一位数除两位数教案(汇总21篇)
教案中应包含详细的教学步骤、教学资源和评估方式等内容。教案的内容应该有针对性,紧密结合教学目标和学科内容,体现循序渐进的教学思路。掌握好教案编写的基本技巧,能够提高教学设计的质量和效果。
一位数除两位数教案篇一
1、通过实际操作,理解每求出一位商,余下的数必须比除数小和每次余下的数要与下一位商的数合并造继续除的道理。
3、在操作活动中,培养学生思考和解决问题的能力。
通过分钱币的实践操作活动使学生经历除到某一位时有余数,要把余数和后一位的数结合起来继续除的计算过程,从而明白算理。
一、准备。
1、口算。
2408=答案。
3603=答案。
1505=答案。
363=答案。
333=答案。
633=答案。
2、竖式计算。
693=答案。
783=答案。
955=答案。
723=答案。
783=答案。
582=答案。
二、新授。
1、出示例2猜想每班种多少棵树?
3、教师巡视,个别辅导,然后根据学生汇报,教师板书并讲解竖式计算过程。
4、课本第20页做一做第2题。
展示学生作业。如果发现错误,请学生判断,并说明原因。
5、小结:你觉得计算除数是一位数除法时要注意什么?
三、巩固。
第21页第4题。
整节课教学环节比较清楚,每个环节还是能很自然的连贯起来,大多数学生掌握的情况比较好。但在其中还是有需要改进的地方,比如复习中安排的听算题数多了,花费了许多时间使后面学生练习的时间少了,而且复习中可以重点复习口算除法的方法,更好的做好新课的铺垫。
一位数除两位数教案篇二
1、经历探索两位数除以一位数(首位不能整除)的笔算方法的过程,能正确地笔算两位数除以一位数(首位不能整除)的除法。
2、培养学生初步的分析、推理和估算能力。
3、养成认真勤奋、独立思考的学习习惯。
1课时。
首位除时有余数的除法计算方法。
(一)导入新课。
口算热身。(3分钟左右)。
30÷3=80÷4=18÷3=。
16÷4=48÷6=24÷6=。
81÷9=18÷9=20÷6=。
选择其中1—2题请学生说说是怎么算的?
(二)讲授新课。
把42个羽毛球平均分给两个班,每班能分到多少个?谁能分一分。找同学出来分一分,其他同学看一看。
(先分给每班2筒,是20个,余下2个,每班再分得1个。每班共分到21个。)。
学生在练习本独立列式计算。
同桌的小朋友交流如下问题:
你在计算的时候碰到了什么困难?你是怎样解决困难的?
指名一人板演。
指名学生说说笔算过程。
教师边说边演示:如果再添一筒羽毛球,也就是5筒羽毛球和两个羽毛球。
出示:教材例5情境图。
导入:图中有哪些数学信息?有52个羽毛球,平均分给2个班,每班分得多少个?
(三)重难点精讲。
列式:52÷2=()。
尝试列竖式计算:
让学生观察、试除,并说说自己发现了什么。
引导:这类题该怎样解决呢?谁能分一分?
结合学生回答,借助小棒演示算理。学生分的时候,先分每份2个十,剩下的1个十没法分怎么办?重点说清要把余下的1捆拆开,和2根合起来再分。即:每份先分得2个十,余下1个十和2个一合起来再分,每份6个。
根据刚才分小棒的过程,52÷2的笔算该怎么写呢?谁来说一说,按照刚才摆的过程,先算哪一位?(根据学生的回答,完成十位上的板书。)。
追问:十位上余下来的`1表示什么意思?接下去怎么除?(让学生独立思考,再同桌互相说一说)指名完成剩下的板书,其余学生完成书上第56页的填空。写成除法算式如下:
用彩笔把竖式中的关键标出。追问:十位上剩下1以后是怎样除的?
检验:这题计算是不是正确呢?可以怎样检查?
怎样用乘法进行验算?
比一比52÷2和复习题42÷2,在计算时有什么不同?
试一试:55÷3=找学生板演。
其余学生独立解答后集体交流。
重点追问:十位除后余2表示什么意思?十位上剩下2以后是怎样除的?(用彩笔把竖式中的关键标出)。
有余数的除法怎样用乘法进行验算?
分析黑板上学生在自学中出现的各种情况,给予适当点评。针对学生的错例,提醒学生需要注意的地方。
谈谈这节课的收获,当被除数十位上的数除以一位数有余数时,该怎样处理?
(四)归纳小结:
两位数除以一位数,当被除数十位上的数除以一位数有余数时,要把余数和个位上的数合起来继续除。
(五)随堂检测:
1、想想做做第1题。
2、想想做做第2题。
96÷860÷474÷266÷5。
3、想想做做第3题。
48÷4=64÷2=。
48÷3=64÷4=。
75÷3=96÷6=。
77÷3=99÷6=。
4、想想做做第4题。先估计商是几十多,再用竖式计算。
64÷585÷395÷491÷2。
5、想想做做第5题。
6、
54÷2=78÷5=68÷4=。
一位数除两位数教案篇三
1.结合具体情景,进一步体会两位数乘一位数乘法的意义。
2.理解并掌握进位的两位数乘一位数的笔算方法,能正确计算两位数乘一位数的笔算乘法。
3.培养学生的观察能力、比较能力和初步的逻辑思维能力。
4.在学习过程中获得成功体验,坚定学生学好数学的信心。
一、复习引入
计算:21×4=33×2=23×3=14×2=
学教师:这节课我们继续研究两位数乘一位数的计算方法。
板书课题。
二、进行新课
1.教学例2
能具体介绍一下你是怎样进位的吗?
这21个茶杯又可以装几盒,还剩几个呢?在竖式上怎样表示2盒零1个。
现在明白怎样进位的问题了吧。下一步算什么?计算时要注意些什么?
除了要把乘出来的积写在十位上,还要注意什么?
教师边说边完善竖式的板书。
请同学们用同样的方法计算24×3,47×2,29×3。
学生计算后,抽学生汇报,重点说一说进位的过程。
通过我们的又一次研究,你觉得在计算两位数乘一位数时还要注意什么?
2.教学课堂活动
出示课堂活动第1题,要求学生看图列出算式,算出结果。
抽学生说计算过程,重点说一说是怎样进位的。
出示课堂活动第2题第3竖列上的3道小题,计算后要求学生说一说这3道题有什么联系。
三、巩固练习
(1)指导学生完成练习四第1题第2横排,计算后抽学生说一说自己的计算过程。
(2)学生独立完成第2题,然后用多媒体课件集体订正。
(3)指导学生完成第4题,学生判断后师生共同分析错误原因,要求学生说一说在计算时要注意些什么。
(4)学生独立完成第5题,然后用多媒体课件集体订正。
(5)学生在作业本上独立完成第3题。
四、课堂
教师:这节课学习的内容是什么?两位数乘一位数的笔算方法是什么?在计算两位数乘一位数的笔算时要注意些什么?还有哪些你没有解决的问题?说出来大家帮你一起解决。
一位数除两位数教案篇四
1、使学生学会两位数、整十数不进位加法的口算方法,并能正确地进行口算。
2、使学生掌握两位数加一位数、整十数口算的思维过程,提高学生的口算能力。
掌握两位数加一位数和加两位数的不同。
数学小棒、教学课件。
一、复习导入
1、认数,说数的组成。
出示计数器,老师拨数,学生读数并说说数的组成。
3223505
2、计算,并说说你是怎么算的。
20+540+3
20+5040+30
3、揭题:今天我们就来学习两位数加法(不进位),并板书课题
二、新授部分
1、出示主题图
2、你看到了什么?你能提出用加法解决的数学问题吗?
