平方链教案(精选15篇)
教案是教师对教学过程、教学内容和教学方法的合理组织和安排的结果。教案的设计应当具有可操作性和实践性,使学生能够将所学知识应用于实际情境。对于教学活动的总结和归纳,教案是一种非常重要的记录和参考材料。
平方链教案篇一
教科书第82—83页的例题,“试一试”、“练一练”、练习十四第5—7题。
1、使学生知道测量和计算大面积的土地,通常用平方千米作单位;通过实际观察和推算,体会1平方千米的实际大小;知道1平方千米=1000000平方米=100公顷,会进行简单的单位换算。
2、使学生能借助计算器,应用平面图形的面积公式和有关面积单位换算的知识解决一些简单的实际问题。
3、使学生在学习活动中进一步体会数学与生活联系,培养相互合作的能力。
帮助学生认识1平方千米
感受1平方千米的实际大小以及与平方米、公顷间的进率。
图片
2、揭示课题:今天,我们就来学习“平方千米”这一常用的土地面积单位。
1、告诉学生1平方千米是多大。
老师直接揭示:平方千米的符号表示法和边长1000米的正方形土地面积是1平方千米。
想像一下边长1000米的正方形大约有多大,获得对1平方千米的初步体会。
2、算一算1平方千米是多少平方米。
根据正方形的面积公式,算出边长1000米的正方形面积是1000000平方米。
填好课本平方千米与平方米的进率。
3、1平方千米=()公顷
你能想办法算出平方千米和公顷之间的进率吗?
4、完成“练一练”第2、3题。
说说你是怎样换算单位?小数点是怎样移动的?
1、“试一试”
先算出梯形土地的面积是多少平方千米,再把计算结果换算成公顷
2、完成“练一练”第1题。
3、完成练习十四第5题
观察、从同一幅地图上描下来的五个省的不规则图形,比较他们面积的大小。
你可以通过什么办法验证自己的估算?
4、整理学过的面积单位。完成练习十四第6、7题。
(2)把所有单位按从小到大的次序排一排。
(3)相互间的进率分别是多少?
(4)根据每个面积单位的实际大小在括号里填上合适的单位。完成练习十三第7题
谈话:今天我们学习什么内容?通过今天的学习你有什么收获?还有什么问题?
平方链教案篇二
平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。
学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。
难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.。
平方链教案篇三
3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发知识的兴趣.
教学重点与难点。
:用计算器求一个正数的平方根的程序。
:准确用计算器求解一个正数的平方根。
讲练结合。
实物投影仪,计算器。
教学过程。
在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。
现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2f”的功能。
解:用计算器求的步骤如下:
小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2f”的键来转换。
例2.用计算器求的值。(保留4个有效数字)。
解:用计算器求的步骤如下:
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求的值。
解:用计算器求的步骤如下:
因为计算结果要求保留4个有效数字,
例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:
因为计算结果要求保留4个有效数字,
小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:
分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
解:按键的顺序是:
板书设计。
平方链教案篇四
一、教学内容:
本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。
二、教材分析:
完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。
本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。
重点:掌握完全平方公式,会运用公式进行简单的计算。
难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。
三、教学目标。
(1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。
(2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。
(3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。
(4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。
四、学情分析与教法学法。
学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。
学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流。
总结反思中获得数学知识与技能。
教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。
五、教学过程(略)。
六、教学评价。
在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。
在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。
平方链教案篇五
学习目标:
1、能说出有序数对的定义。
2、能用有序数对表示实际生活中物体的位置。
学习重点:用有序数对表示位置。
学习难点:用有序数对表示位置。
学习过程:
自学过程:(一)、自学知识清单。
1、教材64页,在图7.1—1中找出参加数学问题讨论的同学。
小组内交流一下,看一看你们找的'位置相同吗?
思考:(2,4)和(4,2)在同一位置吗?为什么?
