函数的应用教案(优秀19篇)
教案应结合教材内容和学生实际情况,使教学更贴近学生生活。编写教案前应充分了解教材和教学大纲的要求。下面是一些教案范文以及教师对教案编写的心得体会,供大家参考和借鉴。
函数的应用教案篇一
使学生对反比例函数和反比例函数的图象意义加深理解。
一、新授:
1、实例1:(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?
答:p=600,p是s的反比例函数。
(2)、当木板面积为0.2m2时,压强是多少?
答:p=3000pa。
(3)、如果要求压强不超过6000pa,木板的面积至少要多少?
答:2。
(4)、在直角坐标系中,作出相应的函数图象。
(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
二、做一做。
1、(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8所示。
(2)蓄电池的电压是多少?你以写出这一函数的.表达式吗?
电压u=36v,i=60k。
r()345678910。
i(a)。
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)。
(1)分别写出这两个函数的表达式;。
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;。
随堂练习:
p145~1461、2、3、4、5。
作业:p146习题5.41、2。
函数的应用教案篇二
教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。
难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。
教学方法:多媒体授课。
学法指导:借助列表与图像法。
教具:多媒体教学设备。
教学过程:
函数的应用教案篇三
知识网络。
学习要求。
1.了解解实际应用题的一般步骤;。
2.初步学会根据已知条件建立函数关系式的方法;。
3.渗透建模思想,初步具有建模的'能力.
自学评价。
1.数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述.
2.数学建模就是把实际问题加以抽象概括。
建立相应的数学模型的过程,是数学地解决问题的关键.
3.实际应用问题建立函数关系式后一般都要考察定义域.
【精典范例】。
例1.写出等腰三角形顶角(单位:度)与底角的函数关系.
例2.某计算机集团公司生产某种型号计算机的固定成本为万元,生产每台计算机的可变成本为元,每台计算机的售价为元.分别写出总成本(万元)、单位成本(万元)、销售收入(万元)以及利润(万元)关于总产量(台)的函数关系式.
分析:销售利润销售收入成本,其中成本(固定成本可变成本).
【解】总成本与总产量的关系为。
单位成本与总产量的关系为。
销售收入与总产量的关系为。
利润与总产量的关系为。
函数的应用教案篇四
这节课是在学生掌握了反比例函数的概念及其图像与性质的基础之上而学习的,并且上学学习了正比例函数和一次函数,因此学生已经有了一定的知识准备,但是由于学生的知识所限,对于例题中的信息并不了解,这样容易造成学生在了解上的困难,所以在教学时我选用了学生所熟悉的实例进行教学。使学生从身边事物入手,真正体会到数学知识来源于生活,有一种亲切感,另外对于本节的问题,文字多,阅读量大,所以我应用幻灯片的形式展现,效果要好,注意要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来活动,不断引导学生利用数学知识解决实际问题,本节课效果较好。
函数的应用教案篇五
这一节的重点就是钠的化学性质——与水反应,还有钠的物理性质——颜色。难点就是钠与氧气在充足及过量时候的反应,还有就是实验,由于反应速度快,难以观察,最后就是反应的化学方程式。
三教学理念及其方法。
对反应速度快这个问题可以通过慢放实验的动化,使学生能看清楚过程。
2涉及原子等微观粒子的结合过程,需要很强的空间想象力,可以通过计算机动画演示,使反应变得直观,更容易理解。
3对于钠与水的反应,具有一定的危险性,可以通过动画来展示实验不当造成的后果。
四教学过程。
2再以水灭火图片给学生观看,然后以钠放入水中为参比,激发学生的兴趣。
3再通过一些趣味性实验演示,能更进一步激发学习的积极性,例如用一装有半瓶水的塑料瓶,瓶塞上扎一黄豆大的钠的大头针,瓶倒置使钠和水充分反应,取下塞子、点燃火柴靠近瓶口有尖锐的爆鸣声,效果得到大大改进。
五学法分析。
通过这节课的教学教给学生对金属钠的认识,掌握金属钠的性质,透过现象看本质,分析、归纳物质的性质,培养学生观察、分析问题的能力,调动学生积极性,激发学生的学习兴趣。
五总结性质,得出结论,布置作业。
列出来,这样条理就清晰了,然后再总述一下这节所学的内容,讲述的重点及难点。最后布置2个思考题:
(1)钠为什么保存在煤油中?