3、课件这出问题
(1)公共汽车和中巴车共有多少个座位?45+30=75(座)
(2)公共汽车和小车共有多少个座位?45+3=48(座)
(3)中巴车和小车共有多少个座位?30+3=33(座)
4、教学45+3=48
(1)请一位小朋友上台摆小棒,老师和其他学生看
(2)课件演示摆小棒的过程。
(3)共同回忆我们在计算45+3的时候是先算什么再算什么的?学生一边说老师一边板书计算的过程。
(4)即时练习3+45=48
(5)21+346+2
3+212+46
说说你先算什么,再算什么?
5、教学45+30
(1)请学生动手摆小棒。请小朋友自己开动脑筋试试摆小棒时是怎么得出结果的。
(2),说说你是先算什么,再算什么的,老师板书计算过程。
(3)即时练习30+45=75
(4)27+4010+58
40+2758+10
6、比较45+3与45+30两道题的算法有什么不同?
7、:45+3先算5+3而45+30是先算40+30
计算时要几个十和几个十相加,几个一和几个一相加,也就是说相同数位上的数相加。
三、巩固练习
1、完成书61页做一做
(1)学生独立完成
(2)集体订正。说说哪里算错了。
2、钓鱼比赛
42+205+2457+235+2341+32
四、巩固提升练习
1、帮小狗找到答案和它一样的小动物去它家做客,参加小狗的生日会。
7646+320+5665+1
5+214+72
2、给小猫排队
按从小到大的顺序排排队
40+1217+7224+32
40+304+72
五、全课,这节课我们学习了两位数加一位数和整十数(不进位),希望小朋友在以后的学习中能学到更多的知识。
一位数除两位数教案篇五
教材选择了图书室买来新书的情境和“一共买来多少本十万个为什么”的问题。这个问题也是一个书的包装问题,其典型意义在于,一般情况下成套的书,都是一包一套。通过解决“学校买来3套《十万个为什么》,每套是12本,求一共买来多少本”的问题,即12×3,学习一位数乘两位数的笔算方法。试一试,把问题延伸改成“7套《十万个为什么》一共有多少本?”,学习两位数乘一位数进位的笔算方法。
这里是本套教材第一次学习乘法竖式,教师要进行必要的示范和指导。
一是选择现实生活中的熟悉事物,让学生在解决与这件事物有关多个问题的过程中,学习数学计算;二是让学生在自主探索、交流的过程中学习新的`计算方法,教学中,教师应充分挖掘教材中的信息,创造性的使用教材,引导学生根据自己的生活经验灵活解决问题,帮助学生不断提高解决问题的能力,学会计算方法。
1、结合买书问题,经历探索一位数乘两位数的计算方法的过程。
3、能积极参加数学学习活动,激发探索新知识的兴趣。
课件、情境录音带、习题板、录音机。
1、口算:3×22×710×620×48×3。
2、把下列算式改写成乘法算式:
8+8+8+8=×10+10+10=。
13+13=26+26=。
1、出示情境问题“买书问题”
(放录音)同学们好,我是你们的学习伙伴“亮亮”,告诉大家个好消息,我校图书馆的老师们又买进新书啦!书名是《十万个为什么》,相信你们也一定喜欢。)。
相机出示相关信息和问题“买来3套,每套是12本。”
“一共买来多少本《十万个为什么》?”
2、指名完整读题后,学生在练习本上试列出算式。
3、交流算式:让小组内交流算法;
班内交流不同的算法,要求学生说出自己的思路。
教师相机板书:
12+12+12=36(本)12×336=(本)10×3=30(本)。
2×3=6(本)。
30+6=36(本)。
1、列成乘法算式12×3=(本),该怎么笔算呢?
【教师作为参与者,提出问题】。
2、学生交流:
(教师适时板书)12×3=(本)。
12121212×3→×3→×3×3。
3、引导小结“乘的顺序”和“积的书写位置”:今天学的是一位数乘两位数的乘法,笔算时要注意“先乘个位上的数,积要写在乘数个位的下面;再乘十位上的数,积写在乘数十位的下边。”(相机板书课题“一位数乘两位数的乘法”)。
4、“试一试”:7套《十万个为什么》一共有多少本?
5、教师引导小结“笔算进位乘法要注意什么”;
鼓励学生联系板书的几道例题,完整地说说笔算“一位数乘两位数的乘法”要注意哪几点。
投影出示习题,重点指导学生读懂题意,然后学生独立解答。
交流第3题时,要重点让学生说说是怎样发现规律的。
一位数除两位数教案篇六
:义务教育课程标准实验教科书(苏教版)二年级下册第76―78页。
1、使学生经历探索两位数乘一位数算法的过程,理解两位数乘一位数的算理,并掌握计算方法,会口算整十数乘一位数,会笔算两位数乘一位数(不进位)的乘法。
2、培养学生迁移类推的能力和解决简单实际问题的能力。
3、培养学生养成自主探索、合作交流的良好习惯。
:师准备――口算卡片、小棒、挂图、幻灯片(投影图片)等。
生准备――小棒、教材、作业本、文具等。
师:小朋友们,你们喜欢动物吗?今天我们到动物园去看看。
1、 口答。(略)
2、 笔算。(略)
1、学习例1。
师:每头大象运了多少根木头?你是怎么知道的?(体现“2个十是20”)
3头大象一共运了多少根木头?你是怎么知道的?怎样列算式?
师:怎样计算20×3呢?
生:(讨论汇报)
师:你觉得哪种方法比较方便?
生:(互相说一说)
师:照这样计算,5头大象一共运多少根木头?你是怎样想的?8头大象呢?
练习(略)
2、学习例2。
师:小猴们在干什么? 2只小猴一共采了多少个桃?怎样列式?
师:(结合学生的列式14×2)提问:怎样想出结果?你能用小棒来摆一摆吗?
生:(操作、讨论、汇报)
师: 还可以用竖式来进行计算。
师:“2”写在哪里?为什么?先算什么?再算什么?
(结合小棒操作过程,与竖式计算的过程对应理解。)
让学生运用这种初始模式进行试算:
师:(比较、讨论)这几个竖式有什么共同点?能否简化?怎样简化?
