人工神经网络论文(通用17篇)
总结是对过去经验的总结和提炼,可以帮助我们更好地规划未来。概括是通过提取事物的本质或核心特点,进行简要归纳和总结的过程。以下总结范文内容丰富,形式多样,适合不同领域和层次的总结参考。
人工神经网络论文篇一
神经网络是在对人脑思维方式研究的基础上,将其抽象模拟反映人脑基本功能的一种并行处理连接网络。神经元是神经网络的基本处理单元。
在神经网络的发展过程中,从不同角度对神经网络进行了不同层次的描述和模拟,提出了各种各样的神经网络模型,其中最具有代表性的神经网络模型有:感知器、线性神经网络、bp网络、自组织网络、径向基函数网络、反馈神经网络等等。
神经元矩阵是神经网络模型的一种新构想,是专门为神经网络打造的一个矩阵,它符合神经元的一切特征。
(1)容器可产生一种无形的约束力,使系统得以形成,容器不是全封闭的,从而保证系统与外界的沟通和交互;各向量间可用相互作用的力来联系,而各个信使粒则受控于容器、中空向量以及其它的信使粒。各神经元之间自主交互,神经元矩阵是一种多层次的管理,即一层管理一层。系统具有明显的层级制和分块制,每层每块均独立且协同工作,即每层每块均含组织和自组织因素。
(2)向量触头是中空的,信使粒可以通过向量或存储于向量中,所以又称为中空向量。向量存储了信使粒后,可以吸引更多的信使粒在附近,或使邻近向量转向、伸长,进而形成相对稳定的信息通路。
(3)当两条或更多的信息通路汇集时,可能伴随着通路的增强、合并,以及信使粒的聚集、交换,这是神经元矩阵运算的一种主要形式。通路的形成过程,也就是是神经元矩阵分块、分层、形成联接的过程,也为矩阵系统宏观管理、层级控制的实现奠定了基础。
神经元矩阵亦是一种具有生物网络特征的数学模型,综合了数学上矩阵和向量等重要概念,是一种立体的矩阵结构。尤其是将矩阵的分块特性和向量的指向特征结合起来,更好的体现了神经网络的整体性和单元独立性,系统的组织和自组织特征也更为凸显。信使粒以“点”的数学概念,增强了系统的信息特征,尤其是增强了矩阵的存储和运算功能。
人工神经网络论文篇二
神经网络是近年来迅猛发展的前沿课题,它对突破现有科学技术的瓶颈起到重大的作用。下面要为大家分享的就是神经网络论文,希望你会喜欢!
摘要。
人工神经网络是近年来迅猛发展的前沿课题,它对突破现有科学技术的瓶颈起到重大的作用。本文剖析了人工神经网络的特征、模型结构以及未来的发展趋势。
人工神经网络(ann)是一种用计算机网络系统模拟生物神经网络的智能神经系统,它是在现代神经生物学研究成果的基础上发展起来的,模拟人脑信息处理机制的一种网络系统,它不但具有处理数值数据的计算能力,而且还具有处理知识的学习、联想和记忆能力。
人工神经网络模拟了大脑神经元的组织方式,反映了人脑的一些基本功能,为研究人工智能开辟了新的途径。它具有以下基本特征:
1.1并行分布性。
因为人工神经网络中的神经元排列并不是杂乱无章的,往往是以一种有规律的序列排列,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个基本的处理单元,则整个系统可以是一个分布式处理系统,使得计算快速。
1.2可学习性和自适应性。
一个相对很小的人工神经网络可存储大量的专家知识,并能根据学习算法,或利用指导系统模拟现实环境(称为有教师学习),或对输入进行自适应学习(称为无教师学习),可以处理不确定或不知道的事情,不断主动学习,不断完善知识的存储。
(3)鲁棒性和容错性。
由于采用大量的神经元及其相互连接,具有联想映射与联想记忆能力,容错性保证网络将不完整的、畸变的输入样本恢复成完整的原型,鲁棒性使得网络中的神经元或突触遭到破坏时网络仍然具有学习和记忆能力,不会对整体系统带来严重的影响。
1.3泛化能力。
人工神经网络是大规模的非线性系统,提供了系统协同和自组织的潜力,它能充分逼近任意复杂的非线性关系。如果输入发生较小变化,则输出能够保持相当小的差距。
1.4信息综合能力。
任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,能同时处理定量和定性的信息,适用于处理复杂非线性和不确定对象。
神经网络是在对人脑思维方式研究的基础上,将其抽象模拟反映人脑基本功能的一种并行处理连接网络。神经元是神经网络的基本处理单元。
在神经网络的发展过程中,从不同角度对神经网络进行了不同层次的描述和模拟,提出了各种各样的神经网络模型,其中最具有代表性的`神经网络模型有:感知器、线性神经网络、bp网络、自组织网络、径向基函数网络、反馈神经网络等等。
神经元矩阵是神经网络模型的一种新构想,是专门为神经网络打造的一个矩阵,它符合神经元的一切特征。
(1)容器可产生一种无形的约束力,使系统得以形成,容器不是全封闭的,从而保证系统与外界的沟通和交互;各向量间可用相互作用的力来联系,而各个信使粒则受控于容器、中空向量以及其它的信使粒。各神经元之间自主交互,神经元矩阵是一种多层次的管理,即一层管理一层。系统具有明显的层级制和分块制,每层每块均独立且协同工作,即每层每块均含组织和自组织因素。
(2)向量触头是中空的,信使粒可以通过向量或存储于向量中,所以又称为中空向量。向量存储了信使粒后,可以吸引更多的信使粒在附近,或使邻近向量转向、伸长,进而形成相对稳定的信息通路。
(3)当两条或更多的信息通路汇集时,可能伴随着通路的增强、合并,以及信使粒的聚集、交换,这是神经元矩阵运算的一种主要形式。通路的形成过程,也就是是神经元矩阵分块、分层、形成联接的过程,也为矩阵系统宏观管理、层级控制的实现奠定了基础。
神经元矩阵亦是一种具有生物网络特征的数学模型,综合了数学上矩阵和向量等重要概念,是一种立体的矩阵结构。尤其是将矩阵的分块特性和向量的指向特征结合起来,更好的体现了神经网络的整体性和单元独立性,系统的组织和自组织特征也更为凸显。信使粒以“点”的数学概念,增强了系统的信息特征,尤其是增强了矩阵的存储和运算功能。
人工神经网络是边缘性交叉科学,它涉及计算机、人工智能、自动化、生理学等多个学科领域,研究它的发展具有非常重要意义。针对神经网络的社会需求以及存在的问题,今后神经网络的研究趋势主要侧重以下几个方面。
4.1增强对智能和机器关系问题的认识。
人脑是一个结构异常复杂的信息系统,我们所知道的唯一智能系统,随着信息论、控制论、计算机科学、生命科学的发展,人们越来越惊异于大脑的奇妙。对人脑智能化实现的研究,是神经网络研究今后的需要增强的地发展方向。
4.2发展神经计算和进化计算的理论及应用。
利用神经科学理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,使离散符号计算、神经计算和进化计算相互促进,开发新的网络数理理论。
4.3扩大神经元芯片和神经网络结构的作用。
神经网络结构体现了结构和算法的统一,是硬件和软件的混合体,神经元矩阵即是如此。人工神经网络既可以用传统计算机来模拟,也可以用集成电路芯片组成神经计算机,甚至还可以生物芯片方式实现,因此研制电子神经网络计算机潜力巨大。如何让传统的计算机、人工智能技术和神经网络计算机相融合也是前沿课题,具有十分诱人的前景。
4.4促进信息科学和生命科学的相互融合。
信息科学与生命科学的相互交叉、相互促进、相互渗透是现代科学的一个显著特点。神经网络与各种智能处理方法有机结合具有很大的发展前景,如与专家系统、模糊逻辑、遗传算法、小波分析等相结合,取长补短,可以获得更好的应用效果。
人工神经网络论文篇三
[6].白云朴;环境规制背景下资源型产业发展问题研究[d].西北大学.2013。
[10].李辉;广东省社会经济与资源环境协调发展研究[d].吉林大学.2014。
[16].包红梅;生态社会主义环境危机理论研究[d].内蒙古大学.2005。
[17].王雪;环境科学视角的绿党发展史研究[d].东北大学.2013。
[20].周雷;我国生态环境税收政策初探[d].吉林大学.2006。
[21].高晓红;海南生态省建设的环境政策研究[d].中国海洋大学.2012。
[22].张军驰;西部地区生态环境治理政策研究[d].西北农林科技大学.2012。
[23].吕闯;建国初期我国生态环境相关政策研究[d].海南师范大学.2014。
[24].王芳芳;论生态女性主义的环境正义思想[d].山西大学.2012。
[26].赵伟;社会主义新农村生态环境建设研究[d].山东轻工业学院.2011。
