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;。
5.对应角相等,对应边成比例的两个三角形叫做相似三角形(用定义证明)。
1.两个全等的三角形一定相似。
2.两个等腰直角三角形一定相似。(两个等腰三角形,如果顶角或底角相等,那么这两个等腰三角形相似。)。
3.两个等边三角形一定相似。
1.斜边与一条直角边对应成比例的两直角三角形相似。
2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
射影定理。
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相似三角形的判定教案篇三
1.初步掌握三组对应边的比相等的两个三角形相似的判定方法,以及两组对应边的比相等且它们的夹角相等的两个三角形相似的判定方法。
2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的'过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性。
3.能够运用三角形相似的条件解决简单的问题。
1.重点:
掌握两种判定方法,会运用两种判定方法判定两个三角形相似。
2.难点:
(1)三角形相似的条件归纳、证明;。
(2)会准确的运用两个三角形相似的条件来判定三角形是否相似。
3.难点的突破方法。
三组对应边的比相等的两个三角形相似,教科书虽然给出了证明,但不要求学生自己证明,通过教师引导、讲解证明,使学生了解证明的方法,并复习前面所学过的有关知识,加深对判定方法的理解。
(2)判定方法。
的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法。
(3)讲判定方法。
要扣住对应二字,一般最短边与最短边,最长边与最长边是对应边。
(4)判定方法。
一定要注意区别夹角相等的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中ssa条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的。
相似三角形的判定教案篇四
主要通过以下三个方面展示出学生的探究性学习:
一、尊重学生主体地位。本节课以学生的自主探索为主线,课前布置学生自己对比例线段的运用进行整理,这样不仅复习了所学知识,而且可以使学生亲身体验“实验操作-探索发现-科学论证”获得知识的过程,体验科学发现的一般规律;解决问题时,让学生自己提出探索方案,使学生的主体地位得到尊重;课后让学有余力的学生继续挖掘题目资源,用发展的.眼光看问题,从而提高学习效率,培养学生的思维能力。
二、教师主导地位的发挥。在教学中,教师是学生学习的组织者、引导者、合作者及共同研究者,要鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新。在课堂中,我着重引导学生自己小结相似三角形的性质及判定方法,同时给予肯定。在后续的例题分析中,也是通过一步步的引导,让学生自己思考、分析并得出整个解题的过程及步骤。关键时点拔,不足时补充。
三、提升学生课堂的关注点。学生体验了学习过程后,从单纯的重视知识点的记忆,复习变为有意识关注学习方法的掌握,数学思想的领悟,同时让学生关注课堂小结,进行自我体会,自我反思,在反思中成长、进步。
在《相似三角形》这一复习课中,通过学生自主探索,让学生主动学习,培养了学生积极主动的探索创新精神,学生也能掌握到了相关的知识。但是,仍有不足之处。问题的应用中,即利用相似三角形的性质或判定证明的过程中,思路仍是不够清晰,书写的过程仍是不够完整。也就是说,缺少了教师的引导分析,则学生不知向何处思考。这是大部分学生具有的情况。
相似三角形的判定教案篇五
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.。
3.进一步培养学生类比的教学思想.。
4.通过相似性质的学习,感受图形和语言的和谐美。
先学后教,达标导学。
1.教学重点:是性质定理的.应用.。
1课时。
投影仪、胶片、常用画图工具.。
[复习提问]。
[讲解新课]。
让学生类比“全等三角形的周长相等”,得出性质定理2.。
同样,让学生类比“全等三角形的面积相等”,得出命题.。
此题学生一般不会感到有困难.。
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.。
解:设原地块为,地块在甲图上为,在乙图上为.。
学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:
2.重点学习了两个性质定理的应用及注意的问题.。
教材p247中a组4、5、7.。
相似三角形的判定教案篇六
最近,我们九年级学完了《相似三角形的判定》的内容,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理”又是相似三角形这章内容的重点与难点所在。在本章教学中,主要教学目标是让学生在亲自操作、探究的过程中,获得三角形相似的判定方法;培养学生提出问题、解决问题的能力。
2013年12月10日,我在九年级二班刚好就上了《相似三角形的判定》第一课时的内容。在本节课的教学中,我是通过平行线分线段成比例定理引入教学的,先让学生画三条平行线,再画两条相交直线与其相交,从而得出得出了一些线段,并再让学生自己操作:量一量、算一算、比一比,从图形中判断,得出那些结论。整个教学过程进展较为顺利,基本完成了教学任务。
在本节课的教学中,我认为以下这几个方面做得较好:
1、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。利用三角板画平行线、相交线,通过测量对比,学生基本能全员参与,调动了学生学习的兴趣和积极性。学生更易于从图形当中得到结论,这样引入能很好的使学生体验到生活中的数学知识。通过后来练习及作业反馈、九年级四班的同学也比较容易得出了平行线分线段成比例定理这个结论,说明这种引入的方法是成功的。
二、三节课巩固深入,杜绝传统的“学生在一节课内学完一个知识点就做相应的练习,模仿套用知识而不需选择,当学完全部相似知识点进行综合练习时,容易产生混淆”的现象。本节课只学习了平行线分线段成比例定理的内容,以及由此演变而形成的“a字型”图和“x型图”从一开始就摆脱学生的依赖心理,把问题抛给学生,有效的锻炼了学生的思维,同时还利用全等三角形的识别类比相似三角形的识别,学生容易理解。
3、注意到了推理的逻辑性和严密性。教学中在结论的推导得出过程中,注意了数学符号语言的应用和书写,保证了证明的规范性和作图的合理性。这一点主要表现在“a字型”图的证明上,学生通过几分钟的短暂讨论,书写得出这个定理。在学生亲自操作、探究的过程中,获得三角形相似的第一个简单的识别方法;培养学生提出问题、解决问题的能力;从整堂课学生的表现看到,这节课基本上实现了以上目标。
本节课尽管在以上几个方面做得较为成功,但仍然有些地方值得商榷。课后,经过教研组同志的集体评课以及自我反思,认为需要从以下几个方面改进:
1、在平行线分线段成比例定理的得出过程中,更应当注意图形的一般情况,不应当以点带面。表现在如果两线相交构成的是直角梯形这种情况,而在课堂教学中,由于时间关系、学生关系,在上课作图未涉及到这种情况,这一点需要改进。
2、在证明“a字型”图的结论过程中,没有必要证明de是三角形中位线这种情况,因为它的证明方法和后面的都相同。如果这样做的话,会浪费大量的时间,导致课堂教学前松后紧。
3、有些学生操作计算的速度太慢了,没有时间等他们探索得出结论,而大多数的同学已经得出了结论。这样可能使他们不能充分理解这节课的内容。
4、教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭能力还需要提高。
总之,本节课的教学任务已基本完成,但站在更高的角度来思考,反映出我还有些急燥,在课后及联系中,应该把这种题型至少要细分为基本图形的形成、基本图形的巩固、基本图形的拓展应用三个层次,逐步推进教学,效果可能会更好。
相似三角形的判定教案篇七
掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。
探索三角形全等的条件,以及运用边边边定理画一角等于已知角
学生合作探究法、教师讲解结合谈话法等综合教学方法
黑板板书教学
阶段
导入部分
采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。
学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。
阶段
课堂教学设计
课程新授
教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。
但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的'情况。
接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。
学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。
首先引导学生对三组对应关系相等进行分类。
预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。
本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即sss,教师解释s为英文边,side的首字母。
接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。
由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。
学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。
之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。
作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。
采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。
本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。
相似三角形的判定教案篇八
比例线段在平面几何计算和证明中,应用十分广泛,相对于已学的两条线段相等关系而言,四条线段成比例关系对学生分析问题的能力、综合解题的能力要求更高。在学生学完“相似三角形”一章后,我们及时组织了两节复习课,第一节课着重复习比例线段的基本知识及基本技能,第二节课则采取“探究式教学”,培养学生的实践能力、探索能力,收到了较好的效果。
我们认为“探究式教学”注重学生自己提出问题或自己提出解决问题的方法、寻找问题解决的途径、体验解决问题的过程,从而提高解决问题的能力,逐步改变学生的学习方式。在初中数学教学中,开展探究式教学活动,既是对教师的教学观念和教学能力的挑战,也是培养学生创新意识和实践能力的重要途径。下面是这节课的过程描述及课后反思。