生:(用简化后的写法计算刚才几道题,并对应说算理。)
生:(计算“试一试”,说明一位数乘两位数的竖式书写格式以及验算方法。)
1、用竖式计算。13×2 2×21 4×22 32×3
2、解决问题。(1)“想想做做”第4题。
(2)“想想做做”第5题。
3、综合运用。“想想做做”第6题。
在作业本上完成“想想做做”第3题的下面4道题。
曾有人认为,在课程改革后,课堂一开始都要创设数学问题情境,在情境中直接学习新知,不必再进行新课前的复习准备。
其实这是不一定的。因为数学的来源,一是来自数学外部现实社会的发展需要;二是来自数学内部的矛盾,即数学本身发展的`需要。
新课前的复习准备,一是为了通过再现或再认等方式激活学生头脑中已有的相关旧知,二是为新课作出铺垫或分散难点,但是不要人为的设置一条狭窄的思维通道。
教学中这个环节,创设情境,通过复习,再现一位数乘一位数、整十数相加、几个十是多少以及两位数加法和一位数乘法笔算等相关旧知,唤醒并激活学生头脑中的相关思维细胞,为新知学习作好准备。
关于《一位数乘两位数》教学思考之二――
在学习例1 ――20×3时,我预设了以下几种多样化的算法:
(1)20+20+20=60
(2)3个2堆是6堆,6堆是60。
(3)2个十乘3得6个十,6个十是60。
(4)2×3=6,所以20×3=60。
(5)……
在教学中,学生没有出现这么多的方法。学生主要的方法有两种:
一是看到有6堆,就是6个10是60。
二是“先不看20的0,算2×3=6,在6后面写0,就是60。”
教学时,我重点抓住第二种算法,让学生说出道理,并和实物图对应起来,使学生初步理解这种算法的原理。
紧接着,让学生对比练习:
4×3= 7×8= 5×6= 9×2=
40×3= 70×8= 50×6= 90×2=
练习之后让学生观察比较,探索规律。
这时,我临时决定增加一个环节――编题:同桌学生仿照刚才的口算题,一人先编上面一道,另一人对应编下面一道,然后交换。
我感觉,以上的教学,表面上看好象没有出现多样化的算法,但是面对的是学生真实的学习状态,适时引导学生在观察比较和模仿编题中理解和掌握优化的口算方法。
感觉不足的是,这个例题的教学时间好象用得太多了一些。
一位数除两位数教案篇七
这部分内容是在学生已经掌握了用乘法口诀求商的基础上安排的,先教学整十数除以一位数,再教学非整十的两位数除以一位数(首位能整除)。这节课是本单元的起点,学好这部分知识将为下面学习首位不能整除及商末尾有0的除法打下基础。
教材首先出示买铅笔的情景图,接着出示了两个需要解决的实际问题:平均每个男孩买多少枝?平均每个女孩买多少枝?先让学生借助实物操作,解决第一个问题,理解整十数除以一位数的'计算方法及算理。在此基础上,让学生联系生活情境解决第二个问题,共同探索两位数除以一位数的口算方法。接着介绍用竖式计算方法和书写格式并重点讨论“2为什么写在商的十位上”,以进一步明确算理。教材通过由易到难的练习,使学生进一步掌握除的顺序和商的书写方法,并让学生运用所学的知识解决日常生活中的一些实际问题。
活动目标。
1.经历整十数除以一位数的口算和非整十的两位数除以一位数的口算、笔算方法的探索过程,能口算整十数除以一位数(商位整十数),会笔算两位数除以一位数(首位能整除)。
2.培养学生初步的观察力、动手操作能力和积极参与学习活动的情趣。
活动重点:
掌握除法(首位能整除)口算和竖式计算方法。
活动难点。
探索算法,明确算理。
活动对策:
借助情景图和实物操作,由易到难,逐层讨论、探索算法,明确算理。
一位数除两位数教案篇八
2.学会一位数除法(被除数每一位商地数都能被除数整除)地计算方法,并能正确计算。
3.在实践操作活动中学会思考,学会解决问题。
以表内除法的笔算、一位数除两、三位数的口算基础上,进行一位数两位数(被除数每一位上的数都能被除数整除)的笔算除法。
着重帮助学生理解被除数的哪一位,就把商写再哪一位上面。
一.复习引入。
1、口算:
120÷4280÷7300÷6540÷924÷284÷4。
问:24÷2时是怎样想的?
1、竖式计算。
8÷425÷564÷865÷9。
二、新授。
1、出示主题图,让学生观察画面内容,并用自己的话口述,编一除法应用题。
2、出示板书例1,求三年级平均每班种多少棵树?你会列式计算吗?
3、说说你是怎样算的。
3.如果用竖式计算你会吗?(教师巡视指导)。
5.教师讲解竖式除法的步骤和关键。
6、试一试(抽学生黑板上做)。
36÷368÷284÷478÷3。
三.巩固练习。
第21页第2题。前两题。
四.小结。
今天我们学习了什么知识?计算时要注意什么?
一位数除两位数教案篇九
合作探究,悟算理。
(1)教师为学生提供了许多的学具,(例如:小棒、方块、计数器等)学生可以用,也可以在练习纸上写一写、算一算、画一画。小组内先商量一下,选择哪种学具帮助问题的解决。
(2)老师提要求,小组合作先摆一摆,再说一说,进行交流,还可以把摆的过程记录下来。
(1)教师谈话:刚才通过动手做一做,左边鱼缸里有多少条鱼我们解决了,还要解决右边鱼缸里有多少条鱼,打开书,做在书上。
(2)学生板演并说一说计算过程。
(3)教师引导学生观察这两道题你发现了什么?和以前的计算题有什么不同?
揭示课题。
(1)教师:这就是我们今天学习的两位数加两位数的进位加法(板书课题)。
小结:相同数位对齐,从个位加起,个位满十向十位进一。
解决学生提出的其它问题。
过渡语:同学们算的都很好,刚才我们游览了海底世界,参观了展厅,接下来我们到海滩上去玩一玩。
联系实际,应用拓展。
出示右边的情境图,引导学生仔细观察,然后解决练习题中的问题。
1、猜一猜贝壳下面的数是几。
说一说你是怎样算的,怎样想的?
2、判断。
先独立思考,再举判断卡判断。
3、猜一猜,小海龟可能是几?
学生有可能会说出许多不同的答案,
同时还要引导学生说出自己是怎样想的。
全课总结,升华知识。
下课铃声响起,老师评价在这节数学课中,同学们学习的非常认真,有些贝壳想送给他们,了解男生有几人,女生有几人,然后引导学生思考50个贝壳够不够,并试着说出自己是怎么知道的。
一位数除两位数教案篇十
教材分析说明:
教材选择了每盒彩笔24枝这一学生熟悉的事物和12盒彩笔的情境,鼓励学生自己提出问题,并试着解答。然后通过12盒有多少枝?怎样算?的问题,引出两位数乘两位数(不进位)的乘法。首先让学生用已有的知识自主计算,一方面使学生体验解决问题策略的多样化,同时,为用竖式计算做铺垫。在介绍用竖式计算的方法时,重点解决一个乘数十位上的数与另一个数相乘时,积的定位问题。
素质教学目标:
【知识教学点】结合彩笔问题,经历用已有知识解决问题、学习两位数乘两位数(不进位)乘法的计算方法的过程。
【德育教学点】在与他人交流各自算法的过程中,体验算法多样化,提高学习数学的兴趣。
教学过程:
一、情境创设。
看看老师今天给你们带什么了?