[28].刘溪;马克思主义生态观与当前生态环境问题研究[d].安徽大学.2011。
[29].邵琛霞;小城镇生态环境保护若干政策问题研究[d].武汉大学.2004。
人工神经网络论文篇四
在20世纪40年代,生物学家mcculloch与数学家pitts共同发表文章,第一次提出了关于神经元的模型m-p模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。1951年,心理学家hebb提出了关于连接权数值强化的法则,为神经网络的学习功能开发进行了铺垫。之后生物学家eccles通过实验证实了突触的真实分流,为神经网络研究突触的模拟功能提供了真实的模型基础以及生物学的依据[2]。随后,出现了能够模拟行为以及条件反射的处理机和自适应线性网络模型,提高了人工神经网络的速度和精准度。这一系列研究成果的出现为人工神经网络的形成和发展提供了可能。
2.2低谷时期。
在人工神经网络形成的初期,人们只是热衷于对它的研究,却对其自身的局限进行了忽视。minskyh和papert通过多年对神经网络的研究,在1969年对之前所取得的研究成果提出了质疑,认为当前研究出的神经网络只合适处理比较简单的线性问题,对于非线性问题以及多层网络问题却无法解决。由于他们的质疑,使神经网络的发展进入了低谷时期,但是在这一时期,专家和学者也并没有停止对神经网络的研究,针对他们的质疑也得出一些相应的研究成果。
2.3复兴时期。
美国的物理学家hopfield在1982年提出了新的神经网络模型,并通过实验证明在满足一定的条件时,神经网络是能够达到稳定的状态的。通过他的研究和带动,众多专家学者又重新开始了对人工神经网络方面的研究,推动了神经网络的再一次发展[3]。经过专家学者的不断努力,提出了各种不同的人工神经网络的模型,神经网络理论研究不断深化,新的理论和方法层出不穷,使神经网络的研究和应用进入了一个崭新的时期。
2.4稳步发展时期。
随着人工神经网络研究在世界范围内的再次兴起,我国也迎来了相关理论研究的热潮,在人工神经网络和计算机技术方面取得了突破性的进展。到20世纪90年代时,国内对于神经网络领域的研究得到了进一步的完善和发展,而且能够利用神经网络对非线性的系统控制问题进行解决,研究成果显著。随着各类人工神经网络的相关刊物的创建和相关学术会议的召开,我国人工神经网络的研究和应用条件逐步改善,得到了国际的.关注。
随着人工神经网络的稳步发展,逐渐建立了光学神经网络系统,利用光学的强大功能,提高了人工神经网络的学习能力和自适应能力。对非线性动态系统的控制问题,采取有效措施,提高超平面的光滑性,对其精度进行改进。之后有专家提出了关于人工神经网络的抽取算法,虽然保证了精度,但也加大了消耗,在一定程度上降低了神经网络的效率,因此在此基础上又提出了改进算法fernn。混沌神经网络的发展也得到了相应的进步,提高了神经网络的泛化能力。
人工神经网络论文篇五
神经网络作为新型的计算机网络安全评价技术,具有提高评价结果准确性、可靠性的特点。计算机网络安全评价中神经网络的应用也具有提高评价体系科学合理化的作用,具体内容如下:神经网络适应性强。计算机网络环境相对复杂,这就要求安全评价系统具有较强的适应能力,可以根据网络变化采取最具针对性的应对措施。基于神经网络学习能力强的优势,用户在计算机输入信息时,神经网络系统可以将误差降至最低,并且根据网络系统的情况总结出规律,在计算机网络安全评价中发挥出高效的应用作用;神经网络容错性高,针对计算机网络系统中不完整的信息,神经网络利用容错性强的特性,可以根据相对应节点的特征分析,降低结果产生的误差。即使节点信息不匹配时,对计算机网络安全评价也不会造成过大的不良影响;神经网络实现可在线应用。在信息化时代下,对网络运行效率提出了一定要求,神经网络在计算机网络安全评价中通过不断的训练,对于输入数据迅速产生结果,便于用户的直接使用,满足了信息化时代的应用要求。
人工神经网络论文篇六
摘要:软件需求分析不仅仅是为了让开发者满足用户要求,而且还可以帮助用户了解软件的性能和功能,具有一举两得的效果,但是如果软件需求不符合实际需求,就会出现风险,导致返工。在bp神经网络的基础上,我们建立了软件需求分析风险评估模型,以减少软件开发的失败率,规避因软件需求分析失误而带来的实际存在的或潜在的风险。
关键词:风险;软件需求;bp神经网络;研究;分析。
软件开发过程中,需求分析是一个关键性的阶段。导致它失败的原因有很多,例如开发者和用户之间的沟通障碍、软件本身的隐含性、需求信息的不对称等等。这些问题导致的返工,增加了开发的成本,也损坏了企业形象,更可能流失掉部分用户。因此,我们必须对软件需求分析进行风险评估管理,把负面影响降到最低。现代商业发展中,各企业和企业之间的竞争日趋激烈,掌握最新的技术,对技术进行创新,才是企业在行业内立足脚跟,获得更加长远发展的方法,因此要想牢牢地把握企业的运命就需要我们保持对技术创新的热情,并在这条道路上乐此不疲。21世纪,只有掌握了最新和最具有创造性的技术,才能赢的最后的胜利,本文把bp网络与软件需求分析风险评估模型相结合,具有十分重要的意义。
bp神经网络是开发者使用最多的神经网络之一,它具有算法简单、极强的鲁棒性、收敛速度极快等优点。最重要的一点是能够最大限度的接近其真实系统,非常适合于线性的、不确定的、模糊的软件风险数据。bp算法是一种用于前向多层神经网络的的反传学习算法。采用bp算法的数层感知器神经网络模型,它的基本思想是,学习过程由信号的正向传播和误差的反向传播两个过程组成。模糊理论采用模糊数学的方法,通过抽象思维,对处于多种因素作用下的事物做出总体评价。它的两大主要特征是:第一,结果清晰;第二,系统性强,这非常适合于各种非确定性问题的解决。
2软件需求分析风险评估模型。
开发过程中,了解软件需求是很重要的。软件开发主要是依据需求的不同而设计出的产品。它包括了业务需求(组织和客户高层次的目标)、用户需求(用户要求必须具备的需求)、功能需求(用户可以通过完成任务满足业务需求的产品中必须体现的软件功能)。各种不同的需求都以不同的角度来呈现,需要进行多方位的分析方可得出准确的结论。软件需求分析就是对用户所需软件应具备的属性进行分析,满足用户的真正需求。在完成软件需求分析后,我们要能得出用户所需的软件系统要能够做到哪些功能,对此还要有详细准确的说明书,也就是用户的使用说明书,让他们更快的了解产品。优秀的需求具有以下特点:完整性、准确性、可行性、必要性、无歧义性和可行性。软件需求分析风险是指由于多方面的影响,如用户参与度、用户需求的拓展变化、多角度的考虑、设计的精准度和用户与开发者的充分沟通等等,而造成需求分析的不准确使得用户的软件需求得不到满足。该风险评估模型主要是为了降低软件需求分析中存在的风险,从而使得评估需求分析更具加有效和更易操作。
3一种基于bp神经网络的软件需求分析风险评估模型。
本文把bp神经网络和模糊理论加入到软件需求分析风险评估模型中,利用bp神经网络的非线性映射属性和模糊理论的超强表达能力与被理解力,帮助提高风险评估的有效性和预测性。软件需求分析风险的评估模型包括风险识别、风险分析、风险评估三个模块。风险识别的主要目的是考察研究软件需求分析阶段具体的情况,识别并记录该阶段存在的或潜在的风险,输入来源是专家的经验分析和历史风险数据库。
一般步骤包括:
a:找出软件需求分析风险指标;
b:搜索历史数据库,列出存在的数据库中的历史案例;
c:通过专家分析,列出具有风险等级的列表;
d:将确定了的风险列表提交数据库并更新。风险分析是细化第一阶段的风险,分析其产生的影响和等级,找出各指标与风险级别之间的线性关系亦或非线性关系。本文引入bp神经网络和模糊理论,利用bp神经网络实现风险评估指标和风险级别之间的非线性映射关系,还利用模糊理论的超强表达能力和容易理解的属性,提高整个风险评估模型的学习能力和表达能力,得出更符合实际的评估报告。
主要的方法包括:
a:揭示原因和结果之间的联系,追根溯源;
b:建立模型进行认识和理解;
c:通过尝试各种组合找出导致失败的因素。风险评估需最后明确所有存在的风险和它们的等级,给予开发者一个详细的报告。本阶段只要利用bp神经网络的`输入层、输出层、隐含层数、隐含层节点数。输入层节点是经过模糊预处理的17个需求分析风险评估指标;输出层节点是需求分析风险等级;隐含层数越多性能越高误差越低;隐含节点越多,网络功能越强大,但是过多则会使网络功能减弱。
