比和比例教案(通用13篇)
在教学过程中,教案具有重要的指导作用。教案的评估应当客观公正,全面反映学生的学习情况和教学效果。对于教学设计不够自信的教师,以下教案可以帮助你提升教学能力。
比和比例教案篇一
1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.
2.使学生掌握三角形一边平行线的判定定理.
3.已知线的成已知比的作图问题.
4.通过应用,培养识图能力和推理论证能力.
5.通过定理的教学,进一步培养学生类比的数学思想.
观察、猜想、归纳、讲解。
l.教学重点:是平行线分线段成比例定理和推论及其应用.。
2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.。
1课时。
投影仪、胶片、常用画图工具.。
【复习提问】。
叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).
【讲解新课】。
在黑板上画出图,观察其特点:与的交点a在直线上,根据平行线分线段成比例定理有:……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:
平行于的边bc的直线de截ab、ac,所得对应线段成比例.。
在黑板上画出左图,观察其特点:与的交点a在直线上,同样可得出:(六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:
平行于的边bc的直线de截边ba、ca的延长线,所以对应线段成比例.。
综上所述,可以得到:
如图,(六个比例式).。
此推论是判定三角形相似的基础.。
这个推论不包含下图的情况.。
后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)。
例3已知:如图,,求:ae.。
教材上采用了先求ce再求ae的方法,建议在列比例式时,把ce写成比例第一项,即:.
让学生思考,是否可直接未出ae(找学生板演).。
【小结】。
1.知道推论的探索方法.。
2.重点是推论的正确运用。
(1)教材p215中2.。
(2)选作教材p222中b组1.。
数学教案-平行线分线段成比例定理(第二课时)。
比和比例教案篇二
p53~54、第4~13题,思考题,正、反比例应用题的练习。
进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。
一、基本训练。
p53第4题,口答并说明理由。
二、基本题练习。
1、做练习十第5题。
2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?
用比例的知识怎样解答呢,请大家自己做一做。
评讲:说一说是怎样想的`?
(板书:速度×时间=路程(一定)=反比例。
提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?
3、练习:(略)。
三、综合练习。
3、练习十第11题。
启发学生用几种方法解答。
4、做练习十第13题。
(1)提问:这是一道什么应用题?可以怎样列式解答?
(2)把树苗总数看做单位“1”,成活棵数是94%,你还能用比例知识解答吗?
四、讲解思考题。
引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?
五、课堂:
通过本课的练习,你进一步明确了哪些内容?
六、作业:
第8、9、10题。
七、课后作业:
第6、7、12题。
比和比例教案篇三
教学内容:教科书第16页上的线段比例尺,练习五的第49题。
教学目的:使学生理解线段比例尺的含义,会根据线段比例尺求图上距离或实际距离。
教具准备:教师准备一些线段比例尺的地图或平面图。
教学过程:
教师:上节课我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,如比例尺1:10000就表示图上距离是l厘米实际距离就是10000厘米,像这样的比例尺叫做数值比例尺。除了数值比例尺外,还有线段比例尺。什么是线段比例尺呢:这就是我们这节课要学习的内容。(板书课题)。
教师:线段比例尺是在图上附有一条注有数量的线段。用来表示和地面上相对应的实际距离。同学们可以翻开教科书第16页.看右下角有一幅地图。地图的下面就有一条线段比例尺。它上面有0、50和100几个数,还注明了长度单位千米。这些数和单位表示什么意思呢?大家量一量从0到50这段线段有多长。(1厘米。)从50到100呢?(也是1厘米。)从0到50就表示地图上1厘米的距离相当于地面上50千米的实际距离。从0到100就表示地图上2厘米的距离相当于地面上100千米的实际距离。
然后教师问:
l如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际距离?