学生观察,你能提出哪些数学问题?
学生可观察到左边有两盒彩铅、右边有十盒彩铅,每盒里有彩铅24枝。
学生可提出问题如:
1.两盒彩铅有多少枝?
2.10盒彩铅有多少枝?
3.12盒有多少枝?
二、自主探索。
重点解决第三个问题:
12盒有多少枝彩铅?怎样算?
请同学们试着在练习本上算一算。
有会用竖式计算的吗?
1、=240(枝)。
412=48(枝)。
240+48=288(枝)。
2、242=48(枝)。
2410=240(枝)。
48+240=288(枝)。
3、竖式等。
三、合作交流。
1.小组交流。
请同学们把你计算的方法跟你小组的同学说一说,总结一下你们小组一共有几种方法。
2.全班交流。
哪个小组愿意把你们小组的方法向全班同学说一说?
3.重点交流竖式(讲清积的定位)。
1.小组内交流各自的算法,然后共同总结算法。
2.各组间交流算法,其他同学认真倾听,可随时进行质疑、提问或提建议。
3.你能介绍一下竖式的书写格式吗?(学生不会老师讲解)。
四、实践与应用。
1.用竖式计算。
341225114322。
321324213221。
2.解决问题。
一个会议室有23排座椅,每排有22个座位。召开500人的会议,座位够吗?
416504672。
2.先独立思考解答,再交流。只要计算出2322=506(个),直接判断即可。
3.独立思考再完成交流。同时,进行爱护鸟类的教育。
294只。
五、板书设计。
242424。
121212。
4848。
24讨论这个4为什么写在十位上。
288。
一位数除两位数教案篇十一
教学目标:
(3)培养学生的数学探究能力。
情感目标:培养学生合作交流能力。
教具、学具:卡片、小棒。
教学过程:
一、旧知引入:
1、以“30÷3”为例,说一说这个算式表示的'意义;
2、出示卡片抽生口算:
36÷3=600÷6=240÷3=80÷2=。
48÷4=900÷3=840÷4=72÷9=。
二、新授:
2、抽生列式:42÷3=?
3、请同学们比较一下这个算式和我们以前学过的除法算式有什么不同?(首位不能整除)。
4、你能计算这样的算式吗?请找到一种口算方法,把他给计算出来。
5、将自己的方法给小组内的同学讲一讲,让同学们对你的方法进行讨论,看是不是最简便的方法。
6、抽小组代表讲述小组的讨论结果(同学们相互自评)。教师根据学生的回答进行板书。
7、教师根据学生的回答,规范口算的一般方法,同时谢谢它们给动物园管理员帮了大忙。
8、完成做一做;
9、出示例2:420÷3=。
抽生口述思考过程,教师板书。
10、完成第38页做一做。
三、巩固练习。
练习八1、2。
四、作业:
练习八3题的任意两竖排及4、5题。
板书设计:
一位数除两位数教案篇十二
2、体会数学活动充满着探索,树立学好数学的信心。
首位除时有余的情况应如何处理。
十位上余下的数与各位数合起来再除。
创设情景,并让学生在操作中获得直接经验,从而突破难点。
挂图、小黑板等。
1、出示准备题:把40个羽毛球,平均分给2个班每班能分到多少个?
2、指名列式计算。说一说口算和竖式计算方法。
1、把准备题改成例题:把52个羽毛球,平均分给2个班每班能分到多少个?
2、列式并讨论计算方法。
(1)借助学具摆一摆。
a、分法一:体会到先分整筒的,分给每班2筒,余下的一筒要和单个的合起来再分。
40÷2=2012÷2=620+6=26。
b、分法二:先把5筒平均分成2份,每份2筒,剩下1筒;再把一筒散开,平均分成5只;再把2只平均分成2份,每份是1只;最后得到每份26只。
(2)引导比较分法,形成统一认识。
(3)学生复述分的过程。
(4)用竖式计算。
26。
3)52十位上的5减4等于1,
4这个1实际上是多少?
12。
12。
3、验算。
26×2=52。
1、想想做做:第1题。
78÷384÷692÷280÷5。
2、想想做做:第3题。
(1)先让学生自行练习。
(2)再通过比较,沟通每组两题之间的联系。
3、想想做做:第5题。
(1)热水瓶的价钱是一幅画的几倍?
56÷4=14。
(2)热水瓶的价钱是茶杯的几倍?
56÷2=28。
(3)一幅画的价钱是茶杯的几倍?
4÷2=2。
想想做做:第2、4题。
板书设计:
26。
2)52十位上的5减4等于1,
4这个1实际上是多少?
12。
12。
26。
2)52十位上的5减4等于1,
4这个1实际上是多少?
12。
12。
26。
2)52十位上的5减4等于1,
4这个1实际上是多少?
12。
12。
这部分内容教学首位不能整除的两位数除以一位数的除法,这是两位数除以一位数的计算中相对复杂的一种情况,也是学生本单元学习的难点。在课堂上,这部分内容的处理应当比首位能够整除的两位数除以一位数更为细腻些,在教学时还要提醒学生进行验算,通过验算进一步确认相关的计算方法。
练习的安排从易到难、逐层深入。第5题是开放题,有利于培养学生发现问题、提出问题的能力,并有利于增进学生对相关数量关系的理解。第6题在学生已经积累了一定计算经验的基础上,要求他们估计两位数除以一位数的商是几十多。
本课正如周老师所说的确实是学生学习本单元的难点。课本的情境很不错,我们可以借助这一情境学生理解首位不能整除,减下的这个数实际代表的是几,并要和剩下的合在一起进行下面的除法计算,在这里一定要让学生自己把分的过程说一说,帮助自己理解其中的算理。
理解十位上余数的意思和十位上有余数后接下去该怎样计算是本课的重点、难点。学生在前两节课的基础上,通过计算、比较,弄清互相之间的不同之处,在比较中突出今天所学的知识,学生能进一步认识十位上除后,如果有余数,应该与十位上的数合在一起继续除,而个位上有余数则不要再除。
经过本课的教授和练习后,首位不能整除的'两位数除一位数的笔算书写学生基本掌握,但还需要加强练习。估算题可提高学生的判断能力和估算能力,但这一题的设计对学生的思维要求较高。
课前先一题复习题,然后让学生根据自己的生活经验将52个羽毛球平均分成2份,学生将可能出现的分法都想到了,在这基础上,让学生进行方法的择优,这与列竖式笔算建立了密切的联系。然后,通过情境的回顾,即“十位上的5减4等于1,这个1实际上是多少”的问题,学生结合具体的情境,非常清晰地了解了这个1就表示剩下的一筒羽毛球,就是10个,再和散装的2个合起来是12,这样在理解了口算方法后,对于学习笔算有很大的帮助,学生在原有知识的基础上学习新知,又将这一新知的难点处理了,因此,很顺利地学完了笔算方法,当比较抽象地讲解笔算过程时,我将难点结合刚才的具体情景,学生就很明朗,这一笔算方法就这样比较简单地学好了。但出现在练习中速度比较慢的现象,可能是因为学生欲想口算,但又没这么好的反应能力,又想笔算,可又觉得没口算来得方便、快捷,因此,速度偏慢。还有一些学生用口算的方法,将今天所学的计算看成是前两次课学的计算,即没把十位上的余数忽视了。基于这样,我强调了不能口算,则一定要笔算的要求,或者可以进行口头检验来验算结果是否正确,这样可以避免一些不应该犯的错误。从课堂作业的情况来看,绝大部分学生都能正确地进行计算,正确率比较高。
三年级的学习较一二年级来说,明显紧张了许多。上课时既要给学生充分的独立思考时间,又要有合作探索的过程,还要定量的练习,教材内容丰富、细腻,课堂教学安排总是显得比较紧凑。看来还是要多积累经验,把握好教学内容的重难点,控制好课堂教学时间。学生由于年纪小,做作业速度慢,升入三年级后总是很辛苦地应付着各个学科,希望他们很快能适应中年级的学习生活。
由于本节内容是本单元两位数除以一位数计算中的一个难点,所以我在新课前,先复习了前一节内容的知识,出示了一题首位能整除的除法算式,根据全班同学阐述的运算过程进行板演,以此引出本节课的内容,并对本节课教学的首位不能整除的计算过程进行对比,使学生明确计算方法,注意计算的过程。可尽管放慢了讲解过程,还是有个别同学计算到个位时,忘却了十位上的余数。学生对两位数除以一位数中有余数和没有余数,首位能整除与首位不能整除的运算有点混,今后还得加大各个类型的除法练习。
一位数除两位数教案篇十三
教学重点。
理解算理的基础上掌握口算的方法.。
教学难点。
理解用一位数除的算理,正确进行口算.。
教具、学具准备。
教学步骤。
一、铺垫孕伏.。
1.口答。
(1)24是由几个十、几个一组成的?84呢?