在bp神经网络基础上,建立的软件需求分析风险评估模型,它操作的流程大致是三个方向。首先,识别软件需求分析阶段存在的、潜在的风险;然后,利用bp神经网络和模糊理论的特有属性、众多优点进行分析,通过历史数据库,专家知识、专家讨论,列出风险表格;最后,对风险进行最后的评估,从而有效预测软件开发过程中所遇到的风险,并且进行规避。
4结束语。
随着经济的高速发展,网络软件也成为人们工作生活中一个非常重要的工具。软件需求的增多带来了很多的问题,软件开发的过程充满了阻碍,软件需求的满意度也在日渐降低。因此,提高软件开发的速度、保证开发软件的质量,降低风险、减少开发成本、满足用户真正的需求等等,对软件需求分析风险进行评估,建立软件需求分析风险评估模型,是一件非常值得研究和实施的事情。本文研究的内容不仅仅达到了需求分析的目的,提出了新的思维方式和参考方向,而且还能更有效的预测软件需求分析风险,真正满足用户的软件需求。基金项目:吉林省教育厅“十二五”科学技术研究项目“基于ahp和群决策向量分析高校干部综合测评方法和系统实现”(吉教科合字第402号);吉林省教育科学“十二五”规划课题“构建以学习者为主体的远程教育支持服务体系的研究”。
参考文献:
人工神经网络论文篇七
摘要:软件需求分析不仅仅是为了让开发者满足用户要求,而且还可以帮助用户了解软件的性能和功能,具有一举两得的效果,但是如果软件需求不符合实际需求,就会出现风险,导致返工。在bp神经网络的基础上,我们建立了软件需求分析风险评估模型,以减少软件开发的失败率,规避因软件需求分析失误而带来的实际存在的或潜在的风险。
关键词:风险;软件需求;bp神经网络;研究;分析。
软件开发过程中,需求分析是一个关键性的阶段。导致它失败的原因有很多,例如开发者和用户之间的沟通障碍、软件本身的隐含性、需求信息的不对称等等。这些问题导致的返工,增加了开发的成本,也损坏了企业形象,更可能流失掉部分用户。因此,我们必须对软件需求分析进行风险评估管理,把负面影响降到最低。现代商业发展中,各企业和企业之间的竞争日趋激烈,掌握最新的技术,对技术进行创新,才是企业在行业内立足脚跟,获得更加长远发展的方法,因此要想牢牢地把握企业的运命就需要我们保持对技术创新的热情,并在这条道路上乐此不疲。21世纪,只有掌握了最新和最具有创造性的技术,才能赢的最后的胜利,本文把bp网络与软件需求分析风险评估模型相结合,具有十分重要的意义。
bp神经网络是开发者使用最多的神经网络之一,它具有算法简单、极强的鲁棒性、收敛速度极快等优点。最重要的一点是能够最大限度的接近其真实系统,非常适合于线性的、不确定的、模糊的软件风险数据。bp算法是一种用于前向多层神经网络的的反传学习算法。采用bp算法的数层感知器神经网络模型,它的基本思想是,学习过程由信号的正向传播和误差的反向传播两个过程组成。模糊理论采用模糊数学的方法,通过抽象思维,对处于多种因素作用下的事物做出总体评价。它的两大主要特征是:第一,结果清晰;第二,系统性强,这非常适合于各种非确定性问题的解决。
2软件需求分析风险评估模型。
开发过程中,了解软件需求是很重要的。软件开发主要是依据需求的不同而设计出的产品。它包括了业务需求(组织和客户高层次的目标)、用户需求(用户要求必须具备的需求)、功能需求(用户可以通过完成任务满足业务需求的产品中必须体现的软件功能)。各种不同的需求都以不同的角度来呈现,需要进行多方位的分析方可得出准确的结论。软件需求分析就是对用户所需软件应具备的属性进行分析,满足用户的真正需求。在完成软件需求分析后,我们要能得出用户所需的软件系统要能够做到哪些功能,对此还要有详细准确的说明书,也就是用户的使用说明书,让他们更快的了解产品。优秀的需求具有以下特点:完整性、准确性、可行性、必要性、无歧义性和可行性。软件需求分析风险是指由于多方面的影响,如用户参与度、用户需求的拓展变化、多角度的考虑、设计的精准度和用户与开发者的充分沟通等等,而造成需求分析的不准确使得用户的软件需求得不到满足。该风险评估模型主要是为了降低软件需求分析中存在的风险,从而使得评估需求分析更具加有效和更易操作。
3一种基于bp神经网络的软件需求分析风险评估模型。
本文把bp神经网络和模糊理论加入到软件需求分析风险评估模型中,利用bp神经网络的非线性映射属性和模糊理论的超强表达能力与被理解力,帮助提高风险评估的有效性和预测性。软件需求分析风险的评估模型包括风险识别、风险分析、风险评估三个模块。风险识别的主要目的是考察研究软件需求分析阶段具体的情况,识别并记录该阶段存在的或潜在的风险,输入来源是专家的经验分析和历史风险数据库。
一般步骤包括:
a:找出软件需求分析风险指标;
b:搜索历史数据库,列出存在的数据库中的历史案例;
c:通过专家分析,列出具有风险等级的列表;
d:将确定了的风险列表提交数据库并更新。风险分析是细化第一阶段的风险,分析其产生的影响和等级,找出各指标与风险级别之间的线性关系亦或非线性关系。本文引入bp神经网络和模糊理论,利用bp神经网络实现风险评估指标和风险级别之间的非线性映射关系,还利用模糊理论的超强表达能力和容易理解的属性,提高整个风险评估模型的学习能力和表达能力,得出更符合实际的评估报告。
主要的方法包括:
a:揭示原因和结果之间的联系,追根溯源;
b:建立模型进行认识和理解;
c:通过尝试各种组合找出导致失败的因素。风险评估需最后明确所有存在的风险和它们的等级,给予开发者一个详细的报告。本阶段只要利用bp神经网络的`输入层、输出层、隐含层数、隐含层节点数。输入层节点是经过模糊预处理的17个需求分析风险评估指标;输出层节点是需求分析风险等级;隐含层数越多性能越高误差越低;隐含节点越多,网络功能越强大,但是过多则会使网络功能减弱。
在bp神经网络基础上,建立的软件需求分析风险评估模型,它操作的流程大致是三个方向。首先,识别软件需求分析阶段存在的、潜在的风险;然后,利用bp神经网络和模糊理论的特有属性、众多优点进行分析,通过历史数据库,专家知识、专家讨论,列出风险表格;最后,对风险进行最后的评估,从而有效预测软件开发过程中所遇到的风险,并且进行规避。
4结束语。
随着经济的高速发展,网络软件也成为人们工作生活中一个非常重要的工具。软件需求的增多带来了很多的问题,软件开发的过程充满了阻碍,软件需求的满意度也在日渐降低。因此,提高软件开发的速度、保证开发软件的质量,降低风险、减少开发成本、满足用户真正的需求等等,对软件需求分析风险进行评估,建立软件需求分析风险评估模型,是一件非常值得研究和实施的事情。本文研究的内容不仅仅达到了需求分析的目的,提出了新的思维方式和参考方向,而且还能更有效的预测软件需求分析风险,真正满足用户的软件需求。基金项目:吉林省教育厅“十二五”科学技术研究项目“基于ahp和群决策向量分析高校干部综合测评方法和系统实现”(吉教科合字第2013402号);吉林省教育科学“十二五”规划课题“构建以学习者为主体的远程教育支持服务体系的研究”。
参考文献:
人工神经网络论文篇八
人工神经网络是一种模拟生物神经网络的计算机系统,它能够模拟人脑的工作方式,包括学习、识别和输入输出等功能。在我所学习的计算机科学课程中,我深入了解了人工神经网络的理论和应用,从而得出了一些心得体会。
人工神经网络是一种非常强大的工具,在机器学习、图像识别、自然语言处理等领域中取得了巨大的成功。它的核心思想是模拟人脑的构造,通过输入、输出和中间层神经元之间的连接来学习和识别复杂的数据模式。人工神经网络的学习过程依赖于大量的数据和算法优化,在训练过程中逐步优化权重和偏置值,使得人工神经网络的输出结果逐渐接近真实值。
人工神经网络可以应用于各种机器学习应用场景,例如分类和回归任务,深度学习等。在分析和学习大量的数据时,人工神经网络可以快速识别出那些对输出结果影响最大的因素,并将这些因素与输出结果进行函数映射。这种机器学习方法被广泛用于金融、医疗保健、营销、安全等领域,可以帮助人们更好地处理和利用海量数据,从而更加精确地预测未来趋势。
另一方面,人工神经网络还被广泛应用于图像识别和识别场景理解领域。它可以通过大量的训练样本,识别图像中的目标物体,并将其与其他物体区分开来。图像识别可以应用于各种场景,例如自动驾驶汽车、机器人、视频监控等,可以帮助人们更好地处理和分析复杂的场景情况,从而实现更准确、更快速和更可靠的决策。