2、请回答教材65页:思考题。
3、我们把这种有顺序的______个数a与b组成的_______叫做_______,记作(,)。
(二)、自学反馈。
练习1、利用________________,可以准确地表示出一个位置,
如电影院的座号,“3排2号”、表示为(3,2),则“2排3号”可以表示为。
练习2、如图(1)所示,一方队正沿箭头所指的方向前进,a的位置为三列四行,表示为a(3,4),则b,c,d表示为b(,),c(,)。
d(,)。
练习3、完成课本第65页的练习。
练习4、用有序数对表示物体位置时,(3,2)与(2,3)表示的位置相同吗?请结合下面图形加以说明.
练习5、如图所示,a的位置为(2,6),小明从a出发,经。
平方链教案篇六
1.内容。
无限不循环小数;求算术平方根的更一般的方法---用有理数估算、用计算器求值.。
2.内容解析。
1.教学目标。
2.目标解析。
1.梳理旧知,引出新课。
问题1(1)什么是算术平方根?怎样表示?
(2)负数有算术平方根吗?
设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容.。
2.问题探究,学习新知。
问题2能否用两个面积为1d的小正方形拼成一个面积为2d的大正方形?
师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法.。
追问(1)拼成的这个面积为2d的大正方形的边长应该是多少呢?
师生活动:学生自行解答,教师对解答有困难的学生进行指导.。
追问(2)小正方形的对角线的长是多少呢?
师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长d.。
问题3有多大呢?为了弄清这个问题,请同学们探究“在哪两个整数之间呢?”
追问(1)那么是1点几呢?你能不能得到的更精确的范围?
3.用计算器,求算术根。
例1用计算器求下列各式的值:
(1);(2)(精确到0.001)。
设计意图:使学生会使用计算器求算术平方根.。
练习教科书第44页练习1.。
师生活动:学生独立完成后交流.。
设计意图:巩固计算器求算术平方根.。
4.综合应用,巩固所学。
现在我们来解决本章引言中的问题.。
问题4(1)你会表示出,吗?
(2)用计算器求,.(用科学记数法把结果写成的形式,其中保留小数点后一位)。
师生活动:学生理解题意,根据公式,可得,,将,代入,利用计算器求出,.。
设计意图:让学生体会计算器在解决实际问题中的应用.。
问题5利用计算器计算下表中的算术平方根,并将计算结果填在表中.。
…
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)利用夹逼法来求算术平方根的近似值的依据是什么?
(2)利用计算器可以求出任意正数的算术平方根或近似值吗?
(3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?
(4)怎样的数是无限不循环小数?
设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯.。
6.布置作业:
教科书习题6.1第6、9、10题.。
1.求的整数部分.。
【设计意图】主要考查学生的估算能力.。
2.比较下列各组数的大小.。
(1)与;(2)与12;(3)与.。
【设计意图】主要考查学生的估算和比较大小的能力.。
3.若,,那么_______;_______.。
【设计意图】主要考查学生对算术平方根概念以及有关规律的理解.。
【设计意图】主要考查学生运用算术平方根解决实际问题的能力.。
平方链教案篇七
(2)切勿把“乘积项”2ab中的2丢掉.
今后在教学中 ,要注意以下几点:
1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.
2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.
平方链教案篇八
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
平方链教案篇九
1、知道常用的土地面积单位平方千米;通过猜想和推算,知道1平方千米=1000000平方米=100公顷,会进行简单的单位换算。
2、能借助计算器,应用平面图形的面积计算公式和有关面积单位换算的知识解决一些简单的实际问题。
认识1平方千米;发现平方千米与平方米、公顷之间的进率,会进行简单的单位换算。
一、复习:
说说已经学过的几个面积单位,注意从大到小地说。老师板书成:
公顷(红笔写)、平方米、平方分米、平方厘米。
问:公顷很特别,说说它有哪些特别之处?
(其它的面积单位都有“平方”两字,它没有;公顷是其中最大的面积单位,用于土地面积;其它的面积单位进率都是100,而它和平方米之间的进率是10000……)。
说说1公顷指的是多大的面积?(要学生熟练地说出:边长100米的正方形土地面积。)。
二、学习新知:
1、这节课我们要学习一个更大的面积单位,是什么?