课的设计意图。
在数学课堂中开展探究式学习是接受性学习的补充,它有效地促进了学生学习方式的改变,学生从被动的接受性学习变为主动的探究性学习。本案例力争在以下三个方面有所体现:
1 尊重学生主体地位。
本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作—探索发现—科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。
2 教师发挥主导作用。
在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。三次恰到好处的电脑演示,向学生展示了电脑的省时、高效以及对数学实验的巨大帮助,推荐给他们运用电脑技术的学习研究方法。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。
3 提升学生课堂关注点。
学生在体验了“实验操作——探索发现——科学论证”的学习过程后,从单纯地重视知识点的记忆、复习变为有意识关注学习方法的掌握,数学思想的领悟。如在原问题的取点中教师小结了从特殊到一般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。
两点思考。
“探究式教学”意在通过给学生创设实践、探索的机会,让学生自觉地改变原有的被动的学习方式,培养学生的积极主动的探索创新精神。结合二期课改要求本案例的尝试也引发了一些值得继续探讨的问题。
本案例是在前面的新课学习以接受性学习为主的基础上进行的,在本课的复习中对探究性学习做了必要的补充。就本课而言是以探究性学习为主,由此反思:在平时的新课学习中如何落实两者的主辅关系呢?在进行探究性学习时如何照顾到班级学生参差不齐的各个层面,使每个学生都有所获呢?对此我们还应该作更多的思考和实践。
相似三角形的判定教案篇九
(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(简叙为两角对应相等两三角形相似).
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)。
相似三角形的判定教案篇十
1、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。利用三角板画平行线、相交线,通过测量对比,学生基本能全员参与,调动了学生学习的兴趣和积极性。学生更易于从图形当中得到结论,这样引入能很好的使学生体验到生活中的数学知识。通过后来练习及作业反馈、九年级四班的同学也比较容易得出了平行线分线段成比例定理这个结论,说明这种引入的方法是成功的。
二、三节课巩固深入,杜绝传统的“学生在一节课内学完一个知识点就做相应的练习,模仿套用知识而不需选择,当学完全部相似知识点进行综合练习时,容易产生混淆”的现象。本节课只学习了平行线分线段成比例定理的内容,以及由此演变而形成的“a字型”图和“x型图”从一开始就摆脱学生的依赖心理,把问题抛给学生,有效的锻炼了学生的思维,同时还利用全等三角形的识别类比相似三角形的识别,学生容易理解。
3、注意到了推理的逻辑性和严密性。教学中在结论的推导得出过程中,注意了数学符号语言的应用和书写,保证了证明的规范性和作图的合理性。这一点主要表现在“a字型”图的证明上,学生通过几分钟的短暂讨论,书写得出这个定理。在学生亲自操作、探究的过程中,获得三角形相似的第一个简单的识别方法;培养学生提出问题、解决问题的能力;从整堂课学生的表现看到,这节课基本上实现了以上目标。
本节课尽管在以上几个方面做得较为成功,但仍然有些地方值得商榷。课后,经过教研组同志的集体评课以及自我反思,认为需要从以下几个方面改进:
1、在平行线分线段成比例定理的得出过程中,更应当注意图形的一般情况,不应当以点带面。表现在如果两线相交构成的是直角梯形这种情况,而在课堂教学中,由于时间关系、学生关系,在上课作图未涉及到这种情况,这一点需要改进。
2、在证明“a字型”图的结论过程中,没有必要证明de是三角形中位线这种情况,因为它的证明方法和后面的都相同。如果这样做的话,会浪费大量的时间,导致课堂教学前松后紧。
3、有些学生操作计算的速度太慢了,没有时间等他们探索得出结论,而大多数的同学已经得出了结论。这样可能使他们不能充分理解这节课的内容。
4、教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭能力还需要提高。
总之,本节课的教学任务已基本完成,但站在更高的角度来思考,反映出我还有些急燥,在课后及联系中,应该把这种题型至少要细分为基本图形的形成、基本图形的巩固、基本图形的拓展应用三个层次,逐步推进教学,效果可能会更好。
相似三角形的判定教案篇十一
今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:
(一)突出重点,实现教学目标。
《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。
(二)导课自然,成功引入新课。
首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
(三)设置有梯度,学生易于接受。
在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。有着良好的效果,这节课,也有不足的地方:
1、在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。