(2)42个十,90个十各是多少?
2.口算:
36÷324÷230÷360÷6。
48÷484÷480÷290÷3。
3.口算的8道小题的`被除数末尾各加一个0,继续让学生口算.。
二、探究新知.。
(一)导入.。
1.42÷2你是怎样口算的?
2.板书:42÷2=21(40÷2=20,2÷2=1,20+1=21)。
3.师:如果我们把除数2改成3,42÷3等于多少呢?
同学用刚才的方法试算.。
问:你发现了什么问题?
学生这时会发现被除数十位上的4不能被除数3整除.。
(二)教学例1,口算:42÷3(演示课件“口算除法”)。
1.教师问:这个算式表示什么意义?
同学动手操作,教师巡视指导,同桌互相讨论,初步理解算理.。
3.引导学生说说是怎么分的?(先分3捆,把3捆平均分成3份,每份得到1整捆,剩下的一捆平均分成3份,不能得到整捆.再把剩下的一捆拆开是10根,和2根合在一起是12根,12根平均分成3份,每份是4根.)。
师:实际上,我们是分几次来分的?先分什么?再分什么?(把42根分两次分,先分30根,再分12根.)。
4.教师边继续演示课件“口算除法”边说明.。
板书:30÷3=10,12÷3=4,10+4=14。
6.反馈练习:
32÷2=48÷3=60÷5=。
同桌互相说口算过程,然后直接写得数,订正时,指名说口算过程.。
(三)教学例2,口算:420÷3(继续演示课件“口算除法”)。
1.导入.。
板书部分课题:除整百整十数。
2.我们会计算42÷3了,那么420÷3应该怎样想?大家讨论一下.大家经过讨论交流:
(学生会有不同的思考方法,无论哪种方法教师都要给予肯定,学会利用知识的迁移,很容易解决新问题,教学时要让学生充分讨论,自己发现口算的方法.)。
3.教师小结:
4.反馈练习:
450÷3=560÷4=900÷6=。
直接把得数写在书上,订正指名说口算的方法.。
三、巩固发展(继续演示课件“口算除法”)。
1.练习八,第1题.。
2.练习八,第2题.。
让学生口算得数并填在方框里,然后集体订正.。
观察:每组口算题的除数不变,被除数变3,商有什么变化?
明确:除数不变时,被除数较大,商也较大:被除数较小,商也较小.。
变式练习:
根据2题中6道口算题的结果,你能很快口算出下面各题的得数吗?
480÷4720÷478÷6。
600÷466÷684÷6。
3.游戏:比比谁最多(详细过程参见探究活动之“游戏:比比谁最多”).。
4.游戏:谁先排好队(详细过程参见探究活动之“游戏:谁先排好队”).。
四、全课小结.。
略
五、布置作业.。
练习八的4、5两题,做完的同学有时间可以把3题答案写在书上.。
4.(1)被除数是57,除数是3,商是多少?
(2)3除870等于多少?
5.一只小羊重4千克,一只大羊重52千克。这只大羊的体重是这只小羊的多少倍?
板书设计。
一位数除两位数教案篇十四
1、使学生经历探索两位数除以一位数(首位不能整除)笔算方法的过程,能正确地笔算两位数除以一位数。
2、使学生在解决简单的实际问题中,进一步体验教学与生活的联系,增强用数学的意识。
3、培养学生初步的分析、概括的思维能力。
竖式计算时十位上余数的处理。
1、以学生发展为本,注重在现实的情景中开发学生的潜力。
2、主动探索,积极动手,合作交流中学习数学的重要方式。
一、复习。
铺垫。
1、用竖式计算:
42÷2=。
2、谈话导入:
学生在练习本上计算,指名板演,并说出计算的方法。
教学内容。
教师活动过程。
学生活动过程。
二、探究新知。
1、出示例题:
讨论列式:52÷2=。
2、操作探究:
(1)提问:如果我们用小棒代替羽球,应该先摆多少根小棒?
(2)同桌讨论交流分的方法。
把52根小棒平均分成2份,每份是多少根呢?
(每班先分2捆,是20根,余下的每班再分和6根,每班分到26根(个)。
(3)请一位同学到前面来,演示分的方法。
3、教学笔算:
(1)根据刚才摆小棒的过程,52÷2的笔算该怎么样呢?
(板书:252)。
(2)十位上有余数怎么办呢?接下去该怎样算?
交流后在书上完成坚式计算。
(3)哪位同学告诉大家,刚才是怎样计算的?
(4)验算一下,看看算得对不对。
(5)比一比,522和复习题422在计算时有什么不同的地方?
4、练一练:
(1)出示“想想做做”第一题的前两题反馈的提问:当十位上有余数时,接下。
学生看情境图,说出题意、并列式。
生摆出5捆带2根的小棒。
动手操作,交流分的`方法。
学生复述分的方法。
学生说十位上的计算方法。
互相说一说十位上有余数了,怎么办,在书上计算。
指名复述。
生验算。
生互相说一说。
向全班汇报交流的结果。
2人板演,其余的学生在书上完成。
教学内容。
教师活动过程。
学生活动过程。
去要怎样算?
(2)独立完成后两题,同桌校对。
学生练习,集体订正。
三、应用拓展。
1、想想做做第3题:
分组练习,每组同学做两题,反馈:每组上、下两题在计算上有什么不同?