(边长是1千米的正方形土地面积)。
回忆“1千米”的长度:选两个熟悉的相距1千米的地方,体会相距1千米是较远的距离。
算一算:1000×1000=1000000平方米=100公顷。
联系实际想一想它的实际大小:
约200个操场的面积大小……。
体会:平方千米是一个最大的面积单位,它一般用于一个城市、省、国家等很大的面积。
2、学习例2:
读书上的例2,了解“平方千米”所用的地方。
3、补充:
中国的国土面积大约是960万平方千米,这个面积包括了领土、内海、领海等。
指出:我们太仓是一个县级市,面积大约有近千平方千米。
4、完整的面积单位进率:
平方千米、公顷、平方米、平方分米、平方厘米。
只有公顷和平方米之间的进率是10000,其他的相邻面积单位间的进率都是100。
三、巩固练习:
1、试一试:学生独立列式解答,注意书写格式、进率换算。
2、练一练:
(1)算一算,注意末尾0的个数。再换算。
(2)单位换算,指名说说换算的.方法,比较圆明园的面积大小。
(3)学生独立完成,并交流换算方法。
3、练习十四的部分练习:
(1)以江苏省地图为参照,估一估其他各省的面积。如可以先从山西省地图中描画出和江苏省差不多大的部分,再估计剩余部分的面积。估计完后,老师报出确切的数据,检验学生的估算能力。
(2)边说边比画出1平方厘米、1平方分米、1平方米,1公顷、1平方千米。
说进率:100平方厘米=1平方分米,100平方分米=1平方米。
(3)在括号里填上合适的面积单位:
计算机屏幕:问“为什么不是780平方分米?”
计算机房:一般房间的面积用“平方米”
香港面积:太仓的面积有800多平方千米,香港比太仓大,应该也是“平方千米”;一个城市、甚至更大的地方面积都要用“平方千米”。
机场跑道:20公顷。
4、你知道吗?
学生读一读,了解基本情况。
估一估哪个洲面积最大?然后老师从大到小依次报出各面积,学生记录。
四、布置作业。
平方链教案篇十
学科:数学年级:七年级审核:
内容:沪科版七下6.1平方根(1)课型:新授时间:
学习目标:
1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。
学习重点:了解平方根的概念,求某些非负数的平方根。
学习难点:了解被开方数的非负性;
学习过程:
一、学习准备。
1、我们已经学习过哪些运算?它们中互为逆运算的是?
答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。
2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。
32=()()2=9。
(-3)2=()()2=。
()2=()()2=0。
()2=()。
02=()()2=-4。
3、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数。
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。
即如果x2=a,那么叫做的平方根。请按照第3页的举例你再举两个例子说明:
叫做开平方,平方与互为逆运算。
4、观察上面两组算式,归纳一个数的平方根的性质是:
一个正数有两个平方根,它们互为相反数;
零有一个平方根,它是零本身;
交流:(1)的平方根是什么?
一个正数a有两个平方根,它们互为相反数.
正数a的正的平方根,记作“”
正数a的负的平方根,记作“”
这两个平方根合在一起记作“”
如果x2=a,那么x=,其中符号“”读作根号,a叫做被开方数。
这里的a表示什么样的数?a是非负数。
二、合作探究。
1、判断下面的说法是否正确:
1).-5是25的平方根;()。
平方链教案篇十一
1、我们已经学过哪些面积单位?让学生比划1平方厘米、1平方分米、1平方米的大小。
2、测量橡皮一个面的大小,课桌面的大小,教室地面的大小分别用哪些面积单位比较合适?把这些单位按从小到大的顺序排列起来。
导入:测量土地的面积时,需要更大的面积单位,今天我们就来认识一个土地面积单位,它的名字叫“公顷”。
关于公顷,你有什么疑问?
1、算一算“公顷”。
课件演示:出示:边长100米的正方形,算一算,它的面积就是多少平方米?(就是1公顷。)。
2、找一找“公顷”。
课前老师准备了一些资料,一起到生活中去找一找。课件配音介绍:体育场、休闲广场的面积大约是1公顷。
在生活中,你还能在哪里找到1公顷?
3、用一用“公顷”。
尝试练习:一块平行四边形菜地,底是250米,高是160米。这块菜地有多少公顷?