(2)把钠投到苯和水的混合液中钠在水和苯间跳上“水上芭蕾”,为什么?
再讲一下钠的用途。
六板书设计。
板书设计第一节钠。
一、钠的物理性质。
二、钠的化学性质。
1钠的原子结构。
2钠与氧气反应(条件不同,产物不同)。
3钠与水反应(重点)。
函数的应用教案篇六
2.渗透数形结合思想,提高学生用函数观点解决问题的能力。
二、重点、难点。
2.难点:分析实际问题中的数量关系,正确写出函数解析式。
3.难点的突破方法:
用函数观点解实际问题,一要搞清题目中的.基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
三、例题的意图分析。
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
函数的应用教案篇七
(2)借助几何画板的帮助,学生能从图的特点发现各个量之间的关系,能直接将实际问题抽象为三角函数模型,会用三角函数的知识和方法解决模型问题,并能利用模型解释有关实际问题,体会三角函数是描述周期变化现象的重要函数模型.
2.目标解析。
(1)内容解析:本节内容是在前面学习了三角函数的概念、性质与图象之后,专门设置了三角函数模型的应用,其目的是为了加强用三角函数模型来刻画周期变化规律的实际问题,以提高学生解决实际问题的能力.根据教材的安排,本节内容的4个例题共分两个课时,本节课是第一课时,考虑到例1是围绕根据图象建立三角函数解析式,例3是将实际问题抽象出三角函数的模型问题,为系统展示三角函数的应用广泛性和真实性,选择了例1和例3作为示例.
根据以上分析,本节课的教学重点确定为:
教学重点:用三角函数模型刻画温度随时间变化的规律,用函数思想解决具有周期变化规律的实际问题;对房屋采光与楼间距的关系的探究,将实际问题抽象为三角函数的模型问题.
(2)学情诊断:本节课是三角函数的应用,数学问题的载体都是具有实际意义与生活背景的,本节课的两个问题是具有一定的广泛性和真实性的,如何引导学生从生活中的实际来抽出三角函数的模型,以及对应的数量关系是本节课成败的关键所在.在问题1的探究中,学生已掌握了三角函数的概念与性质,理解的图象及变换,因此在求解析式中对a、的求解应该不是问题,但是对,b的求解就容易出错,因为的值不唯一,b的变化是针对于整体图象的移动,有别于前面的图象平移,所以在处理此问题一定要重点引导,加以区别强调;为了体现数学的实用性,即由图象求得解析式后,解析式有什么用,在这里我拓展了第三小题“求出十一月份的近似温度”.在问题2的探究中,其实际问题的背景比较复杂,需要学生具备一定的综合性知识以及理解水平,在“太阳高度角”的理解可能比较费劲,这样我借助几何画板来展示形成过程,就可以迎刃而解了.
根据以上分析,本节课的教学难点确定为:
教学难点:对问题实际意义的数学解释,从实际问题中抽象出三角函数模型.
函数的应用教案篇八
这节课我首先让学生思考了三个列函数关系式的实际问题,接着在学生探究这三个实际问题的基础上,思考、归纳出二次函数的定义以及探讨对二次函数的判断,最后针对二次函数的定义和能用二次函数表示变量之间关系进行了巩固应用。本节课通过丰富的现实背景,使学生感受二次函数的意义,感受数学的广泛联系和应用价值。通过学生的探究性活动(经历数学化的过程),和学生之间的合作与交流,通过分析实际问题,引出二次函数的概念,使学生感受二次函数与生活的密切联系。在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的新知,课堂达到了较好的教学效果。通过本节课也让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。
将本文的word文档下载到电脑,方便收藏和打印。
函数的应用教案篇九
教学目标:
1、继续经历利用二次函数解决实际最值问题的过程。
2、会综合运用二次函数和其他数学知识解决如有关距离等函数最值问题。
3、发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。
教学重点和难点:
重点:利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题。
难点:例2将现实问题数学化,情景比较复杂。
教学过程:
一、复习:
1、利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是:
(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围。
(2)在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。
2、上节课我们讨论了用二次函数的性质求面积的最值问题。出示上节课的引例的动态。
图形(在周长为8米的矩形中)(多媒体动态显示)。
设问:(1)对角线(l)与边长(x)有什何关系?