让学生说怎样列式。教师板书:505.5=275(千米)。
之后,进一步提出:
千米等于5000000厘米。所以这条线段比例尺改写成数值比例尺就是1:5000000。)。
教师板书出数值比例尺。
完成练习五的第49题:
1.第5题,让学生独立填表:填表前,要提醒学生图上距离的单位应用什么,实际距离的单位应用什么。
2.第8题,让学生独立计算。集体订正后,让学生按照东南西北的方位说说拖拉机站、电影院、汽车站和供销社离学校的距离。如,电影院在学校的南面,距学校200米;拖拉机站在学校的西北面,距学校2500米。
3.第9题,让学生先求出试验田长和宽的图上距离,然后画出平面图,并且要注意在平面图上注明比例尺。
比和比例教案篇四
1.经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。
2.理解反比例函数的概念,会列出实际问题的反比例函数关系式。
3.使学生会画出反比例函数的图象。
4.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。
1、使学生了解反比例函数的表达式,会画反比例函数图象。
2、使学生掌握反比例函数的图象性质。
3、利用反比例函数解题。
1、列函数表达式。
2、反比例函数图象解题。
一、作业检查与讲评。
二、复习导入。
1.什么是正比例函数?
我们知道当。
(1)当路程s一定,时间t与速度v成反比例,即vt=。
(2)当矩形面积一定时,长a和宽b成反比例,即ab=。
创设问题情境。
问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。
分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式.
从这个关系式中发现:。
1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.
2.自变量v的取值是v0.
问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.
分析根据矩形面积可知。
xy=24,即。
从这个关系中发现:
2.自变量的取值是x0.
比和比例教案篇五
结合“图片像不像”“调制蜂蜜水”等情境,找到相等的比,理解比例的意义,认识各部分名称,能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例。
2.数学思考与问题解决。
经历自学和合作的过程,体验学习的快乐。
3.情感态度。
培养学生自主参与的意识,培养学生观察、分析、概括的能力。
通过情境理解比例的意义,通过求比值或化简比判断两个比是否能组成比例。
1.教学难点。
通过求比值或化简比判断两个比是否能组成比例,并正确的写出比例。
2.教法学法。
讲授与自学相结合、自主学习法、合作学习法。
多媒体课件、学生自学卡。
一、回顾旧知,复习铺垫。
1.复习学过的有关比的知识。
2.谈话引入新课。
二、引导探究,学习新知。
你们能说出每幅图的长与宽的各是多少吗?请在学习卡上写下来。
写出长与宽的比,并求出比值。完成学习卡的第一题。
(1)交流反馈。
师:像这样表示两个比相等的式子叫做比例。(板书:比例)。
3.组织看书,认识名称。
我们知道了比例的意义,那么,比例的各部分名称是什么呢?请大家自学16页的“认一认”,完成学习卡的第二题。
4.利用新知,学以致用。
师:在图上这五张图片的尺寸中,你还能找出哪些比来组成比例?
(小组讨论,交流汇报)。
生汇报。
【设计意图:通过教师系统的总结,传递给学生一个信号,考虑问题要多方位思考。】。
5.内化意义,提高认识。
(1)从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?
(2)要判断两个比能否组成比例,关键看什么?如果不能一眼看出两个比是不是相等,怎么办?”
6.引申应用。
学生自学数学书的16页的问题三。
7.比较“比”和“比例”两个概念。
(1)教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书p17,看看什么叫比例的项、外项、内项。
指名让学生指出板书中的`比例的外项、内项。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400。
两个内项的积是2×200=400。
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。
通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:
“这个比例的外项是哪两个数呢?内项呢?”
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
三、巩固深化,拓展思维。
(题略)。
四、全课小结,提高认识。
通过这节课的学习,你们都有哪些收获?
比和比例教案篇六
2.使学生掌握解比例的方法,会解比例.。
使学生掌握解比例的方法,学会解比例.。
(一)解下列简易方程,并口述过程.。
2=8×9。
(二)什么叫做比例?什么叫做比例的基本性质?
(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?
6∶10和9∶1520∶5和4∶15∶1和6∶2。
(四)根据比例的基本性质,将下列各比例改写成其他等式.。
3∶8=15∶40。
(一)揭示解比例的意义.。
2.学生交流。
(二)教学例2.。
1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的'解.。
2.组织学生交流并明确.。
(1)根据比例的基本性质,可以把比例改写为:3=8×15.。
(3)规范并板书解比例的过程.。
解:3=8×15。
=40。
(三)教学例3。
1.组织学生独立解答.。
2.学生汇报。
这节课我们。
比和比例教案篇七
教学过程。
谈话导入。
师:谁能用比的知识说一说我们班男女同学的人数情况?
