初中数学函数教案(汇总20篇)
教案是教师为了达到教学目标而制定的一份详细计划。教案的编写要注意培养学生的学习兴趣和自主学习能力。以下是小编为大家整理的教案范文,供大家参考学习。
初中数学函数教案篇一
教学目标:
1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
教学重点、难点:
重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题。
教学过程:
一、情景创设:
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:。
(1)药物燃烧时,y关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.
二、新授:
(1)如果小明以每分种120字的.速度录入,他需要多少时间才能完成录入任务?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为的长方形蓄水池。
(1)蓄水池的底部s与其深度有怎样的函数关系?
(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)。
三、课堂练习。
1、一定质量的氧气,它的密度(kg/m3)是它的体积v(m3)的反比例函数,当v=10m3时,=1.43kg/m3.(1)求与v的函数关系式;(2)求当v=2m3时求氧气的密度.
2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.
(1)求y与x之间的函数关系式;
3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=y.求y与x之间的函数关系式及自变量x的取值范围.
四、小结。
五、作业。
30.31、2、3。
初中数学函数教案篇二
投影仪
自学研究与启发讨论式.
一、复习与引入
(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)
提问1.是函数吗?
(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.)
二、新课
现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)
提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.
(板书)2.2函数
一、函数的概念
问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)
引导学生发现,函数是特殊的映射,特殊在集合a,b必是非空的数集.
2.本质:函数是非空数集到非空数集的映射.(板书)
然后让学生试回答刚才关于是不是函数的问题,要求从映射的角度解释.
此时学生可以清楚的看到满足映射观点下的函数定义,故是一个函数,这样解释就很自然.
教师继续把问题引向深入,提出在映射的观点下如何解释是个函数?
从映射角度看可以是其中定义域是,值域是.
3.函数的三要素及其作用(板书)
以下关系式表示函数吗?为什么?
(1);(2).
解:(1)由有意义得,解得.由于定义域是空集,故它不能表示函数.
(2)由有意义得,解得.定义域为,值域为.
由以上两题可以看出三要素的作用
(1)判断一个函数关系是否存在.(板书)
(1);(2) (3);(4).
解:先认清,它是(定义域)到(值域)的映射,其中
.
再看(1)定义域为且,是不同的;(2)定义域为,是不同的;
(4),法则是不同的;
而(3)定义域是,值域是,法则是乘2减1,与完全相同.
(2)判断两个函数是否相同.(板书)
4.对函数符号的理解(板书)
已知函数试求(板书)
分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算.
含义1:当自变量取3时,对应的函数值即;
含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.
计算之后,要求学生了解与的区别,是常量,而是变量,只是中一个特殊值.
三、小结
1.函数的定义
2.对函数三要素的认识
3.对函数符号的认识
四、作业:略
五、
2.2函数例1.例3.
一.函数的概念
1.定义
2.本质例2.小结:
3.函数三要素的认识及作用
4.对函数符号的理解
答案:
初中数学函数教案篇三
2、能正确且较为熟练地运用去括号的符号法则去化简代数式过程与方法目标学习目标。
1、通过观察、合作交流、讨论总结等活动得出去括号的符号法则,培养学生观察、分析、总结的能力。
2、通过例题讲解,和巩固练习,培养学生的计算能力班级:初一四班nn。
1、数学知识:
2、数学思想方法:布置作业:板书设计nn教学反思nn。
初中数学函数教案篇四
这一节的重点就是钠的化学性质——与水反应,还有钠的物理性质——颜色。难点就是钠与氧气在充足及过量时候的反应,还有就是实验,由于反应速度快,难以观察,最后就是反应的化学方程式。
三教学理念及其方法。
对反应速度快这个问题可以通过慢放实验的动化,使学生能看清楚过程。
2涉及原子等微观粒子的结合过程,需要很强的空间想象力,可以通过计算机动画演示,使反应变得直观,更容易理解。
3对于钠与水的反应,具有一定的危险性,可以通过动画来展示实验不当造成的后果。
四教学过程。
2再以水灭火图片给学生观看,然后以钠放入水中为参比,激发学生的兴趣。
3再通过一些趣味性实验演示,能更进一步激发学习的积极性,例如用一装有半瓶水的塑料瓶,瓶塞上扎一黄豆大的钠的大头针,瓶倒置使钠和水充分反应,取下塞子、点燃火柴靠近瓶口有尖锐的爆鸣声,效果得到大大改进。
五学法分析。
通过这节课的教学教给学生对金属钠的认识,掌握金属钠的性质,透过现象看本质,分析、归纳物质的性质,培养学生观察、分析问题的能力,调动学生积极性,激发学生的学习兴趣。
五总结性质,得出结论,布置作业。
列出来,这样条理就清晰了,然后再总述一下这节所学的内容,讲述的重点及难点。最后布置2个思考题:
(1)钠为什么保存在煤油中?