(2)对角线(l)是否也有最值?如果有怎样求?
l与x并不是二次函数关系,而被开方数却可看成是关于x的二次函数,并且有最小值。引导学生回忆算术平方根的性质:被开方数越大(小)则它的算术平方根也越大(小)。指出:当被开方数取最小值时,对角线也为最小值。
二、例题讲解。
多媒体动态演示,提出思考问题:(1)两船的距离随着什么的变化而变化?
(2)经过t小时后,两船的行程是多少?两船的距离如何用t来表示?
设经过t小时后ab两船分别到达a’,b’,两船之间距离为a’b’=ab’2+aa’2=(26-5t)2+(12t)2=169t2-260t+676。(这里估计学生会联想刚才解决类似的问题)。
因此只要求出被开方式169t2-260t+676的最小值,就可以求出两船之间的距离s的最小值。
解:设经过t时后,a,bab两船分别到达a’,b’,两船之间距离为。
s=a’b’=ab’2+aa’2=(26-5t)2+(12t)2。
=169t2-260t+676=169(t-1013)2+576(t0)。
当t=1013时,被开方式169(t-1013)2+576有最小值576。
所以当t=1013时,s最小值=576=24(km)。
答:经过1013时,两船之间的距离最近,最近距离为24km。
练习:直角三角形的两条直角边的和为2,求斜边的最小值。
三、课堂小结。
应用二次函数解决实际问题的一般步骤。
四、布置作业。
见作业本。
函数的应用教案篇十
本节课是在学习学习了第一章函数的应用和三角函数的性质和图象的基础上来习三角函数模型的简单应用,学生已经有了数学建摸的基本思想和方法,应用三角函数的基本知识来解决实际问题对学生来说应该顺理成章,所以对本节的学习应让学生能够多参与多思考,培养他们的分析解决问题的能力,提高应用所学知识的能力。
函数的应用教案篇十一
教学目标:使学生对反比例函数和反比例函数的图象意义加深理解。
教学程序:
一、新授:
1、实例1:(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?
答:p=600,p是s的反比例函数。
(2)、当木板面积为0.2m2时,压强是多少?
答:p=3000pa。
(3)、如果要求压强不超过6000pa,木板的面积至少要多少?
答:2。
(4)、在直角坐标系中,作出相应的函数图象。
(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
二、做一做。
1、(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r之间的函数关系如图5-8所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压u=36v,i=60k。
r()345678910。
i(a)。
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)。
(1)分别写出这两个函数的表达式;。
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;。
随堂练习:
p145~1461、2、3、4、5。
作业:p146习题5.41、2。
函数的应用教案篇十二
本节课的教学,我本意是通过反比例函数及其图像相关问题的复习,引出本节课所要讨论的问题反比例函数的应用,而后通过对问题1的讨论切入正题,重点研究“数”与“形”的互相渗透,并通过这节课的学习让学生体会“数形结合”的数学思想,利用函数图像来解决应用题。在教学中,我发现这种教学设计出现了以下几个问题。
首先,目标教学的第一环节,前测激趣,但没有达到激趣的目的,这种引课方式,在课堂反映出来显得非常平淡,没有新意,没能引起学生的认知发生冲突,激发学生的求知欲。
其次,在导探激励环节中,问题设计较好,但问题的处理上操之过急,没能让学生切实做出函数图像,通过问题迫使学生利用函数图像来解决问题,达到真正看图说话,因此就数形的内在联系学生体会不是很深刻。
为了一开始就能充分调动学生的情商,激发他们的学习动机和好奇心,激发他们的求知欲,使他们的思维进入最佳状态,我就上面存在的问题作如下改进。
在整个题目的处理过程,鼓励学生画出函数图像,更好的认识整个过程自变量和应变量变化的整体情况,处理好题目中的量与自变量和应变量的关系。
作以上改进,可以很好地让学生体会到“数”与“形”之间的联系,并且会根据反比例函数求应用题。
函数的应用教案篇十三
学生能理解函数的概念,掌握常见的函数(sum,average,max,min等)。学生能够根据所学函数知识判别计算得到的数据的正确性。
学生能够使用函数(sum,average,max,min等)计算所给数据的和、平均值、最大最小值。学生通过自主探究学会新函数的使用。并且能够根据实际工作生活中的需求选择和正确使用函数,并能够对计算的数据结果合理利用。
学生自主学习意识得到提高,在任务的完成过程中体会到成功的喜悦,并在具体的任务中感受环境保护的重要性及艰巨性。
sum函数的插入和使用。
函数的格式、函数参数正确使用以及修改。
任务驱动,观察分析,通过实践掌握,发现问题,协作学习。
excel文件《2000年全国各省固体废弃物情况》、统计表格一张。
1、展示投影片,创设数据处理环境。
2、以环境污染中的固体废弃物数据为素材来进行教学。
3、展示《2000年全国各省固体废弃物情况》工作簿中的《固体废弃物数量状况》工作表,要求根据已学知识计算各省各类废弃物的总量。
函数名表示函数的计算关系。
=sum(起始单元格:结束单元格)。
4、问:求某一种废弃物的全国总量用公式法和自动求和哪个方便?