在应用人工神经网络的过程中,我们需要注意一些相关的问题。例如,我们需要明确人工神经网络的输入和输出,构建相应的模型和算法,以实现有效的学习和匹配。此外,我们还需要关注数据的质量和数量,以确保容易获得准确的数据和可靠的学习结果。最后,我们需要不断优化和调整人工神经网络算法,以满足不断变化的需求和环境。
第五段:总结。
通过对人工神经网络的理解和应用,我们可以看到它的强大和潜在的优势。它可以帮助我们更好地处理和分析各种数据,加速我们的工作和决策,实现更高效和准确的输出。在未来,人工神经网络将继续发挥其潜力,在各种领域中获得更大的进展和成功。
人工神经网络论文篇九
随着数字智能技术的不断进步,人工智能技术在电气自动化控制系统中的应用也日益广泛。因此,在电气自动化控制系统中,为提高生产力水平、方便人们日常生活,需要加大对人工智能技术的应用研究,实现自动化体系的升级和发展需要。本文主要以人工智能技术的应用理论和现状入手,具体介绍了电气自动化控制中人工智能技术的应用对策,最终提高经济效益和社会效益。
电气自动化是一门实践性较强的应用性科学,主要研究电气系统的运行控制和研发。人类社会文明发展至今在科学技术方面的最大进步,主要是实现了系统中机械设备运行和控制的自动化和智能化。研究人工智能技术在电气自动化控制中的应用,有助于推动电气系统自动化的进一步发展,实现系统运行的智能化,使得其更加安全稳定,最终提高企业的生产效率,提高市场竞争力。
人工智能是一门新型的计算机科学,介于自然科学和社会科学边缘之间,研究对象主要是智能搜索、逻辑程序设计、自然语言问题和感知问题等。人工智能技术的本质就是模拟人类思维进行信息编码的过程,主要是结构模仿和功能模拟两种思维模拟方式。前者模拟形式主要是对人类大脑机制进行模拟,制造出类似人脑的机器设备;后者模拟主要是从人脑的功能角度出发,对人类大脑思维功能进行模拟。较为成功的典型事件就是现代的电子信息计算机,顺利地模拟人类大脑思维进行信息编码。
人工智能不是人的智能,更不是对人的智力功能的超越,其不同于人类大脑运行的显著特征主要有四个方面:是机械的无意识的物理过程;无社会性;不具备人类意识的创造力;功能是在人类大脑思维之后产生的。应用人工智能技术在电气自动化控制系统中,可以极大地节省人力资源,降低成本。同时,不控制目标模型就可以提高操作的准确度,降低误差。此外,这样还能保证产品的规范,提高性能。
近年来,人工智能技术得到了公众的高度重视,大多数的专业性高校和科研单位都对其在电气自动化系统中的应用开展了众多工作,现下的人工智能技术主要应用在电气设备的设计、事故及故障诊断和电气控制过程中的监控预警等工作。首先,在电气自动化系统中电气设备的设计方面,设备的结构设计较为繁琐复杂,涉及面较广,要求操作设计人员具备较多的实践经验。其次,在事故及故障诊断方面,人工智能技术可以利用模糊逻辑和神经网络等发挥优势,做好预警监控工作。最后,在电气控制过程中应用人工智能技术,主要依靠神经网络、模糊控制和专家系统三种方式,其中模糊控制应用较为普遍,以ai控制为主。
根据上部分分析的人工智能技术在电气自动化控制系统的应用现状,可知为实现电气自动化控制系统运行的高效性、提高人工智能技术的应用性,对策主要有以下三个方面:应用于电气设备设计、应用于事故及故障诊断和应用于电气控制过程。
3.1应用于电气设备设计。
根据诸多电气工程的实践证明,只有具备各相关专业的学科知识和技艺才能真正实现电气自动化控制系统的高效性,使其稳定运行。在电气设备的设计中应用人工智能技术,可以简化工作,降低人力成本。因此,企业拥有一批素质高的设计团队,这是电气自动化控制系统实现高效性的关键之一。此外,企业需要采取先进的人工智能技术进行电气设备的设计工作,尤其是结构设计工作。具体来说,人工智能技术在进行电气设备设计时主要是采用遗传算法升级计算机系统,全面提高产品的研发、设计和生产,优化设计产品。
3.2应用于事故及故障诊断。
电气故障诊断,指的是对电气自动化控制系统中机械设备的先关信息进行确定,判断技术和运行状况是否正常,如果出现异常,可以及时确定故障的具体内容和性质部位,找出故障原因并提出解决对策。而在电气设备运行时,不确定因素较多,使得系统容易出现各种类型的故障和事故,如果无法及时确定故障的性质和部位,将会给员工的人身安全带来威胁,企业也会承受较大的经济损失。因此,及时判断分析事故并做好故障诊断工作,是一项至关重要的工作。可以在传统的电气控制系统中,采取一些新型的.人工智能技术进行诊断。比如说,在诊断变压器的故障中,我们可以引入人工智能技术进行诊断,在节省人力物力的同时保证诊断的精确性,也可以在对发动机和发电机等电气机械设备进行事故诊断时引入人工智能技术,提高精确度,以达到良好的工作效果,实现企业的经济效益。
3.3应用于电气控制过程。
人工智能技术在电气自动化控制系统中起着关键性作用,是电气行业中的重要部分。实现电气自动化控制的人工智能化,有助于降低工作成本,提高工作效率,实现资源优化和最佳配置。在传统的电气自动化控制过程中,由于过程的繁琐复杂操作人员容易出现错误,而采取人工智能化技术则可以避免这些人为错误。人工智能技术主要采取神经系统的控制、专家系统的高效控制和模糊控制。现在最常用的技术方式是模糊控制,通过模糊控制借助直流电和交流电的传动最终实现电气自动化控制系统的智能化控制。模糊控制可以具体分为surgeno和mamdan两种表现形式,前者是后者的特殊情况,两者均用来调速控制。
在电气领域里,人工智能技术可以运用到日常操作中。我们可以利用家庭电脑实现对电气自动化控制系统的远程操作控制。具体来说,是通过采用人工智能技术预先设计好的既定程序控制操作过程,实现设备智能化,及时掌控全局。
综上所述,电气自动化控制中的人工智能技术的应用研究,既能实现工作效率的提高,还能降低运行成本,更好地实现电气系统的自动化智能化控制。此外,随着科学技术的飞速发展,人工智能技术在电气自动化控制中的应用面临着巨大的机遇和挑战,需要学者们不断研究和完善,使其得到更好的应用。
人工神经网络论文篇十
:随着社会信息技术和计算机网络技术的发展,人们对网络应用的需求也原来越多,这就需要不断研究计算机网络技术,由于人工智能在一定程度上成为科学技术前言领域,所以世界上各个国家对人工智能的发展越来越重视。本文首先分析其所具有的重要意义,然后研究其在应用过程中的作用,提出以下内容。
目前由于人工智能的不断成熟,人们在生活方面以及工作的过程中,智能化产品随处可见。这不仅对人们在工作中的效率进行提高,同时还对其生活质量进行加强。所以人工智能的发展在一定程度上离不开计算机网络技术,只有对计算机网络技术进行相应的依靠,才能够让人工智能研究出更多的成果。
由于计算机技术的快速发展,网络信息安全问题在一定程度上是人们目前比较关注的一个重要问题。在网络管理系统应用中,其网络监控以及网络控制是其比较重要的功能,信息能够及时有效的获取以及正确的处理对其起着决定性作用。所以,对计算机技术智能化进行实现是比较必要的。由于计算机得到了不断的深入以及管广泛的运用,在一定程度上导致用户对网络安全在管理方面的需求比较高,对自身的信息安全进行有效的保证。目前网络犯罪现象比较多,计算机只有在具备较快的反应力和灵敏观察力的状况下,才能够对用户信息进行侵犯的违法活动进行及时遏制。充分的利用人工智能技术,建立起相对较系统化的管理,让其不仅对信息进行自动的收集,同时还能够对网络出现的故障进行及时诊断,对网络故障及时遏制,运用有效的措施对计算机网络系统进行及时的恢复,保证用户信息的安全。计算机技术在发展的过程中对人工智能应用起着决定性作用,人工智能技术也在一定程度上对计算机技术的发展起着促进作用。不断的跟踪动态化信息,为用户提供准确的信息资源。总的来说,计算机网络在管理的过程中有效的运用人工智能,对网络管理水平进行不断的提高。
2.1安全管理应用。