(2)把钠投到苯和水的混合液中钠在水和苯间跳上“水上芭蕾”,为什么?
再讲一下钠的用途。
六板书设计。
板书设计第一节钠。
一、钠的物理性质。
二、钠的化学性质。
1钠的原子结构。
2钠与氧气反应(条件不同,产物不同)。
3钠与水反应(重点)。
初中数学函数教案篇五
今天小编为大家精心整理了一篇有关初中数学教案之函数的相关内容,以供大家阅读!函数教学目标:
1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围.3、会求函数值,并体会自变量与函数值间的对应关系.4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.教学重点:了解函数的意义,会求自变量的取值范围及求函数值.教学难点:函数概念的抽象性.教学过程:(一)引入新课:
第1页/共6页式中的自变量与函数吗?
刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.例1、求下列函数中自变量x的取值范围.(1)(2)(3)(4)(5)(6)。
第2页/共6页数大于、等于零.的被开方数是.。
(2)若估计前来停放的3500辆次自行车中,变速车的辆次。
收入在1225元至1330元之间。
总结。
:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.对于函数,当自变量时,相应的函数y的值是.60叫做这个函数当时的函数值.例3、求下列函数当时的函数值:(1)(2)(3)(4)。
注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应.以此加深对函数的理解.(二)小结:
第5页/共6页往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。
作业:习题13.2a组2、3、5死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。今天的内容就介绍到这里了。
第6页/共6页。
初中数学函数教案篇六
教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。
难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。
教学方法:多媒体授课。
学法指导:借助列表与图像法。
教具:多媒体教学设备。
教学过程:
初中数学函数教案篇七
1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。
(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。
(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。
2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。
3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。
(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。
(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。
(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。
(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。
(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。
初中数学函数教案篇八
1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。
2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。
3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。
4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。
初中数学函数教案篇九
1.使学生了解反函数的概念,初步掌握求反函数的方法.
2.通过反函数概念的学习,培养学生分析问题,解决问题的能力及抽象概括的能力.
3.通过反函数的学习,帮助学生树立辨证唯物主义的世界观.
重点是反函数概念的形成与认识.
难点是掌握求反函数的方法.
投影仪。
自主学习与启发结合法。
一.揭示课题。
今天我们将学习函数中一个重要的概念----反函数.
(一)反函数的概念(板书)。
二.讲解新课。
教师首先提出这样一个问题:在函数中,如果把当作因变量,把当作自变量,能否构成一个函数呢?(让学生思考后回答,要讲明理由)可以根据函数的定义在的允许取值范围内的任一值,按照法则都有唯一的与之相对应.(还可以让学生画出函数的图象,从形的角度解释“任一对唯一”)。
学生很快会意识到是的反函数,教师可再引申为与是互为反函数的.然后利用问题再引申:是不是所有的函数都有反函数呢?如果有,请举出例子.在教师启发下学生可以举出象这样的函数,若将当自变量,当作因变量,在允许取值范围内一个可能对两个(可画图辅助说明,当时,对应),不能构成函数,说明此函数没有反函数.
通过刚才的例子,了解了什么是反函数,把对的反函数的研究过程一般化,概括起来就可以得到反函数的定义,但这个数学的抽象概括,要求比较高,因此我们一起阅读书上相关的内容.
1.反函数的定义:(板书)(用投影仪打出反函数的定义)。
为了帮助学生理解,还可以把定义中的换成某个具体简单的函数如解释每一步骤,如得,再判断它是个函数,最后改写为.给出定义后,再对概念作点深入研究.