注意参数的正确性。
1、简单描述函数:函数是一些预定义了的计算关系,可将参数按特定的顺序或结构进行计算。
在公式中计算关系是我们自己定义的,而函数给我们提供了大量的已定义好的计算关系,我们只需要根据不同的处理目的去选择、提供参数去套用就可以了。
2、使用函数sum计算各废弃物的全国总计。(强调计算范围的正确性)。
3、通过介绍average函数学习函数的输入。
函数的输入与一般的公式没有什么不同,用户可以直接在“=”后键入函数及其参数。例如我们选定一个单元格后,直接键入“=average(d3:d13)”就可以在该单元格中创建一个统计函数,统计出该表格中比去年同期增长%的平均数。
(参数的格式要严格;符号要用英文符号,以避免出错。)。
有的同学开始瞪眼睛了,不大好用吧?
因为这种方法要求我们对函数的使用比较熟悉,如果我们对需要使用的函数名称、参数格式等不是非常有把握,则建议使用“插入函数”对话框来输入函数。
用相同任务演示操作过程。
4、引出max和min函数。
探索任务:利用提示应用max和min函数计算各废弃物的最大和最小值。
5、引出countif函数。
探索任务:利用countif函数按要求计算并体会函数的不同格式。
1、教师小结比较。
2、根据得到的数据引发出怎样的思考。
四、 。
1、废弃物数量大危害大,各个省都在想各种办法进行处理,把对环境的污染降到最低。
2、研究任务:运用表格数据,计算各省废弃物处理率的最大,最小值,以及废弃物处理率大于90%,小于70%的省份个数,并对应计算各省处理的废弃物量和剩余的废弃物量及全国总数。
1、分析存在问题,表扬练习完成比较好的同学,强调鼓励大家探究学习的精神。
2、把结果进行记录,上缴或在课后进行分析比较,写出一小论文。
1、让学生体会到固体废弃物数量的巨大。
2、处理真实数据引发学生兴趣。
通过比较得到两种方法的优劣。
学生的计算结果在现实中的运用,真正体现信息技术课是收集,分析数据,的工具。
通过类比学习,提高学生的自学能力和分析问题能力。
实际数据,引发思考。
学生应用课堂所学知识。
学生带着任务离开教室,课程之间整合,学生环境保护知识得到加强。
观看投影。
学生用公式法和自动求和两种方法计算各省废弃物总量。
回答可用自动求和。
动手操作。
计算各类废气物的全国各省平均。
练习。
练习。
用自己计算所得数据对现实进行分析。
应用所学知识。
练习并记录数据。
函数的应用教案篇十四
难点:其一般的性质分析,再由性质得到一般图像。
三.教学方法和用具。
方法:归纳总结,数形结合,分析验证。
用具:幻灯片,几何画板,黑板。
四.教学过程。
(幻灯片见附件)。
1.设置问题情境,找出所得函数的共同形式,由形式给出幂函数的定义(幻灯片1?幻灯片2)(板书)。
2.从形式上比较指数函数和幂函数的异同(幻灯片3)。
3.利用定义的形式,判断所给函数是否是幂函数,并得出判断依据(幻灯片4)。
4.画常见的三种幂函数的图像,再让学生用描点法画另两种,并用几何画板验证(幻灯片5)(几何画板)。
5.用几何画板画出这五个幂函数的图像,观察图像完成书中幂函数的函数性质的表格,并分析得出更一般的结论(板书)(几何画板)。
函数的应用教案篇十五
3.能够利用二次函数的图象求一元二次方程的近似根。
1.体会方程与函数之间的联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
启发引导 合作交流
课件
计算机、实物投影。
检查预习 引出课题
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
函数的应用教案篇十六
1.能从二倍角的正弦、余弦、正切公式导出半角公式,了解它们的内在联系;揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识.并培养学生综合分析能力.