1、公顷“信息发布会”
素有“万园之园”之称的圆明园总面积达3500000平方米,合()公顷;敦煌莫高窟被誉为“艺术瑰宝”,石窟里的壁画为世人所惊叹,其总面积约5公顷,合约()平方米。但都已遭受帝国主义的毁坏。
读了这两题,你有什么感想?
2、开发商的广告。
某市刚刚新建了一个小区。聪聪跟爸爸一起去看房子,走到小区门口看见一则广告牌:
小区简介。
本小区环境优雅、景色宜人,是×市绿化示范小区。占地面积12公顷,其中公馆、儿童游乐场、老人健身房、网球场、道路等公共设施占地1.5公顷,绿化面积为达5公顷。
江苏省的面积约是10000000公顷,用公顷计量方便吗?用什么单位计量好呢?这就是我们下节课所要讨论的问题。
平方链教案篇十二
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)。
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.
在此基础上,让学生用语言叙述公式.
平方链教案篇十三
知道1平方千米=1000000平方米=100公顷,会进行简单的单位换算。
3、使学生在学习活动中进一步体会数学与生活联系,培养相互合作的能力。
让学生认识1平方千米,知道公顷和平方千米、平方米之间的进率,会进行简单的单位换算。
1、交流预习作业。
2、揭示课题。
今天这节课,我们还要来学习另外一个常用的土地面积单位:平方千米。
1.欣赏图片,初步感受平方千米。
2、探究1平方千米与公顷和平方米之间的关系。
导学要点:。
猜一猜1平方千米和1公顷,哪个大?说说为什么?
指出:边长为1千米的正方形土地的面积是1平方千米.
那么1平方千米与平方米和公顷之间的关系到底是什么呢?请同学们围绕学习材料自学.
交流探究成果。
板书:
导学单:
(2)1平方千米=()平方米=()公顷。
小结:1平方千米和公顷之间的进率是(),和平方米之间的进率是()。
3.完成书本p17练一练。
自由读书本例9中的资料,了解平方千米的运用。
补充:中国的国土面积大约是960万平方千米,这个面积包括了领土、内海、领海等。我们的家乡海门的面积约有1002平方千米。
介绍足球场面积。
1.单位换算。
2.完成练习三第14、15题。
3.完成练习三第16、17题。
4、优生完成思考题。
5、课堂小结。
分层进行练习,然后全班校对,汇报在练习中出现的问题,试生共同查找原因、研究对策。
(四)当堂检测,评价反思。
1、《补充习题》。
2、每日一题:
平方链教案篇十四
算术平方根的概念,被开方数越大,对应的算术平方根也越大.。
2.内容解析。
基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法.。
二、目标和目标解析。
1.教学目标。
(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根.。
(2)会求一些数的算术平方根.。
2.目标解析。
三、教学问题诊断分析。
基于以上分析,本节课的教学难点是:深化对算术平方根的理解.。
四、教学过程设计。
1.创设情境,引入新课。
2.师生互动,学习新知。
师生活动:学生可能很快答出边长为5d.。
追问请说一说,你是怎样算出来的?
师生活动:学生理清解决问题的思路,回答,教师可结合图片强调思路.。
问题3完成下表:
正方形的面积/d。
追问(1)根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?
师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数.。
追问(2)为什么负数没有算术平方根呢?
师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数.。
追问(3)请判断正误:
(1)-5是-25的算术平方根;
(2)6是的算术平方根;
(3)0的算术平方根是0;
(4)0.01是0.1的.算术平方根;
(5)一个正方形的边长就是这个正方形的面积的算术平方根.。
师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导.。
设计意图:检验对算术平方根的理解.。
3.例题示范,学会应用。
例1求下列各数的算术平方根:
(1)100;(2);(3)0.0001.。
追问从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?
例2求下列各式的值.。
(1);(2);(3).。
师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评.。
设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根.。
4.即时训练,巩固新知。
(1)教科书第41页的练习.。
(2)求的算术平方根.。
5.课堂小结。
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)什么是算术平方根?
(2)如何求一个正数的算术平方根?
(3)什么数才有算术平方根?