2、上课的节奏有点快。在以后的教学中能多加以改正。美中不足的是性质二的`应用本节课安排的例题,习题有点少,在以后的教学中应多补充些例题及习题。
相似三角形的判定教案篇十二
《相似三角形的判定1》是湘教版义务教育课程标准教科书九年级数学第三章《图形的相似》第四节《相似三角形的判定和性质》的内容。本节课是第二课时。
《相似三角形的判定》是在学生认识相似图形,了解相似多边形的性质的基础上进行学习的,是本章的重点内容。本课时首先利用“平行于三角形一边的直线与其他两边相交,截得的三角形与原三角形相似。”证明两个三角形相似,然后引导学生通过测量来探究得到两角分别相等的两个三角形相似,继而引导出相似三角形的判定:“两角分别相等的两个三角形相似”。通过类比的方法进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
通过这节课的教学,我有以下几点反思:成功方面:
1、绝大多数学生都能参与到数学活动中来。
5、通过学习,部分学生能运用本节课所学的知识进行相关的计算和证明;。
6、本节课基本调动了学生积极思考、主动探索的积极性。存在的不足之处是:
2、少数学生在自主探究中,不知如何观察,如何验证;。
3、少数学生在探究两角分别相等的两个三角形相似定理时,不会用学过的知识进行证明;。
4、学生做练习时不细心,出现常规错误,做题的正确率较低;。
5、由于学生基础差,配合不够默契,导致课堂气氛不活跃,教学效果一般。
相似三角形的判定教案篇十三
一、教学目标。
1.掌握相似三角形的性质定理2、3.。
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.。
3.进一步培养学生类比的教学思想.。
4.通过相似性质的学习,感受图形和语言的和谐美。
二、教法引导。
先学后教,达标导学。
三、重点及难点。
1.教学重点:是性质定理的应用.。
2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.。
四、课时安排。
1课时。
五、教具学具准备。
投影仪、胶片、常用画图工具.。
六、教学步骤。
[复习提问]。
[讲解新课]。
让学生类比“全等三角形的周长相等”,得出性质定理2.。
性质定理2:相似三角形周长的比等于相似比.。
同样,让学生类比“全等三角形的面积相等”,得出命题.。
性质定理3:相似三角形面积的`比,等于相似比的平方.。
此题学生一般不会感到有困难.。
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.。
解:设原地块为,地块在甲图上为,在乙图上为.。
学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:
1.本节学习了相似三角形的性质定理2和定理3.。
2.重点学习了两个性质定理的应用及注意的问题.。
七、布置作业。
教材p247中a组4、5、7.。
八、板书设计。
相似三角形的判定教案篇十四
本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.
本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.
本节课方法主要是“以学生为主体的讨论探索法”。在数学中要避免过多告诉学生现成结论。提倡鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:
(1)参与探索发现,领略知识形成过程。
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论出来。如果学生提到的不完整,可以做适当的点拨引导。
(3)总结,形成知识结构。
第12页 。
相似三角形的判定教案篇十五
定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:。
1.在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
2.在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
3.在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。显然,以上三条定理是“三线合一”的逆定理。
4.有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
相似三角形的判定教案篇十六
教学目标:
1、知识目标:
(1)熟记角边角公理、角角边推论的内容;
(2)能应用角边角公理及其推论证明两个三角形全等。
2、能力目标:
(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;
(2)通过观察几何图形,培养学生的识图能力。
3、情感目标:
(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:学会运用角边角公理及其推论证明两个三角形全等。
教学难点:sas公理、asa公理和aas推论的综合运用。
教学用具:直尺、微机。
教学方法:探究类比法。
教学过程:
1、新课引入。
投影显示。
这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”。于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案。
2、公理的获得。
问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?