2.掌握公式及其推导过程,会用公式进行化简、求值和证明。
3.通过公式推导,掌握半角与倍角之间及半角公式与倍角公式之间的联系,培养逻辑推理能力。
二、过程与方法。
2.通过例题讲解,总结方法.通过做练习,巩固所学知识.
三、情感、态度与价值观。
1.通过公式的推导,了解半角公式和倍角公式之间的内在联系,从而培养逻辑推理能力和辩证唯物主义观点。
2.培养用联系的观点看问题的观点。
【教学重点与难点】:
重点:半角公式的推导与应用(求值、化简、证明)。
难点:半角公式与倍角公式之间的内在联系,以及运用公式时正负号的选取。
【学法与教学用具】:
1.学法:
(1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.
2.教学方法:观察、归纳、启发、探究相结合的教学方法。
引导学生复习二倍角公式,按课本知识结构设置提问引导学生动手推导出半角公式,课堂上在老师引导下,以学生为主体,分析公式的结构特征,会根据公式特点得出公式的应用,用公式来进行化简证明和求值,老师为学生创设问题情景,鼓励学生积极探究。
3.教学用具:多媒体、实物投影仪.
【授课类型】:新授课。
【课时安排】:1课时。
【教学思路】:
一、创设情景,揭示课题。
二、研探新知。
四、巩固深化,反馈矫正。
五、归纳整理,整体认识。
1.巩固倍角公式,会推导半角公式、和差化积及积化和差公式。
2.熟悉"倍角"与"二次"的关系(升角--降次,降角--升次).
3.特别注意公式的三角表达形式,且要善于变形:
4.半角公式左边是平方形式,只要知道角终边所在象限,就可以开平方;公式的"本质"是用?角的余弦表示角的正弦、余弦、正切.
5.注意公式的结构,尤其是符号.
六、承上启下,留下悬念。
七、板书设计(略)。
八、课后记:略。
函数的应用教案篇十七
“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。教学完后,对新教材有了一些更深的认识。
精心备课。
备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。
二:教学内容不好处理。
“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲。
(2)当k0时,y随x的增大而______,这时函数的图象从左到右_____.
(3)当b0时,这时函数的图象与y轴的交点在:
(4)当b0时,这时函数的图象与y轴的交点在:
待定系数法的引入上用“弹簧的长度y(厘米)”来讲的,太难,要先讲书上的“做一做:“已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),”
三:难度不好处理:
如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数y=当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数。”
学生难以理解,我个人认为太难,超出了学生的理解能力。反而对一个具体的一次函数y=-2x+3中k,b是多少强调的不多。
满意之笔。
一.结合生活实例,充分调动学生学习的激情,恰当的过渡,点燃其求知的欲望。
在本节课的引入部分采用班级里的真人真事(运用校运动会的具体事例)“在此跑步过程中涉及到哪些量?”“假定每位选手各自都是匀速直线运动的,那速度、时间、路程之间有什么关系?”“路程是时间的一次函数吗?”等过渡性的问句既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。
二.大胆对教材作大幅度调整、修改。
对知识内容的完整性作了补充。
(附一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。)教材对“一次函数图象的画法”阐释得不太完整、详尽。学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。虽然在课后的习题与作业本中都有涉及到:当一次函数的自变量限制在某一范围时如何画此一次函数的图象,但在教材中似乎没有涉及到此类问题,对于b班的学生需要教师对此类问题做相关示范解决。(1)求y1关于x的函数关系式及自变量x的取值范围;(2)画出上述函数的图像。图像还是一条直线吗?此题为拓展知识点:当一次函数的自变量限制在某一范围时一次函数的图象是一条射线或线段而特地设计的。至于如何快速地画出射线或线段呢,让学生讨论后给出总结:对于射线,取起点与另一个异于起点的任一点画出射线;对于线段,取线段的两个端点然后连接即可。
不足之处。
一、时间把握不准。由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动或学生个别上台动手操作,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力。所以我想这么多内容可以更宜分开两节课来上。
二、部分内容上处理出现失误:初探索一次函数y=x的画法时,我直接自己硬性规定先取这样五个点:(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而没有先征求学生的意见,看看他们是怎么取的,也没有解释为什么要取这五个点(理由应是:这五个点分布均匀,它们的坐标较简单,有代表性)。
在以后的教学工作中,我要再接再厉,以能更好的体现数学课堂教学的有效性。
函数的应用教案篇十八
2、结合一次函数的图像,掌握一次函数及其图像的简单性质。
过程与方法目标
1、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;
2、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。
情感与态度目标
经历一次函数及性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。
本节通过对一次函数图像的研究,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。
教学重点:结合一次函数的图像,研究一次函数的简单性质。
教学难点:一次函数性质的应用。
学生已经对一次函数的图像有了一定的认识,在此基础上,结合一次函数的图像,通过问题的设计,引导学生探讨一次函数的简单性质,学生是较容易掌握的。
(一)做一做
在同一直角坐标系内分别作出一次函数y=2x+6,y=2x1,y=x+6,y=5x的图象。
(二)议一议
上述四个函数中,随着x值的增大,y的值分别如何变化?