2、想想做做第4、5题:
我们用今天的知识来解决一些生活中的实际问题。
第4题学生独立完成。
第5题让同桌相互说一说,再计算。
3、想想做做第6题:
通过以上一些题目的计算,你能不能不笔算,估算下面这些题的商是几十多?
学生说说自己在比较中发现了什么。
列式计算。
全班集体交流。
说是怎么样的。
四、全课。
今天这节课,同学们在摆摆、说说算,你有什么样的收获?
小组里交流、汇报。
教学设计说明:
这节课的内容是教学两位数除以一位数,重点解决首位除时有余数应该如何处理,在教学中注意了以下几点:
1、让学生在动手实践中自己发现问题,并解决问题,不仅培养了学生的动手能力,也较好地突破了本节课的重点知识难点:
2、在教学中多次进行了比较,有利于学生能对新知识的理解,培养了学生的分析、概括问题的能力。
3、注意对学生估算,解决实际问题能力的培养,使学生体验教学与生活的联系,增强用数学的意识。
一位数除两位数教案篇十五
苏教版《义务教育课程标准实验教科书数学》三年级(上册)第1—2页。
1.使学生经历探索两位数除以一位数计算方法的过程,掌握整十数、两位数除以一位数(每一位都能整除)的口算和两位数除以一位数(首位能整除)的笔算方法;能正确进行整十数、两位数除以一位数的口算和两位数除以一位数的笔算。
2.使学生在探索算法、解决问题的过程中,初步学会进行简单的、有条理的`思考,能运用两位数除以一位数的除法进行简单的估算并解决一些实际问题。
3.使学生在教师的鼓励和帮助下,积极参与解决问题的活动,感受数学与日常生活的密切联系,在不断克服困难的过程中逐步树立学好数学的信心。
1.模拟购物。
谈话:快开学了,几位小朋友结伴到文具店购买铅笔。(教师扮营业员,几名学生上来购买)。
2.提出问题。
学生可能会提出如下的几个问题:
(1)女孩、男孩一共买了多少枝铅笔?
(2)女孩比男孩多买多少枝铅笔?
(3)平均每个男孩买多少枝铅笔?
(4)平均每个女孩买多少枝铅笔?
表扬学生爱动脑筋,能主动提出问题。在解决了前两个问题后,重点启发学生解决后面两个问题。
1.探究40÷2的口算方法。
(1)鼓励学生独立思考,算出结果。有困难的可以借助小棒,动手分一分,看看结果是多少。
(2)引导学生根据分小棒的过程和结果,说说整十数除以一位数的口算方法。
(3)计算“想想做做”第1题。
先独立完成,再全班交流,注意引导学生通过题组比较,体会新旧知识的联系。
2.探究46÷2的口算方法。
(1)借助实物操作,形成表象。
先让学生独自分小棒,再到讲台前展示不同分法。
学生可能会有两种方法。
第一种:先分6根,每人3根;再分4捆,每人2捆,合起来2捆3根。
第二种:先分4捆,每人2捆;再分6根,每人3根,合起来是2捆3根。
教师相机增加1捆小棒,让学生分,使学生在具体操作中体会到先分整捆较合理,从而为后面学习笔算除法的顺序打下基础。
(2)引导学生结合分小棒的过程,说说46÷2的口算方法。(同桌互相说)。
(4)口算练习:26÷269÷384÷4。
3.学习46÷2的竖式计算方法。
(1)引导学生联系分小棒的过程,尝试用竖式计算。
(2)展示学生的竖式计算的不同写法,通过交流明确正确写法。
(3)反思:2为什么写在商的十位上?用自己的话说说笔算除法的方法是什么。
(4)计算“想想做做”第2题。
学生独立完成,教师注意纠正错误的写法。
计算“想想做做”第3题。引导学生比较在计算过程中发现了什么,体会有余数除法竖式的写法。
1.完成“想想做做”第4题。
先出示场景图,引导学生自己提出问题,解决问题。
2.完成“想想做做”第5题。
鼓励学生用估计的方法解决问题:杨树苗每棵十几元,松树苗每棵二十几元,所以,松树苗贵一些。
一位数除两位数教案篇十六
进一步运用所学知识解决实际问题,发展应用意识,提高解决简单实际问题的能力。发展学生的思维能力。
在练习的同时不仅仅会做题目,还要培养学生的口头表达能力和思维能力。
1、做p12(6)出示题目,要求先算一算,然后比一比上下两题有什么规律。
出示54÷18,让同学们根据刚才得出的规律进行试算。
2、做p13(7)看图理解题意。
做在本子上。
指名说说是怎样解决的。
3、做p13(8)先独立完成,再说说是怎样解决的。
4、做p13(9)看图理解题意。
小组先讨论准备怎样租船。
交流租船。
再讨论租金的`计算方法。
交流,并选择较合理的。
(9只大船,2只小船最为合理)。
5、课堂作业:p13(9)思考思考题。
一位数除两位数教案篇十七
教科书第35~36页的例1、例2.
目的。
使学生学会用一位数除两位数商两位数的笔算方法,掌握书写格式.理解用一位数除两位数商是两位数的算理,并能正确地进行笔算.
培养学生的计算能力及初步的动手操作能力.
培养学生良好的书写习惯.
重点。
理解算理,掌握算法.掌握笔算除法的步骤和商的书写位置.
难点。
理解每求出一位商后,如果有余数,应该与下一位上的数和在一起继续除的道理.
过程。
一、复习沟通.
1.指名用竖式板演:8÷4,16÷5,其余的学生在课堂练习本上做.
2.口算:
42÷2 420÷2。
指名任选一题说出口算过程.
刚才同学们用口算的方法计算出了得数,这节课我们来学习笔算的方法.(课题)。
二、动手操作、领悟算法。
第一层:初步理解。
1.出示例1:42÷2=。
动手操作,重现口算过程.
要求:动手分小棒,说说先算什么,后算什么.
(先用4个十除以2得2个十,再用2个一除以2得1个一,2个十加上1个一商是21.)。
(2)明确笔算的过程和竖式的写法:
笔算除法的计算顺序和口算一样,要从被除数的高位除起.被除数十位上的4表示4个十,4个十除以2商2个十,要在商的十位(跟被除数的十位数对齐)上写2.用除数2去乘2个十,积是4个十,表示从被除数中已经分掉的数,写在42十位的下面.4减4得0,表示十位上的数已分完了,个位上还有2,要落下来继续除.2除以2得1,要在商的个位(跟被除数的个位对齐)上写1,再用除数2去乘1,积是2,表示从被除数中又分掉的数,写在落下来的被除数的个位上的2的下面.2减2得0,在余数的位置上写0,表示个位上的数也分完了,计算过程结束.
(3)师问:说一说,作笔算除法时,是从被除数的哪一位除起的?每次除得的商写在什么位置上?(小组讨论)。
(4)初步练习,掌握其法.
指名板演,其余在练习本上做.说出笔算的过程.
2.把例1换数变为例2:52÷2=。
动手操作,理解算理.
问:52能不能平均分成两份呢?自己动手分一分.