网络安全所具有的漏洞相对比较多,用户在网络中自身的资料信息安全是现阶段人们比较关注以及重视的主要问题。在对网络安全进行管理时,可以对人工智能技术进行充分的运用,在一定程度上能够对用户自身的隐身进行有效的保护。主要表现为:一是,智能防火墙的应用;二是,智能反应垃圾邮件方面;三是,入侵检测方面等。智能防护墙主要应用的就是智能化识别技术,通过概率以及统计方式、决策方法和计算等对信息数据不仅进行有效的识别,同时还能对其相应的处理,对匹配检查过程中需要的计算进行消除,充分认识网络行为特征值,访问可以直接进行控制,把存在的网络及时发现,拦截以及阻止有害信息的弹出。智能防火墙能够在一定程度上避免网络站点受到黑客的攻击,遏制病毒传播,对相关局域网进行相应的管理和控制,反之就会导致病毒以及木马的传播。在智能防火墙中,比较重要的就是入侵检测,它属于防护墙后的.第二安全闸门,在对网络安全保证方面起着重要的作用。针对入侵检测技术而言,主要能够在一定程度上对网络中的数据进行有效的分析,并且对其进行及时的处理,把部分数据过滤出去,数据检测后的报告分析报告给用户。入侵检测在对网络性能不产生影响的前提下监测网络,为操作上的失误以及内外部攻击提供一定的保护。针对智能型反垃圾而言,其自身的邮件系统能够对用户邮箱进行有效的监测,对邮箱进行相应识别,把邮箱中存在的垃圾充分的筛选出来。如果邮件进入邮箱后,就会进行扫描邮箱,在一定程度上把垃圾邮箱的分类信息发给用户,提醒用户要对其进行及时的处理,避免给邮箱安全带来影响。
针对人工智能agent技术而言,它属于人工智能代理的一种技术,属于不同部分所组成的软件实体,包括:一是,知识域库;二是数据库;三是解释推理器;四是各个agent之间的通讯部分等。人工智能agent技术通过任何一个agent域库对新数据的相关信息进行处理,并且沟通以至完成任务。人工智能agent技术能够在一定程度上通过用户自定义对信息获得自动搜索,然后将其发送到指定位置。人们通过agent技术得到人性化服务。例如:用户在用电脑查相关信息时,该技术不仅能对信息进行处理,同时还能够进行有效的分析,最后把有用的信息出题给用户,充分节省用户的时间。agent技术为用户在日常生活中提供相应的服务,例如:在网上进行购物以及会议等方面的安排。它不仅自主性以及学习性,让计算机对用户所分配的任务自动完成,进一步推动机计算机网络技术的发展。
2.3在网络系统管理以及评价过程中的应用分析。
针对网络管理系统来说,其智能化在一定程度上需要人工技能的不断发展。在对网络综合管理系统进行建立的过程中,不仅可以对人工智能中的专家知识库进行充分的利用,同时还能够对存在的技术问题进行有效的解决和处理。网络存在着动态以及变化性,所以,网络在管理的过程中会面临着困难,这就需要对网络管理技术人工智能化进行实现。在人工智能技术中,其专家知识库主要指的就是把各个相关领域专家的知识以及经验进行相应的结语出来,录入系统中,只有这样才能形成比较完善的知识库系统,促进智能计算机程序的发展和提高。如果遇到某个领域问题的过程中,要充分利用专家经验程序对其进行及时的处理。专家知识经验系统促进计算机网络管理得到顺利开展的同时,对系统评价相关进行工作不断的提高和加强。
科学技术在发展的同时,也促进人工智能技术的提高,计算机在网络技术中得到了比较多的需求,在一定程度上提高其应用范围和领域,因此可以看出,人工智能其应用发展前景是比较广泛的,人类对人工智能技术的进一步研究,会在未来开创出更多的应用领域。
人工神经网络论文篇十一
论文摘要:利用补偿模糊神经网络构建高职院校教师的教学评价模型,借鉴《机械制图》教学过程中总结出的零件制作6个步骤,形成“六步法则”,将其应用于模型构建的整个过程。数据验证结果表明,该模型评价精度较高,有利于合理地对教师教学能力的评价,并将有效地促进学校推行绩效考核机制,促进人才培养质量的提升。
高等职业教育在我国高等教育规模中占半壁江山,在人才培养方面起着举足轻重的作用。如何更快更好地发展高职教育,提高人才培养的质量显得越来越重要。高水平的培养质量归根结底是要建立一支过硬的教师队伍。因此,各高职院校目前十分注重利用绩效考核来促进教师队伍整体水平的提高。所谓绩效考核,就是依据教师岗位职责,对教师是否胜任本岗位工作所规定的政治思想、职业道德、工作实绩等进行全面系统的评价。那么如何通过绩效考核对每位教师进行一个客观、全面的评价呢?这主要依赖于教学评价模型的正确性与合理性。笔者依据多年来的教务管理经验,以及通过教授《机械制图》这门课程得到的启发,采用六步法则与补偿模糊神经网络相结合,实现了教学评价模型的构建,旨在提高评价的合理性与客观性。
1六步法则及其由来。
六步法则的由来,是笔者受《机械制图》课程教学的启发而得出的:对于一个零件制作而言,大体经过以下六个步骤:(1)通过“看”来对市场上所出现的类似零件进行比对,比如说用途、特点等;(2)分析其利弊;(3)确定自己制作该零件的方案进行草图绘制:确定绘图的纸张大小等,从而对零件的结构图(主视图、剖面图等)进行细心绘制,最后对细节进行加工;(4)根据绘制的图形,对该零件进行加工;(5)加工样品检验零件的合理性;(6)通过使用不断地对零件进行修改完善。综上所述,零件的加工制作可以归结为:“看、想、画、作、查、改”。其中“画”尤其重要,因为最终图的正确与否将直接关系到产品的质量,影响整个公司的经济效益因此在设计过程中强调的是在正确的前提下注意细而精。对于教学评价也是如此。如果教学评价模型建立的不合理,将直接导致对教师能力评价的不客观、不全面,那么对教师绩效工资的分配将不合理,激励导向效果就不会理想。为此,按照全面质量管理的“三全一多样”的特征,借鉴机械制图的6大步骤,总结得出“六步法则”,运用此法则,对教学评价模型进行构建。
所谓六步法则,是指一看、二分析、三建模、四检验、五实施、六改善。“一看”是指对目前高职院校的教师能力进行全面调查,目前采用教师教学评价机制进行搜索比对;“二分析”是指通过调查之后分析高职院校教师能力体现较为全面的几项重大指标,确定评价的标准;“三建模”是指通过确定的几项评价指标和最终评价结果,采用先进的数学建模方法进行评价模型的建立;“四检验”主要是通过利用建好的模型,采用以前的评价数据、结果进行对比,验证模型的合理性与客观性;“五实施”是指通过验证的模型对目前的教师教学能力进行评价;“六改善”是指在实施过程中对一些细枝末节进行调整、改善,以促进教师教学水平的提高,不断完善绩效考核机制。
(1)看。高职院校的教师能力除了需要具备一定的专业知识与技能外,还须具备操作技术及实践经验。最好是“双师型”的教师。在北京召开的第四届高等学校教学名师奖表彰大会上有位名师指出:作为高职院校的教师,既要有扎实的理论知识,更要注重实践经验的积累;既要把握专业领域学术发展前沿,又要与行业及企业保持密切联系,时刻关注行业发展动态。他说:“一名优秀教师需要不断与时俱进,创新课程体系,调整教学内容,既要注重学生基本理论知识的传授、专业技能的培养,还要注重学生的个性发展和综合素质的培养;只有这样,才能获得良好的教学效果,因此,目前评判教师水平主要关注于知识、素质、能力这三方面。
知识结构包括围绕职业岗位的知识、技术,及本专业领域的最新发展动态和职业岗位上的新知识、新技术、新工艺等;素质结构包括良好的道德素质和职业素质,道德素质是树立正确的世界观、人生观和价值观,职业素质是指角色意识、敬业精神、时效意识、团队精神等;能力结构包括教育教学能力、岗位实践能力、现代教育技术使用能力和科研能力等川。
根据确定的评价内容,目前采用的评价体系具有一定的多维性和动态性,评价的方式大多采用“定性”与“定量”相结合的方法,主要有:1)专家评价法,如专家打分综合法。2)运筹学与其他数学方法,如层次分析法、数据包络法、模糊综合评价法、绝对评价法。3)新型评价方法,如人工神经网络评价法、灰色综合评价法、综合评分法。4)组合评价法,这是几种方法混合使用的情况。
(2)分析。教学质量的高低是由多种因素交互作用决定的,但其最主要的因素体现在知识、素质、能力这三方面,因此为了能够较为全面的进行评判,这里采用多主体多角度的评价方式。“多主体”是指教师、学生、专家(含同行)评价和教学主管部门评价以及外聘工程师等。“多角度”是指每个评价主体对应的评价指标不同,即设计的调查问卷不同。其中表1为学生对教师课堂教学的总体评价表。
(3)模型构建。人们在教育评价中所用的方法,可以简单地归结为两大类:定性评价方法和定量评价方法。其中定量评价方法需要用刻一些数学模型对评价对象进行处理。到目前为止,教学评价所用的数学模型主要有确定(性)数学模型、随机(性)数学模型和模糊数学模型三类。具体来讲,确定(性)数学模型有线性规划、动态规划、数据包络分析、层次分析方法等;随机(性)数学模型有回归分析、因素分析、聚类分析、齐次马尔科夫链等;模糊数学模型有模糊综合评判模型、模糊积分模型、灰色数学模型等。在教育评价中,上述方法均有各自比较适宜的评价对象.