学生:有的在增大,有的在减小。
学生讨论:y=2x+6和y=5x这两个一次函数在增大;y=2x1和y=x+6在减小;影响这个变化的是x前面的系数k的符号:当k为正数时,y随x的增大而增大;当k为负数时,y随x的增大而减小。
师:当k0时,一次函数的图象经过哪些象限?
当k0时,一次函数的图象经过哪些象限?
函数的应用教案篇十九
近期,我参加了一次关于函数应用的实训课程,通过实际操作和理论学习,我深刻认识到了函数在编程中的重要性和应用价值,并获得了许多宝贵的经验和心得体会。
首先,函数的灵活运用使编程变得高效而优雅。在实训中,我们学习了不同类型的函数,并学会了如何根据需求合理运用它们。无论是封装复杂操作的大型函数,还是根据特定规则进行数据处理的小型函数,它们极大地提高了我们的编程效率。通过函数的模块化设计,我们能够更加容易地调试代码和进行功能扩展。在实践中,我意识到,一个函数的设计应该尽量短小且单一,这样不仅使其易读易懂,也方便后续的维护与修改。
其次,函数应用的巧妙运用使程序更加具有可复用性。在实际的编程过程中,我们经常会遇到相似的问题,而函数的应用能够避免重复的代码编写。通过合理抽象和封装,我们可以将一段常用的功能代码写成一个函数,并在不同的场景下重复利用。在实训中,我尝试过将一些公共的功能模块写成通用函数,比如文件读写、网络请求等,这样可以节约不少时间,并且在后续的开发过程中也会变得更加便捷。
再次,函数应用培养了我们的思维能力和逻辑思维。在实训课程中,我们需要根据需求,设计函数的输入参数和输出结果,根据不同的场景用不同的函数组合和调用。这就要求我们具备良好的逻辑思维能力和编程思维。编写一个函数之前,我会先进行需求分析和逻辑架构的设计,这样可以在一开始就避免一些不必要的麻烦。在实践过程中,我意识到函数的好坏不仅取决于代码的质量,还要考虑其运行效率和可扩展性。因此,我们在编程过程中需要注重思考和反思,以提高自己的编程能力。
最后,实训过程中的合作与交流让我领悟到了团队合作的重要性。在实训中,我们往往需要与其他同学合作完成一个完整的项目。而函数的应用能够使项目更好地分工和协作。每个人负责相应的函数编写,然后将其整合到一起,最终形成一个完整的项目。通过与他人的合作,我意识到程序员不是一个人孤军奋战的,而是需要和他人紧密合作的。在合作过程中,我们不仅可以互相学习和借鉴,还可以共同解决问题,并培养自己的团队意识和沟通能力。
总结起来,函数应用实训给了我宝贵的经验和收获。我从中深刻体会到了函数在编程中的重要性和应用价值,学会了灵活运用函数提高效率,培养了思维能力和逻辑思维,并懂得了团队合作的重要性。通过这次实训,我对函数的应用有了更深入的理解,并且在今后的编程实践中,我将更加注重函数的合理设计和运用,以提高自己的编程水平和工作效率。