(指名汇报)。
师:今天我们就一起来整理和复习比和比例的有关知识。
回顾与整理。
1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。
预设。
生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。
生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。
生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。
生4:配制农药会应用到比的知识;地图上一般都有比例尺。
……。
(2)说一说比与比例有什么区别。
比
比例。
各部分名称。
0.9∶0.6=1.5。
前项后项比值。
基本性质。
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个内项的积等于两个外项的积。
(3)出示教材83页“回顾与交流”2题。
学生独立完成,思考比、分数、除法之间的关系,并全班交流。
预设。
生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。
生2:除法算式的商相当于分数的分数值,相当于比的比值。
强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。
比和比例教案篇八
p47~48,例7、正、反比例的比较。
进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。
一、复习。
判断下面两种理成不成比例,成什么比例,为什么?
(1)单价一定,数量和总价。
(2)路程一定,速度和时间。
(3)正方形的边长和它的面积。
(4)工作时间一定,工作效率和工作总量。
二、新授。
1、揭示课题。
2、学习例7。
(1)认识:“千米/时”的读法意义。
(2)出示书中的问题要求学生逐一回答。
(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?
(4)填空:用下面的形式分别表示两个表的内容。
当()一定时,()和()成()比例关系。
还有什么样的依存关系?
(5)教师作评讲并小结。
(6)用图表示例7中的两种量的关系。
指导学生描点、连线。
在这条直线上,当时间的.值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?
用同样的方法观察右表。
3、总结正、反比例的特点(异同点)。
由学生比、说。
三、巩固练习。
1、练一练第1、2题。
2、p49第1题。
四、课堂小结:
正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?
五、作业。
六、课后作业。
比和比例教案篇九
教学内容:p50第3——8题,正反比例关系练习。
教学目的:进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。
教学过程:
一、揭示课题。
二、基本知识练习。
2、练:950第4题。
先说出数量关系式,再判断成什么比例?
三、综合练习。
1、练习:p50第5题。
想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?
口答并说说怎样想的。
2、做练习十二第6题、第7题。
3、做第8题。
提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?
四、延伸练习。
下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?
1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。
2、某工厂3小时织布1800米,照这样计算,8小时织布x米。
五、课堂。
通过这节课的练习,你进一步认识和掌握了哪些知识?
六、作业。
《练习与测试》p25第五、六题。
比和比例教案篇十
1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。
2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
实物投影。
一、复习。
要求学生说出成正反比例量的关键,根据学生回答板书关系式。
2、判断下面各题中的两种量是不是成比例,成什么比例。
(1)圆锥的体积和底面积。
(2)用铜制成的零件的体积和质量。
(3)一个人的身高和体重。
(4)互为倒数的两个数。
(5)三角形的底一定,它的`面积和高。
(6)圆的周长和直径。
(7)被除数一定,商和除数。
二、练习。
完成练习十三9~13题。
1、第9题。
观察每个表中的数据,讨论表下的问题。要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。
2、第10题。
(1)看图填写表格。
(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。
(3)启发学生运用有关比例尺的知识进行解答。
3、第11题。
填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。
4、第12题。
引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。
5、第13题。
让学生小组进行讨论,教师指导有困难的学生。
三、补充练习。
1、a与b成正比例,并且在a=1。。时,b的对应值是0。15。
(1)a与b的关系式是a/b=()。
(2)当a=2。5时,b的对应值是()。
(3)当b=9。2时,a的对应值是()。
2、甲、乙两人步行速度的比为5:6,从a地到b地,甲走12小时,乙要走几小时?