在融合模糊理论和神经网络技术的基础上,通过补偿神经元来执行补偿模糊推理,动态地调整模糊规则,从而形成了一种新的网络―补偿模糊神经网络,由此进行教学评价模型的构建。
采用补偿模糊神经网络对某=系统进行辨识时,不需要事先知道索统的精确的数学模型,它能借助于人类的模糊推理知识以及神经网络的逼近性能来实现对过程的`建模。它拥有许多优点,如鲁棒性、无需模型、全局逼近。
2)模型的建构。
:提据高职院校对教师工作素质的要求,结合高职院校的培养目标,采用多z多角摩多丰体的评价机制,对教师教学质量模型进行合理建构。但是如何制定一个合理的评价指标,是一个七啦复杂而且困难的课题,本文在教育部已有评拈体系的基础上,根据前人研究成果,利用学生对教师的网上评教、教师个人的_自我评价、同行评价以及家评价得分作为模型的输入、(艺‘1一4),每个评价因子得分范围是,分为三个等级:较差、良好,一优秀。但是如何确定这三个等级的标准,这里采用高斯函数才)”作为模糊隶属度函数从而对其等级进行划分。其中“,・““(隶属度中‘。・宽度’均属于可调参数。具体建构的教学评价模型如图1所示。
整个模型分为5层,第一层作为评价指标输人层,第二层对评价指标进行分类(较差、良好、优秀),然后根据模糊推理的规则来推理得出教师教学质量的好坏。
3)模型的训练。
运用多年来积累的数据报表,通过聚类分析的方式对数据进行有效性验证,在现有数据的基础上挑选了多个样本进行评价模型的训练,采用梯度下降法对模糊隶属度函数中的参数进行训练,其训练过程的误差mse变化曲线如图2所示。
最后从样本中选取200个样本对其进行验证,结果误差达到了i.5%,精确度较高。
3.结论。
借鉴《机械制图》教学过程中总结出的零件制作6个步骤,形成“六步法则”,将其应用于模型构建的整个过程,利用补偿模糊神经网络构建高职院校教师的教学评价模型,结果表明模型的预测评价准确性较高。由于模型正处于试验阶段,应用于以后的教学评价过程后,还应不断对其进行检验,不断完善。同时,还需要根据企业对人才需求的变化不断地更新评价指标,完善教学评价模型,科学地对教师教学质量进行评价,有效地促进绩效管理方式的推行,促进高职院校人才培养水平的提高。
人工神经网络论文篇十二
人工神经网络(ann)是一种用计算机网络系统模拟生物神经网络的智能神经系统,它是在现代神经生物学研究成果的基础上发展起来的,模拟人脑信息处理机制的一种网络系统,它不但具有处理数值数据的计算能力,而且还具有处理知识的学习、联想和记忆能力。
人工神经网络模拟了大脑神经元的组织方式,反映了人脑的一些基本功能,为研究人工智能开辟了新的途径。它具有以下基本特征:
1.1并行分布性。
因为人工神经网络中的神经元排列并不是杂乱无章的,往往是以一种有规律的序列排列,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个基本的处理单元,则整个系统可以是一个分布式处理系统,使得计算快速。
1.2可学习性和自适应性。
一个相对很小的人工神经网络可存储大量的专家知识,并能根据学习算法,或利用指导系统模拟现实环境(称为有教师学习),或对输入进行自适应学习(称为无教师学习),可以处理不确定或不知道的事情,不断主动学习,不断完善知识的'存储。
(3)鲁棒性和容错性。
由于采用大量的神经元及其相互连接,具有联想映射与联想记忆能力,容错性保证网络将不完整的、畸变的输入样本恢复成完整的原型,鲁棒性使得网络中的神经元或突触遭到破坏时网络仍然具有学习和记忆能力,不会对整体系统带来严重的影响。
1.3泛化能力。
人工神经网络是大规模的非线性系统,提供了系统协同和自组织的潜力,它能充分逼近任意复杂的非线性关系。如果输入发生较小变化,则输出能够保持相当小的差距。
1.4信息综合能力。
任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,能同时处理定量和定性的信息,适用于处理复杂非线性和不确定对象。
将本文的word文档下载到电脑,方便收藏和打印。
人工神经网络论文篇十三
摘要:。
利用补偿模糊神经网络构建高职院校教师的教学评价模型,借鉴《机械制图》教学过程中总结出的零件制作6个步骤,形成“六步法则”,将其应用于模型构建的整个过程。数据验证结果表明,该模型评价精度较高,有利于合理地对教师教学能力的评价,并将有效地促进学校推行绩效考核机制,促进人才培养质量的提升。
高等职业教育在我国高等教育规模中占半壁江山,在人才培养方面起着举足轻重的作用。如何更快更好地发展高职教育,提高人才培养的质量显得越来越重要。高水平的培养质量归根结底是要建立一支过硬的教师队伍。因此,各高职院校目前十分注重利用绩效考核来促进教师队伍整体水平的提高。所谓绩效考核,就是依据教师岗位职责,对教师是否胜任本岗位工作所规定的政治思想、职业道德、工作实绩等进行全面系统的评价。那么如何通过绩效考核对每位教师进行一个客观、全面的评价呢?这主要依赖于教学评价模型的正确性与合理性。笔者依据多年来的教务管理经验,以及通过教授《机械制图》这门课程得到的启发,采用六步法则与补偿模糊神经网络相结合,实现了教学评价模型的构建,旨在提高评价的合理性与客观性。
1六步法则及其由来。
六步法则的由来,是笔者受《机械制图》课程教学的启发而得出的:对于一个零件制作而言,大体经过以下六个步骤:。
(1)通过“看”来对市场上所出现的类似零件进行比对,比如说用途、特点等;。
(2)分析其利弊;。
(4)根据绘制的图形,对该零件进行加工;。
(5)加工样品检验零件的合理性;。
(6)通过使用不断地对零件进行修改完善。
综上所述,零件的加工制作可以归结为:“看、想、画、作、查、改”。其中“画”尤其重要,因为最终图的正确与否将直接关系到产品的质量,影响整个公司的经济效益因此在设计过程中强调的是在正确的前提下注意细而精。对于教学评价也是如此。如果教学评价模型建立的不合理,将直接导致对教师能力评价的不客观、不全面,那么对教师绩效工资的分配将不合理,激励导向效果就不会理想。为此,按照全面质量管理的“三全一多样”的特征,借鉴机械制图的6大步骤,总结得出“六步法则”,运用此法则,对教学评价模型进行构建。
所谓六步法则,是指一看、二分析、三建模、四检验、五实施、六改善。
“五实施”是指通过验证的模型对目前的教师教学能力进行评价;。
“六改善”是指在实施过程中对一些细枝末节进行调整、改善,以促进教师教学水平的提高,不断完善绩效考核机制。
(1)看。高职院校的教师能力除了需要具备一定的专业知识与技能外,还须具备操作技术及实践经验。最好是“双师型”的教师。在北京召开的第四届高等学校教学名师奖表彰大会上有位名师指出:作为高职院校的教师,既要有扎实的理论知识,更要注重实践经验的积累;既要把握专业领域学术发展前沿,又要与行业及企业保持密切联系,时刻关注行业发展动态。他说:“一名优秀教师需要不断与时俱进,创新课程体系,调整教学内容,既要注重学生基本理论知识的传授、专业技能的培养,还要注重学生的个性发展和综合素质的培养;只有这样,才能获得良好的教学效果,因此,目前评判教师水平主要关注于知识、素质、能力这三方面。
知识结构包括围绕职业岗位的知识、技术,及本专业领域的最新发展动态和职业岗位上的新知识、新技术、新工艺等;素质结构包括良好的道德素质和职业素质,道德素质是树立正确的世界观、人生观和价值观,职业素质是指角色意识、敬业精神、时效意识、团队精神等;能力结构包括教育教学能力、岗位实践能力、现代教育技术使用能力和科研能力等川。
根据确定的评价内容,目前采用的评价体系具有一定的多维性和动态性,评价的方式大多采用“定性”与“定量”相结合的方法,主要有:。
1)专家评价法,如专家打分综合法。
2)运筹学与其他数学方法,如层次分析法、数据包络法、模糊综合评价法、绝对评价法。