设计意图:让学生对本节课知识进行梳理,进一步落实相关概念.。
6.布置作业:
教科书习题6.1第1、2题.。
五、目标检测设计。
1.若是49的算术平方根,则=().。
a.7b.-7c.49d.-49。
设计意图:本题考查学生对算术平方根概念的理解.。
2.说出下列各式的意义,并求它们的值.。
(1);(2);(3);(4).。
设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言.。
3.的算术平方根是_____.。
设计意图:本题考查学生对算术平方根概念的全面理解.。
平方链教案篇十五
1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;。
2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系;。
3、培养学生的探究能力和归纳问题的能力.
教学难点平方根和算术平方根的联系与区别。
知识重点平方根的概念和求数的平方根。
教学过程(师生活动)设计理念。
思考归纳。
导入概念如果一个数的平方等于9,这个数是多少?
学生思考并讨论,使学生明白这样的数有两个,它们是3和-3.受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数.注意中括号的作用.
又如:,则x等于多少呢?
使学生完成课本165页的填表练习.
给出平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.
求一个数的平方根的运算,叫做开平方.
例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.
观察:课本165页中的图10.1-2.
图10.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.
让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根.
注意:这阶段主要是让学生建立平方根的概念,先不引入平方根的符号,给出的数是完全平方数.
例1:(课本165页的例4)。求下列各数的平方根。
(1)100(2)(3)0.25。
建议教师要规范书写格式。这个思考题是引入平方根概念的切入点,要让学生有充分的时间进行思考和体验.
在等式中求出x的值,为填表做准备.
通过填表中的x的值,进一步加深时“两个互为相反数的平方等于同一个数”的印象,为平方根的引入做准备.
教学中可以引导学生通过查阅资料等方式,了解平方根产。
生发展的过程.(通常称为平方根.在研究有关n次方根的问题。
时,为使各次方根的说法协调起见,常采用二次方根的说法.
3表示+3和一3两个数.这种写法学生不太习惯,在以后的教学中宜不断提到。
通过此例使学生明白平方根可以从平方运算中求得,并能规范地表述一个数的平方根.这个例题也为后面探讨平方根的特征做好准备.
讨论归纳。
深化概念按照平方根的概念,请同学们思考并讨论下列问题:
正数的平方根有什么特点?0的'平方根是多少?负数有平方根吗?
建议:可引导学生通过观察=a中的a和x的取值范围和取值个数得出.
根据上面讨论得出的结果填课本166页的表.
一个是负数没有平方根,即负数不能进行开平方运算,这种某数不能进行某种运算的情况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0作除数的情况除外).教学时,可以通过较多实例说明这两点,并在本节以后的教学中继续强化这两点.
引入符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.例如……。
思考:表示什么意思,这里的x可取什么样的数呢?
而对于又该怎样理解呢?这里的x又可取什么样的数呢?通过讨论,使学生对有理数的平方根有一个全面的认识.也是平方根概念的进一步深化.
体验分类思想,巩固平方根概念.
加深对符号意义的理解和对平方根概念的灵活应用.
应用例2下列各数有平方根?如果有,求出它的平方根,如果没有,说明理由。
-64、0,,
例3:课本第166页的例5,求下列各式的值。
(1),(2)-,(3)。
(4),
建议:要让学生明白各式所表示的意义;根据平方关系和平方根概念的格式书写解题格式。平方根和算术平方根的概念是本章重点内容,两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根,因此我们可以利用算术平方根来研究平方根.
思考:-的值是多少?熟练应用平方根的概念,计算有关算式的值,是本课的主要内容。
被开方数不是完全平方数时,可用计算器求出它的近似值。
练习巩固课本第167页的练习。
小结:
1、什么叫做一个数的平方根?
2、正数、0、负数的平方根有什么规律?
3、怎样求出一个数的平方根?数a的平方怎样表示?
小结与作业。
布置作业教科书第167页习题10.1第3、4、7、8、11、12题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
2、本课主要是在算术平方根的基础上建立平方根的概念,要以等式=a和已有算术。
平方根概念为基础,并使学生明确平方根与算术平方根之间的联系与区别,明确开平方与平方之间的互逆关系,把握了这些平方根的有关概念,正数、零、负数的平方根的规律也就不难掌握了.
2、有关求算式的值的问题,一定要使学生体会到这个算式所表示的具体意义,这样才能使学生在本质上掌握其求法.