比和比例教案篇十一
该板块主要复习比和比例的意义、性质及应用,除了对基本概念的复习外,还注重沟通比和比例间的关系及与分数、除法的联系。
例题:关于比、比例的知识,你都知道哪些?对比和比例的相关知识的复习。
教学时,以问题“关于比和比例的知识,你都知道哪些?”引入,让学生自主地回顾知识。学生可能会想到很多,同时也会感到这些知识点比较零乱、无序、缺乏系统化,进而激发学生梳理这部分知识的需求,在此基础上以小组为单位展开学习。重点对比、比例、比例尺的意义及比和比例的性质、化简比、求比值、解比例、求图上(实际)距离、判断正(反)比例等内容进行与复习。
“讨论与交流”是从知识内在联系方面进行,重点弄清楚比、比例与相关知识的联系与区别。
教学第一个问题时,先让学生自主讨论比、分数、除法的联系与区别,借助于下图,揭示它们之间的关系。
从意义上区分:“比”是表示两个数的倍数关系;“除法”表示的是一种运算;“分数”则是一个数。
教学第二个问题时,结合第一个问题的讨论,让学生自主交流,能体会到比、除法、分数的基本性质在本质上是相同的。
教学第三个问题时,可在对比和比例意义进行对比的基础上进行讨论、交流,明确“比”表示两个数相除的关系,而“比例”表示两个比相等的式子。了解比是比例的基础,比例是比的扩展,没有两个相等的比是组不成比例的。还要弄清楚不是任意的两个比都能组成比例的,-定是比值相等的两个比才能组成比例。所以,要判断两个比能否组成比例,关键要看这两个比的比值是否相等。可借助下面的表格帮助学生理解:
通过上面的复习,让学生进一步地感受到“数学知识间,有着密切的联系”
第1题,是运用逼和比例尺解决问题的题目,练习时先让学生说一说每一个信息中比及比例尺所表示的实际意义,然后再结合实际意义感受比和比例在实际生活中应用非常广泛。
第2题是运用正比例知识解决实际问题的题目。练习时,可以用以下几种方法测量大树的高度:
(1)利用影子。人影与树影、人高与树高的比组成比例,根据人高、人影、树影的高度求出树高。
(2)利用标杆。方法同上。
最后,让学生谈谈感受,体会比例知识在生活中的实际应用。
第3题是用百分数和比解决问题的题目。练习时,可让学生在解决问题的基础上,交流百分数和比所表示的实际意义,理解比与百分数意义的区别,体会在通常情况下,表示各部分的关系时,用比表示更清楚;表示部分与总数之间的关系,用百分数更合适一些。
第4题是一道实际问题。练习时,可引导学生先分析用什么方法来解答,形成思路后,再解答。该题可以用分数的知识解答,先求出总数是5000顶,再计算5000×(1-),得出4000顶;也可以用比例的知识解决,设未加工的为x顶,1:4=1000:x,求出未加工4000顶;还可以用其他方法解决。通过解题让学生体会在实际解决问题时,可以选用不同的方法。
5.式与方程。
本板块是对小学阶段学习的代数初步知识进行,包括用字母表示数、简易方程及用方程解决实际问题。
例1:用字母表示数,可以简明地表达数量关系、运算律和计算公式。你能举出一些这样的例子吗?是对用字母表示数知识的系统。
教学时,让学生通过举例来回顾如何用字母表示数、数量关系、公式等,并以表格的形式来呈现,同时引导学生对用字母表示的内容进行观察,使之对小学阶段的公式、数量关系、运算律等又系统的`了解。对用字母表示数时容易出错的问题,教师要加以强调。如:字母和数相乘、字母和字母相乘时的写法等。
例2:你能把有关方程的知识一下吗?是对有关方程知识进行。
教学时,可以先让学生对有关的概念进行回顾,如:等式、方程、方程的解、解方程等进行回顾,并对易混概念:等式与方程、方程的解与解方程进行讨论区分。然后引导学生列表,交流完善。
复习解方程时,要使学生弄清解方程中每一步的根据是什么(等式的性质),以及怎样检验。教师可通过举例来引导学生复习。
“讨论与交流”是对用字母表示数的优越性及用方程解决问题的特点进行讨论。
教学时,对于用字母表示数的优越性,要使学生在交流的基础上感受到用字母表示数很简洁、概括、准确。对于第二个问题,可结合具体的题目,让学生分别用方程与算术方法解答,通过对比,分析用方程和算术方法解决问题的基本思路及特点,体会两种思路的区别,知道有些题目适合用方程思路解决,有些题目适合用算术方法解决。明确在用方程解决问题时,关键是要抓住题目中主要的等量关系,设未知数,列方程解答。
“应用与反思”
第1题是练习用字母表示数的题目。练习时,让学生独立完成,交流时注意说说每个题的数量关系。最后,体会用字母表示数量关系的简洁性。
第2题是一个找规律的题目。练习时,可以让学生边观察边填表,在填写的过程中发现规律,自觉地运用字母表示出规律。规律是:分成的三角形的个数比边数少2,用含有字母的式子就是n-2。体会用字母表示数的概括性。
第4题是用列方程的方法解决问题的题目。练习时,先找出题中的等量关系,通过交流引导学生自觉选择最基本的等式列方程。之后,可以让学生交流用方程解决问题的方法。练习完成后,教师可以把该题的已知条件和问题变化一下,变成用算术方法解决的问题,让学生体会到灵活选择解答方法的必要性。最后,引导学生用不同方法解决问题的特点。