3)新型评价方法,如人工神经网络评价法、灰色综合评价法、综合评分法。4)组合评价法,这是几种方法混合使用的情况。
(2)分析。教学质量的高低是由多种因素交互作用决定的,但其最主要的因素体现在知识、素质、能力这三方面,因此为了能够较为全面的进行评判,这里采用多主体多角度的评价方式。“多主体”是指教师、学生、专家(含同行)评价和教学主管部门评价以及外聘工程师等。“多角度”是指每个评价主体对应的评价指标不同,即设计的调查问卷不同。其中表1为学生对教师课堂教学的总体评价表。
(3)模型构建。人们在教育评价中所用的方法,可以简单地归结为两大类:定性评价方法和定量评价方法。其中定量评价方法需要用刻一些数学模型对评价对象进行处理。到目前为止,教学评价所用的数学模型主要有确定(性)数学模型、随机(性)数学模型和模糊数学模型三类。具体来讲,确定(性)数学模型有线性规划、动态规划、数据包络分析、层次分析方法等;随机(性)数学模型有回归分析、因素分析、聚类分析、齐次马尔科夫链等;模糊数学模型有模糊综合评判模型、模糊积分模型、灰色数学模型等。在教育评价中,上述方法均有各自比较适宜的评价对象.
在融合模糊理论和神经网络技术的基础上,通过补偿神经元来执行补偿模糊推理,动态地调整模糊规则,从而形成了一种新的网络—补偿模糊神经网络,由此进行教学评价模型的构建。
采用补偿模糊神经网络对某=系统进行辨识时,不需要事先知道索统的`精确的数学模型,它能借助于人类的模糊推理知识以及神经网络的逼近性能来实现对过程的建模。它拥有许多优点,如鲁棒性、无需模型、全局逼近。
2)模型的建构:。
提据高职院校对教师工作素质的要求,结合高职院校的培养目标,采用多z多角摩多丰体的评价机制,对教师教学质量模型进行合理建构。但是如何制定一个合理的评价指标,是一个七啦复杂而且困难的课题,本文在教育部已有评拈体系的基础上,根据前人研究成果,利用学生对教师的网上评教、教师个人的_自我评价、同行评价以及家评价得分作为模型的输入、(艺‘1一4),每个评价因子得分范围是,分为三个等级:较差、良好,一优秀。但是如何确定这三个等级的标准,这里采用高斯函数才)”作为模糊隶属度函数从而对其等级进行划分。其中“,·““(隶属度中‘。·宽度’均属于可调参数。具体建构的教学评价模型如图1所示。
整个模型分为5层,第一层作为评价指标输人层,第二层对评价指标进行分类(较差、良好、优秀),然后根据模糊推理的规则来推理得出教师教学质量的好坏。
3)模型的训练。
运用多年来积累的数据报表,通过聚类分析的方式对数据进行有效性验证,在现有数据的基础上挑选了2000多个样本进行评价模型的训练,采用梯度下降法对模糊隶属度函数中的参数进行训练,其训练过程的误差mse变化曲线如图2所示。
最后从样本中选取200个样本对其进行验证,结果误差达到了i.5%,精确度较高。
3.结论。
借鉴《机械制图》教学过程中总结出的零件制作6个步骤,形成“六步法则”,将其应用于模型构建的整个过程,利用补偿模糊神经网络构建高职院校教师的教学评价模型,结果表明模型的预测评价准确性较高。由于模型正处于试验阶段,应用于以后的教学评价过程后,还应不断对其进行检验,不断完善。
同时,还需要根据企业对人才需求的变化不断地更新评价指标,完善教学评价模型,科学地对教师教学质量进行评价,有效地促进绩效管理方式的推行,促进高职院校人才培养水平的提高。
人工神经网络论文篇十四
人工神经网络(ann)是一种用计算机网络系统模拟生物神经网络的智能神经系统,它是在现代神经生物学研究成果的基础上发展起来的,模拟人脑信息处理机制的一种网络系统,它不但具有处理数值数据的计算能力,而且还具有处理知识的学习、联想和记忆能力。
人工神经网络模拟了大脑神经元的组织方式,反映了人脑的一些基本功能,为研究人工智能开辟了新的途径。它具有以下基本特征:
1.1并行分布性。
因为人工神经网络中的神经元排列并不是杂乱无章的,往往是以一种有规律的序列排列,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个基本的处理单元,则整个系统可以是一个分布式处理系统,使得计算快速。
1.2可学习性和自适应性。
一个相对很小的人工神经网络可存储大量的专家知识,并能根据学习算法,或利用指导系统模拟现实环境(称为有教师学习),或对输入进行自适应学习(称为无教师学习),可以处理不确定或不知道的事情,不断主动学习,不断完善知识的'存储。
(3)鲁棒性和容错性。
由于采用大量的神经元及其相互连接,具有联想映射与联想记忆能力,容错性保证网络将不完整的、畸变的输入样本恢复成完整的原型,鲁棒性使得网络中的神经元或突触遭到破坏时网络仍然具有学习和记忆能力,不会对整体系统带来严重的影响。
1.3泛化能力。
人工神经网络是大规模的非线性系统,提供了系统协同和自组织的潜力,它能充分逼近任意复杂的非线性关系。如果输入发生较小变化,则输出能够保持相当小的差距。
1.4信息综合能力。
任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,能同时处理定量和定性的信息,适用于处理复杂非线性和不确定对象。
人工神经网络论文篇十五
第一段:引入人工神经网络概念,强调其在当代人工智能领域的重要性和发展前景。
人工神经网络(ArtificialNeuralNetwork,ANN)是一种模拟人脑神经网络的计算模型,也是当今人工智能领域最热门的研究方向之一。随着计算机技术和数据处理能力的不断提高,ANN在机器视觉、自然语言处理、智能控制等众多领域中取得重要进展和应用,成为人工智能领域最具发展潜力的技术之一。
第二段:介绍ANN的基本构成和工作原理。
ANN模型通常由输入层、中间层和输出层组成,其中输入层接受外部输入,输出层产生最终输出结果,而中间层则是整个网络的核心部分。ANN的工作原理与生物神经网络类似,通过网络中神经元之间的连接和传递信号来实现信息的处理和传递。ANN模型的训练过程一般采用反向传播算法,根据输入与输出之间的关系,进行误差修正和参数调整,最终实现模型的优化和提高预测准确率。
第三段:探讨使用ANN的优势和局限。
ANN具有处理非线性、高维度、复杂数据的能力,并能在大规模数据中自动学习到相关模式和特征,从而实现高水平的分类、识别和预测任务。此外,ANN还具有快速、高效的计算能力和适应性,可应用于多种领域,如图像识别、智能检测、金融预测等。但是,ANN的局限性主要包括数据样本的依赖性和偏差性,对参数初始化、选择和训练的敏感性,以及模型复杂度和运行时间的限制等。
第四段:总结ANN的应用现状和今后发展趋势。
目前,ANN已应用于诸多领域,包括自然语言处理、语音识别、计算机视觉等,整体发展趋势良好。未来,随着数据技术、深度学习和计算能力的不断提高,ANN将逐渐普及和优化,并成为人工智能领域的重要支持和推动力量。
第五段:结合个人经验,总结ANN的可操作性和应用前景。
作为一名从事数据分析和人工智能方面的研究者和实践者,我深刻认识到ANN的可操作性和应用前景。在实际应用中,ANN能够处理大量的数据和模式,并能在短时间内完成复杂的分类、识别和预测任务。在此基础上,我相信未来ANN还将实现更广泛、更深入、更有效的应用,为人类带来更多的智能和福祉。
人工神经网络论文篇十六
针对中国土地复垦起步晚,新技术与新理论应用较少的问题,研究利用人工神经网络来辅助土地复垦的`决策.介绍了利用自组织映射神经网络的自动分类功能对进行矿区土地复垦条件分类,为因地制宜地采取复垦措施提供依据.然后,基于bp神经网络,选取评价因子,通过对已有经验的学习,对复垦土地适宜性进行评价,并与传统的方法相比较,研究结果表明,利用人工神经网络辅助矿区土地复垦决策是可行的.