让学生粗略地概括出角边角的公理。然后和学生一起做实验,根据三角形全等定义对公理进行验证。
公理:有两角和它们的'夹边对应相等的两个三角形全等。
应用格式:
(略)。
强调:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)。
所以找条件归结成两句话:已知中找,图形中看。
(3)、公理与前面公理1的区别与联系。
以上几点可运用类比公理1的模式进行学习。
3、推论的获得。
改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?
学生分析讨论,教师巡视,适当参与讨论。
4、公理的应用。
(1)讲解例1。学生分析完成,教师注重完成后的总结。
将本文的word文档下载到电脑,方便收藏和打印。
相似三角形的判定教案篇十七
1、经历探索三角形相似的判定方法(两边对应成比例且夹角相等的两三角形相似)的`过程,掌握判定三角形相似的方法。
2、能够灵活地运用两边对应成比例且夹角相等两三角形相似的判定方法解决相关问题。
3、在观察、归纳、测量、实验、推理的过程中,培养学生勇于探索的精神。
重点:相似三角形的判定定理“两边对应成比例且夹角相等的两三角形相似”。
难点:“两边对应成比例且夹角相等的两三角形相似”的证明思路探寻。
(一)直接导入。
简要回顾:上一节课我们已经学习了两角相等的两个三角形相似,今天这节课继续来研究三角形相似的判定。
(二)探究新知。
实验探究一:利用三角形纸片进行探究。
′,使其满足:
′的制作。然后可以通过测量角,验证两个三角形是否相似;也可以通过三角形中位线的性质判定所构成的三角形与原三角形是否相似。
实验探究二:利用教具进行探究。
我们发现对应边的比为1:2或2:1且夹角相等的两个三角形相似。那么两边的比值相等且是任意值,夹角相等的两个三角形还是否相似?我们来看几何画板。
实验探究三:利用几何画板进行探究。
问题1:两组对应边的长度发生改变,但比值不变,且夹角相等,两个三角形相似吗?
问题2:两组对应边的比值不变,夹角度数改变,但保持两角相等,这两个三角形相似吗?
结合几何画板可以度量角的大小的功能,可以得出这三种情况两个三角形都是相似的。通过实验我们发现对应边成比例且夹角对应相等的两个三角形相似。这个命题是真命题吗?我们还需要进行推理论证。
论证过程:
由证明两角相等的两个三角形相似的方法,通过类比让学生体会作全等,证明相似遇到的困难。进而引导退一步利用先作相似,再证全等的方法解决定理的证明。
(三)辨析。
设计意图:巩固两角相等的两个三角形相似;两边对应成比例且夹角相等,两三角形相似。以及两边对应成比例且其中一边的对角相等的两个三角形不一定相似。
我们发现两边对应成比例且其中一边的对角相等的两个三角形不一定相似。很多问题是不能只通过观察就可以判断相似,需要我们分析———推理———论证。
(四)典例分析。
设计意图:规范定理的书写格式。请同学们认真仔细找准对应边规范自己的书写格式。
(五)一试身手,勇攀高峰。
利用实时投屏,实现同学互相评价,教师评价和鼓励。我们要善于发现别人的优点,弥补自己的不足,勇攀高峰。
学生讲解。老师归纳:此题三种判定三角形相似的方法都用到了,我们要善于甄别。数学是严谨的学科,要抓住数学本质,善于观察,缜密推理。
(六)小结和作业。
你的收获?知识、方法、思想……。
作业:p78习题,必做题:a组1,2;选做题:b组1,2。