2.对概念得理解(板书)。
教师先提出问题:反函数的“反”字应当是相对原来给出的函数而言,指的是两者的关系你能否从函数三要素的角度解释“反”的含义呢?(仍可以与为例来说)。
学生很容易先想到对应法则是“反”过来的,把与的位置换位了,教师再追问它们的互换还会带来什么变化?启发学生找出另两个要素之间的关系.最后得出结论:的定义域和值域分别由的值域和定义域决定的.再把结论从特殊发展到一般,概括为:反函数的三要素是由原来函数的三要素决定的.给出的函数确定了,反函数的三要素就已经确定了.简记为“三定”.
(1)“三定”(板书)。
最后教师进一步明确“反”实际体现为“三反”,“三反”中起决定作用的是与的位置的反置,正是由于它的反置,才把它的范围也带走了,引起了另外两“反”.
(2)“三反”(板书)。
此时教师可把问题再次引向深入,提出:如果一个函数存在反函数,应怎样求这个反函数呢?下面我给出两个函数,请同学们根据自己对概念的理解来求一下它们的反函数.
例1.求的反函数.(板书)。
(由学生说求解过程,有错或不规范之处,暂时不追究,待例2解完之后再一起讲评)。
解:由得,所求反函数为.(板书)。
例2.求,的反函数.(板书)。
解:由得,又得,。
故所求反函数为.(板书)。
求完后教师请同学们作评价,学生之间可以讨论,充分暴露表述中得问题,让学生自行发现,自行解决.最后找代表发表意见,指出例2中问题,结果应为,.
教师可先明知故问,与,有什么不同?让学生明确指出两个函数定义域分别是和,所以它们是不同的函数.再追问从何而来呢?让学生能从三定和三反中找出理由,是从原来函数的值域而来.
在此基础上,教师最后明确要求,由于反函数的定义域必是原来函数的值域,而不是从自身解析式出发寻求满足的条件,所以求反函数,就必须先求出原来函数的值域.之后由学生调整刚才的求解过程.
解:由得,又得,。
又的值域是,。
故所求反函数为,.
(可能有的学生会提出例1中为什么不求原来函数的值域的问题,此时不妨让学生去具体算一算,会发现原来函数的值域域求出的函数解析式中所求定义域时一致的,所以使得最后结果没有出错.但教师必须指出结论得一致性只是偶然,而不是必然,因此为规范求解过程要求大家一定先求原来函数的值域,并且在最后所求结果上注明反函数的定义域,同时让学生调整例的表述,将过程补充完整)。
最后让学生一起概括求反函数的步骤.
3.求反函数的步骤(板书)。
(1)反解:。
(2)互换。
(3)改写:。
对以上环节教师可稍作解释,然后提出再通过下面的练习来检验是否真正理解了.
三.巩固练习。
练习:求下列函数的反函数.
(1)(2).(由两名学生上黑板写)。
解答过程略.
教师可针对学生解答中出现的问题,进行讲评.(如正负的选取,值域的计算,符号的使用)。
四.小结。
1.对反函数概念的认识:。
2.求反函数的基本步骤:。
五.作业。
课本第68页习题2.4第1题中4,6,8,第2题.
六.板书设计。
2.4反函数例1.练习.
一.反函数的概念(1)(2)。
1.定义。
2.对概念的理解例2.
(1)三定(2)三反。
3.求反函数的步骤。
(1)反解(2)互换(3)改写。
初中数学函数教案篇十
2.通过对抽象符号的认识与使用,使学生在符号表示方面的能力得以提高.。
难点:重点是在映射的基础上理解的概念;
难点是对抽象符号的认识与使用.。
投影仪。
自学研究与启发讨论式.。
(要求学生尽量用自己的话描述初中的定义,并试举出各类学过的例子)。
提问1.是吗?
(由学生讨论,发表各自的意见,有的认为它不是,理由是没有两个变量,也有的认为是,理由是可以可做.)。
现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)。
提问2.新的的定义是什么?能否用最简单的语言来概括一下.。
(板书)2.2。
一、的概念。
问题3:映射与有何关系?(一定是映射吗?映射一定是吗?)。
引导学生发现,是特殊的映射,特殊在集合a,b必是非空的数集.。
2.本质:是非空数集到非空数集的映射.(板书)。
然后让学生试回答刚才关于是不是的问题,要求从映射的角度解释.。
此时学生可以清楚的看到满足映射观点下的定义,故是一个,这样解释就很自然.。
教师继续把问题引向深入,提出在映射的观点下如何解释是个?