作者:张洪波胡振琪陈秋计谢宏全刘昌华作者单位:张洪波(中国矿业大学北京校区,土地复垦与生态重建研究所,北京,100083;中国石油集团工程设计有限责任公司,华北分公司,河北,任丘,062552)。
胡振琪(中国矿业大学北京校区,土地复垦与生态重建研究所,北京,100083)。
陈秋计,刘昌华(河南理工大学,测量工程系,河南,焦作,454000)。
谢宏全(河北理工大学,交通与测绘学院,河北,唐山,063009)。
刊名:辽宁工程技术大学学报isticpku英文刊名:journalofliaoningtechnicaluniversity年,卷(期):24(1)分类号:x171.4关键词:人工神经网络复垦土地土地复垦条件分类适宜性评价
人工神经网络论文篇十七
摘要:随着工业领域的迅猛发展,自动化、智能化被当做是电气控制领域的重点发展趋势。为了让电气自动化控制中人工智能技术发挥更大的作用,本文概括了人工智能技术,阐述了人工智能技术在电气自动化领域的使用实例,以此期望对有关工作人员能有帮助。
关键词:电气控制;自动化控制;人工智能。
近年来随着国内外人工智能研究的兴起与发展,越来越多的传统领域开始思考能否在自己的产品生产线上使用人工智能技术,所以它的实际使用领域广泛。现代社会的发展离不开人工智能技术的使用,特别是在现代工业的领域,在方法上需要依靠最新的人工智能技术为支持,但要做到让人工智能技术在电气自动化控制中更好的发挥作用,我们先要知道人工智能技术到底是什么样的技术[1]。
国内的创新热潮近几年正在蓬勃的发展,各种新技术竞相展现,人工智能技术也逐渐成熟了,而且它在当今社会中的使用也更加宽泛。人工智能技术的建立,不仅要有计算机技术知识进行有效支持,还与其他学科知识息息相关,人工智能技术通俗上讲就是生产出可以替代人类来工作的智能化机器人,将来许多岗位都可以由机器来替代人类工作[2]。随着科技的日新月异,科学家们已经成功地生产出了类似于人脑一样思考的人工大脑芯片,并将这种新技术命名为人工智能技术。在人们平常的生产活动中,已有非常多的范围都使用了人工智能技术,而且它们的现实使用效率非常高。
2人工智能技术在电气自动化中的应用广阔前景。
电气自动化中应用人工智能技术,不仅在极大程度上让工人更好的操控电气自动化设备,还极大地减少了电气自动化的使用成本,这说明发展人工智能技术的前景是非常有利的。
2.1电气自动化控制中加入人工智能技术的重要性。
人工智能技术同人类的工作方式相比有许多人类不能替代的优势,例如人工智能对于数字和程式非常敏感,可以长时间的集中于处理同一个问题,这些优势可以帮助人类解决一些繁复的工作,所以电气自动化控制中应用人工智能技术后,它一定可以为人类创造更大的价值[3]。
2.2人工智能技术在电气自动化控制中的应用优势。
因为电气设备的复杂性和连贯性的要求,所以对电气设备的设计人员就提出了非常高的专业要求,除了具备非常扎实的专业知识以外,还要求他们的设计最好可以结合最新的科学技术。在电气自动化控制中使用人工智能技术之后,会带来很多便利性,具体表现为下面这4点:(1)数据的收集与运算都能利用人工智能技术来实现,因为拥有了这一作用,以此一来就能对电气设备的每样数值开展收集,还可立即对数据进行运算,因此能让电气自动化的现实管控效果得以大范围提高。(2)人工智能技术可实现连续的监管并实现必要的报警。人工智能技术能同步监控电气系统中主要设备的模拟数据值。(3)人工智能管控的操纵监控系统较高效。能够通过鼠标、键盘来对电气设备实行自动化管控,因为使用管控流程就能够实现同步并网带负荷操纵,以此以来不仅能够大范围减少工作人员的劳动时间,还能让控制效率得以提升,这同目前工业发展的`现实需要非常符合[4]。(4)差错记载功能也是人工智能技术拥有的独特特点,人类可以更好的运用这个技术来监测每一个运行环节中出现的点滴差池,以此来调试设备使其达到最佳的状态,这从根本上提高了电气设备的运行效率和使用安全度,使其更好的为人类服务。
3人工智能技术在电气自动化中的应用分析。
因为目前从根本上升级了人工智能技术,加上它技术的逐渐完备,越来越多的电气设备开始同人工智能技术挂钩,为了更加直观的介绍人工智能设备的特点与技术属性,笔者主要对电气自动化设备中人工智能技术的使用和电气管控流程中人工智能技术的使用开展了辨析。
3.1人工智能技术在电气自动化设备中的应用。
电气自动化系统有极大的繁杂性,它主要牵扯到许多范围与科目,这就对操控电气自动化设备的员工提出了很高的要求,他们应该拥有很高的职业素养,而且还要有充足的知识储备。因为电气自动化体系相当繁杂,所以在现实操控中的效率性要加强,这样才能极大程度地降低因为不合理使用,导致出现非常规错误,有时更可能导致安全事故等。这些问题的解决都可凭借人工智能技术来达成,就人工智能技术自身来看,其系统中心主要是计算机系统,经由编辑每种操控系统,能够使计算机控制中的智能管控得以更好的施行[5]。
3.2人工智能技术在电气控制过程中的应用。
就电气自动化的管控流程来看,人工智能可以帮助人类更好的控制电气设备。在电气设备的控制系统中,引入人工智能的现金技术后,能让实际工作操作效果在很大范围上得以提升,还能使得整个操作过程实现无人化监管,这样一来达到了企业节约成本的目的,尤其是不用再去花费大笔的人工费用。除此之外就从整个控制过程来看,人工智能技术可以实现同多台设备的同时控制,专家体系、模拟操控和神经网络操控是其首要应用的人工智能系统[6]。
4总结。
科技的发展让人类的生活更加便利与美好,人工智能技术的发挥在那越来越推进了现代工业的更好发展。因为人工智能技术具备相当多的优点,它是这些年来发展起来的一门新兴高科技技术,它在实际应用中有巨大的使用效率,不仅在电气自动化控制中,加入人工智能技术后,极大程度上提高了电气设备的控制度,让它能更好的的服务人类生产活动;同时电气设备上结合了人工智能技术,让电气自动化设备的操控系统变得更加简洁,提高了员工操控效率;降低了企业的人力物力成本,使得生产流程更加科学、连贯,所以大力发展人工智能技术与电气自动化的结合是非常有必要的研究。
参考文献:
[5]黄开平.高级项目中自动化系统的应用[j].电气时代,20xx(02).。