学生汇报分的结果.
问:这道题在分小棍时与例1有什么不同?
让学生独立试算52÷2,有困难的,可以提问.
学生可能问:十位除后余1该怎么办?
先请会的同学帮助解答.师再进一步明确:
笔算除法的计算时,要从被除数的高位除起.被除数十位上的5表示5个十,5个十平均分成2份,每份最多能分2个十,也就表示商2个十,要在商的十位(跟被除数的十位数对齐)上写2.用除数2去乘2个十,积是4个十.把4写在十位的下面.5减4得1,表示十位上还剩1个十没有分.也就是5捆小棒分掉4捆,还剩1捆.就把剩下的1个十与个位上的2合并.即要把被除数个位上的2落下来,和十位上的余数1和在一起,表示12.12除以2得6,要在商的个位(跟被除数的个位对齐)上写6,再用除数2去乘6,积是12,表示从被除数中又分掉的数,写在落下来的被除数的12的下面.12减12得0,在余数的位置上写0,表示分完了,计算过程结束.
小组内讨论:说一说例2和例1比,计算过程有什么不同,应注意什么?
明确:如果除到被除数的十位以后还有余数,要把余数与被除数的下一位数和起来继续除.
练习:竖式计算。
3.小结算法:
师:“谁能用自己的话说一说,今天所学的笔算除法的计算方法是什么?(小组内互相说)。
师生共同总结:笔算除法,要从被除数的最高位除起;除到被除数的哪一位,商就写在哪一位的上面;如果被除数的哪一位除后有余数(要注意余数必须比除数小),就把余数与被除数的下一位数合起来继续除.
师生共同编法则歌诀:除数一位看一位,除到哪位商哪位.
4.练习反馈:
三、运用新知,解决问题。
1.庆国庆做纸花,要求每班做48朵,五年级每班分给2个同学完成,四年级每班分给3个同学完成,三年级每班分给4个同学完成,二年级每班分给6个同学完成,一年级每班分给8个同学完成.请你任选三个年级算一算每个同学做几朵.用竖式计算.
2.练习九的第1、2题.
(1) 。
(2) 。
独立完成,集体讲评,个别纠正.
四、看书质疑,总结全课。
问:今天都有哪些收获?还有什么问题?
设计。
点评:
笔算除法和口算除法的思路基本相同,但笔算除法与笔算加、减、乘法的书写格式完全不同,因而有一定的难度。时通过让学生动手操作,重现口算过程,然后结合过程讲解竖式的写法。让学生自主探索,在学生汇报的基础上,进行总结。着重突出“每求出一位商,余下的数必须比除数小”和“每次余下的数要与被除数的下一位数合并再继续除”的计算方法。通过练习,强化重点,使学生掌握书写格式和步骤。练习的设计侧重于知识和实际生活的联系,让学生在解决实际问题中巩固新知。
一位数除两位数教案篇十八
1.指名用竖式板演:84,165,其余的学生在课堂练习本上做.
2. 口算:
422 4202
指名任选一题说出口算过程.
刚才同学们用口算的方法计算出了得数,这节课我们来学习笔算的方法.(板书课题)
二、动手操作、领悟算法
第一层:初步理解
1.出示例1:422=
动手操作,重现口算过程.
要求:动手分小棒,说说先算什么,后算什么.
(先用4个十除以2得2个十,再用2个一除以2得1个一,2个十加上1个一商是21.)
(2)明确笔算的过程和竖式的写法:
(3)师问:说一说,作笔算除法时,是从被除数的哪一位除起的?每次除得的`商写在什么位置上?(小组讨论)
(4)初步练习,掌握其法.
指名板演,其余在练习本上做.说出笔算的过程.
2.把例1换数变为例2: 522=
动手操作,理解算理.
问:52能不能平均分成两份呢?自己动手分一分.
学生汇报分的结果.
问:这道题在分小棍时与例1有什么不同?
让学生独立试算522,有困难的,可以提问.
学生可能问:十位除后余1该怎么办?
先请会的同学帮助解答.师再进一步明确:
小组内讨论:说一说例2和例1比,计算过程有什么不同,应注意什么?
明确:如果除到被除数的十位以后还有余数,要把余数与被除数的下一位数和起来继续除.
练习:竖式计算
3. 小结算法:
师:谁能用自己的话说一说,今天所学的笔算除法的计算方法是什么?(小组内互相说)
师生共同编法则歌诀:除数一位看一位,除到哪位商哪位.
4.练习反馈:
844 963 682 753
847 968 684 755
三、运用新知,解决问题
2.练习九的第1、2题.
(1)
(2)
独立完成,集体讲评,个别纠正.
四、看书质疑,总结全课
问:今天都有哪些收获?还有什么问题?
一位数除两位数教案篇十九
2、体会数学活动充满着探索,树立学好数学的信心。
首位除时有余的情况应如何处理。
十位上余下的数与各位数合起来再除。
创设情景,并让学生在操作中获得直接经验,从而突破难点。
挂图、小黑板等。
1、出示准备题:把40个羽毛球,平均分给2个班每班能分到多少个?
2、指名列式计算。说一说口算和竖式计算方法。
1、把准备题改成例题:把52个羽毛球,平均分给2个班每班能分到多少个?
2、列式并讨论计算方法。
(1)借助学具摆一摆。
a、分法一:体会到先分整筒的,分给每班2筒,余下的一筒要和单个的合起来再分。
40÷2=2012÷2=620+6=26。
b、分法二:先把5筒平均分成2份,每份2筒,剩下1筒;再把一筒散开,平均分成5只;再把2只平均分成2份,每份是1只;最后得到每份26只。
(2)引导比较分法,形成统一认识。
(3)学生复述分的过程。
(4)用竖式计算。
26。
3)52十位上的5减4等于1,
4这个1实际上是多少?
12。
12。
3、验算。
26×2=52。
1、想想做做:第1题。
78÷384÷692÷280÷5。
2、想想做做:第3题。
(1)先让学生自行练习。
(2)再通过比较,沟通每组两题之间的联系。
3、想想做做:第5题。
(1)热水瓶的价钱是一幅画的几倍?
56÷4=14。
(2)热水瓶的价钱是茶杯的几倍?
56÷2=28。
(3)一幅画的价钱是茶杯的几倍?
4÷2=2。
想想做做:第2、4题。
板书设计:
26。
2)52十位上的`5减4等于1,
4这个1实际上是多少?
12。
12。
26。
2)52十位上的5减4等于1,
4这个1实际上是多少?
12。
12。
26。
2)52十位上的5减4等于1,
4这个1实际上是多少?
12。
12。
一位数除两位数教案篇二十
3. 在实践操作活动中学会思考,学会解决问题。 。
教学重点 。
教学难点 。
着重帮助学生理解被除数的哪一位,就把商写再哪一位上面。
教学过程:
一.复习引入。
1、口算: 。
问:24÷2时是怎样想的? 。
1、 竖式计算 。
二、新授 。
1、出示主题图,让学生观察画面内容,并用自己的话口述,编一除法应用题。 。
2、 出示板书例1,求三年级平均每班种多少棵树?你会列式计算吗?