比和比例教案篇十二
本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。
例1让学生初步感知两种相关联的量以及成正比例的量的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度一定是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用时间变化,路程也随着变化具体解释两种量的相关联。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。
试一试在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0。3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出铅笔总价和数量成正比例的结论,并用式子总价/数量=单价(一定)作出解释。试一试的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。
学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系的过程,加强对式子y/x=k(一定)的理解。
练一练判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页试一试里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从边长4=周长可以得到周长与边长的比的.比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从边长边长=面积可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。
像直观表达正比例关系。
例2是按照《标准》的要求根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照a点表示1小时行80千米b点表示5小时行400千米说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页练一练),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2。5小时行驶的千米数,要在横轴上找到表示2。5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。
练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。
例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。
练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。
比和比例教案篇十三
1、甲数除以乙数的商是2.8,甲、乙两数的最简比是()。
2、圆的周长与直径的比值是();正方形的周长与边长的比值是()。
3、在24的约数中选出四个数,组成一个比例是()。
4、如果苹果重量的1/6与橘子重量的20%相等,那么苹果重量与橘子重量的比是()。
5、在一个比例中。两个内项互为倒数,其中一个外项是最小的合数,另一个外项是()。
6、用一张长和宽之比为2:1的纸剪两个最大的圆,这张纸的利用率是()。
7、一根钢管长3米,截去1/3后又截去1/3米,比原来短了()米。
8、圆柱体的侧面积一定,()和高成反比例。
9、两个长方形的面积比是8:7,长的比是4:5,宽的比是()。
10、请写出两个内项相等,两个比的比值都是0.4的一个比例。
二、判断题。
2、等第等高的平行四边形与三角形的面积之比为2:1。
4、甲、乙两个足球队的比赛结果是3:0,这个比的前项是3,后项是0。
5、两个正方体的棱长之比为2:3,则他们的体积之比为4:9。
三、选择题。
1、一种长5毫米的零件,画在图纸上长10厘米,这副图的比例尺是()。
a、1/2b、2/1c、1/20d、20/1。
2、圆的面积和()成正比例。
a、半径b、直径c、半径的平方d、
3、一项工程,甲独做5天完成,乙独做6天完成,甲、乙两人的工作效率的比是()。
a、5:6b、6:5c、1/6:1/5d、5/11:6/11。
4、路程一定,所走的路程和剩下的`路程()。
5、xy+2=k(一定),x和y()。
6、下列选项中,()成正比例,()成反比例,()不成比例。
a、比的前项一定,比的后项和比值。
b、比例尺一定,分母和分数值。
c、正方形的边长和面积。
四、计算题(解比例略)。
五、解决问题。
6、一个长方形操场长100米,宽50米,把它画在比例尺是1/2000的图纸上,长和宽各应画多少厘米?请画出这个长方形。