3、说说你是怎样算的。
3.如果用竖式计算你会吗?(教师巡视指导)。
5.教师讲解竖式除法的步骤和关键。 。
6、试一试(抽学生黑板上做) 。
三. 巩固练习。
第21页第2题。前两题。
四.小结。
今天我们学习了什么知识?计算时要注意什么?
一位数除两位数教案篇二十一
1.使学生理解并掌握一位数除两位数、几百几十的口算方法,并能正确口算。
2.使学生会把新的问题转化成已学过的问题,发展数学思维,提高探索能力。
3.使学生在学习口算的过程中培养学习兴趣。
数学教学既要考虑数学自身的特点,更应遵循学生学习数学的心理规律,注重从学生己有的生活经验出发,让学生亲身经历数学建构的过程,从而使学生获得对数学理解的同时,在认知、情意、能力等多方面得到发展。然而习惯上教学本课时,一般都是按教材的编排与呈现顺序进行复习、出示例题、呈现小棒图、讲解算法、练习。这样的教学看似从学生的已有经验出发,也利用小棒图让学生经历将直观现象抽象成数学模型并进行解释与应用的过程,学生也会获得对口算除法方法的理解。但这样教学的结果是,学习者除在知识积累的量上获得增加外,其思维能力、认知策略、探索能力以及积极的数学学习情感体验等作为人的一般素质方面,获得的发展是微乎其微的。笔者以为造成这种教学目标缺失的原因主要是以学生为主体的探索式的学习方式没有真正在教学设计和实施中得以落实。基于上述分析和考虑,我们设计了如下教学过程,旨在让学生在体悟中学习,把数学学习过程加工成儿童再创造的活动。
一、引导编题,于探索挑战中体悟
师:老师这儿有两道除法题,请同学们口算一下。出示603= 153=
学生算完上述两题后,提问:计算这两道除法题时你们感觉怎样?
生:很好算,一下子就算出了结果。
师:那接下来我再出几道好算的除法题。随手在603=20的后面板书如下:303= 804=算完后提问:有谁知道接下来老师还会出一些怎样的好算的.除法题?大家可以大胆地猜一猜,出一出。
学生出题后,教师板书成:303= 804= 602= 707= 402=
师(故作惊讶地)诱问:这些好算的除法题你们是怎样猜到的?
生:因为我们发现前面算的几道除法题都是一个整十数除以一个一位数,而且正好除尽,所以我们后来出的都是这样的除法题。
师:接下来我要出像153=5这样好算的式题,你们会出吗?
学生出后,教师板书在下面一行,成为:
246= 486= 728=
师问:下面这行除法题为什么也好算?
生:因为这些除法题都可以用乘法口诀来算。
[评析:上述教学过程,教师先让学生口算两道除法题,在学生有了好算的体验后,教师再把学生组织在猜、编好算的除法题这一极富挑战性的探索活动中,他们在先前两道好算的除法题的启发提示下猜、编出了两类好算的除法题,通过猜题、编题、算题,充分获得了对于好算的除法的感受。这种直观的整十数除以一个一位数和用表内乘法口诀算除法好算的经验,将对后继学习产生积极的启示作用。
二、制造冲突,于问题情境中体悟
生1:用笔算除法的方法算的。
生2;在脑子里想一个竖式后再算的。
师:算这道题的感觉与算上面这些题有什么不一样?
生:上面两组题好算,这道题不好算,难算。
师:学到这里你有什么想法?
生:不是所有的除法题都像上面两组那样好算的。
师诱导:要是有什么办法使这道题也能像算上面的题那样好算,就好了,你们说对不对?我们一起来想想办法,讨论讨论。
[评析:原有的经验不能解决类似的问题所造成的认知冲突常常能激起学生欲罢不能的探究热情。就在学生形成了对于除法都好算的得意心理后,教师出示753=?让学生知道已有的好算的经验不能解决所有的问题,从而使学生带着认知困惑有的放矢地展开学习讨论,也为下面的学习在策略上作了引导。
三、沟通联系,于迁移同化中体悟
在学生处于上述心求通而末达的愤悱境地时,教师予以点拨,指着这三道题:603=20
153=5 753=
说:大家试着把这三道题联系起来看看,能不能得出使753好算的办法?学生恍然大悟。
生1:上面两题的被除数加起来等于下面这道题的被除数,它们除数都是3,上面两道题的商相加就是下面一道题的商。
生2:算下面这道除法题的时候可以像算上面两道除法题那样来想。即75可以分成60和15,603=20,153=5,20+5=25。
师:接下来我们用这种方法试着算几道题:362= 483= 605=
算完后,教师让学生概括一下口算两位数除以一位数的方法。再引导学生把上面的方法迁移到几百几十除以一位数的口算除法中(如4503=?)。具体过程略。
四、引导探究、于反思总结中体悟
1.在课尾,教师出示:
问:在计算753=?有这样一种想法,你们觉得对吗?
生:对的。
师:对这种算法你还有别的想法吗?
生:这种想法尽管也能算出结果,可是太麻烦了。
师:原因在哪里?
生:这种想法在把75分成两个数时,整十数30小了一些,我认为分成的那个整十数既要能除以3正得几十,又要尽可能大,所以75分成60和15就不存在上面的问题。
师:通过这道题的深究,你能为以后口算除数是一位数的除法提一个什么建议?
生:把被除数分成两个数时,分成的那个整十数要尽可能大,除以除数又要正好得几十。
2.师:回顾一下今天的学习,你们有什么收获?
生1:我学会了口算除数是一位数的除法的方法,还知道要注意什么。
生2:我觉得在学习新知识过程中如果遇到困难,可以想办法把它转化成学过的知识。
生3:我觉得口算要算得快,要找窍门,做事也要找窍门。
生4:
教师是课堂教学的组织者、学生学习的引导者,当今倡导主体性教学并不是放弃教师的主导作用,而是对教师主导提出了更新更高的要求。笔者以为课堂上教师应导在所当导,放在该放处。上述教学中为了深化学生的理解,教师创造性地提供了一个变式,让学生探究,从而既强化对口算方法和转化思想的认识,又孕伏了优化的策略思想。最后的学习回顾,又让学生在与同伴的交流申提升了学习的效果。
教师是课程开发的重要力量,因为课程的实施最终是通过教师的中介而得以落实的。为此,笔者以为教师应强化课程开发的意识,具体表现在教学设计时既要深入钻研教材,又要跳出教材,再也不能把教学的过程纯粹地看做是忠实地执行与实施教材,而应该在课程目标的导向下因时、因地、因生、因己灵活地处理、开发教材,创造出有利于学生主动学习、全面和谐发展的教学方案,同时在自己的创造性活动中焕发自己的生命活力。面对除数是一位数的口算除法这一内容,我们没有就教材教教材,而是从促进学生全面发展这一宗旨着眼,在当代主体性教育论、认知心理学、数学学习论的指导下,把这一内容看成是学生学习与发展的载体,把学生参与学习口算的过程加工成一个学生亲身参与体悟和再创造的活动,从而实现学生在认知、情感、智能等方面全面、持续、和谐的发展。