从映射角度看可以是其中定义域是,值域是.。
3.的三要素及其作用(板书)。
例1以下关系式表示吗?为什么?
(1);(2).。
解:(1)由有意义得,解得.由于定义域是空集,故它不能表示.。
(2)由有意义得,解得.定义域为,值域为.。
由以上两题可以看出三要素的作用。
(1)判断一个关系是否存在.(板书)。
例2下列各中,哪一个与是同一个.。
(1);(2)(3);(4).。
解:先认清,它是(定义域)到(值域)的映射,其中。
.
再看(1)定义域为且,是不同的;(2)定义域为,是不同的;
(4),法则是不同的;
而(3)定义域是,值域是,法则是乘2减1,与完全相同.。
(2)判断两个是否相同.(板书)。
4.对符号的理解(板书)。
例3已知试求(板书)。
分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算.。
含义1:当自变量取3时,对应的值即;
含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.。
计算之后,要求学生了解与的区别,是常量,而是变量,只是中一个特殊值.。
1.的定义。
2.对三要素的认识。
3.对符号的认识。
五、
2.2例1.例3.。
一.的概念。
1.定义。
2.本质例2.小结:
3.三要素的认识及作用。
4.对符号的理解。
探究活动。
答案:
初中数学函数教案篇十一
(二)解析:本节课要学的内容指的是会判定函数在某个区间上的单调性、会确定函数的单调区间、能证明函数的单调性,其关键是利用形式化的定义处理有关的单调性问题,理解它关键就是要学会转换式子。学生已经掌握了函数单调性的定义、代数式的变换、函数的概念等知识,本节课的内容就是在此基础上的应用。教学的重点是应用定义证明函数在某个区间上的单调性,解决重点的关键是严格按过程进行证明。
二、教学目标及解析。
(一)教学目标:
掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。
(二)解析:
会证明就是指会利用三步曲证明函数的单调性;会求函数的单调区间就是指会利用函数的图象写出单调增区间或减区间;应用知识解决问题就是指能利用函数单调性的意义去求参变量的取值情况或转化成熟悉的问题。
三、问题诊断分析。
在本节课的教学中,学生可能遇到的问题是如何才能准确确定的符号,产生这一问题的原因是学生对代数式的恒等变换不熟练。要解决这一问题,就是要根据学生的实际情况进行知识补习,特别是因式分解、二次根式中的分母有理化的补习。
在本节课的教学中,准备使用(),因为使用(),有利于()。
初中数学函数教案篇十二
如果从中考的角度看,初中函数部分可以说是为了函数而函数,只是先把函数的概念填进大脑再说。
三种主要函数的解析式的形式和求解方法,正比例和一次函数就当一种,二次函数解析式的三种形式,三种解析式的求解方法及各个常数的意义、对图像的影响。三种函数的图像,一次函数和二次函数,一次函数和反比例函数的结合。
直接求解析式,或者求出解析式再求上面的点坐标,是很常见的考题,这类题了解基本概念就行。利用二次函数求最值是一类应用。二次函数和方程的联系也是考点,需要对所学概念熟记于心、融会贯通,多练习,形成对数学的敏感性,做到看到什么类型,就想到脑中的哪个知识点和基本概念。
还有一种所谓大题,平面几何和函数综合题,别被唬住了,往往也包括了送分的球解析式小题,但其实更多的只是平面几何的问题,只是批了层函数的外衣,单纯来看,比一般的平面几何更简单,只是因为批了这么层外衣,就把人迷惑了。所以遇到这种题,首先别被它吓住了,只要基本概念清楚,剥掉函数的外衣,其实质就是平面几何。
应付中考,这就够了,虽然初中函数引入时,教材就几乎明示,函数作为一种工具,要把你带了研究变量数学的领域,让你更关注运动和联系。但于此相矛盾的是,在应试上,学函数还是为了函数本身,这或许是初中阶段对函数学习的教学要求所致――了解函数,但是这却造成了机械地学习函数,脱离函数本质。
静止地、孤立地学习函数,应付中考还真没问题,但任何事物是运动的,事物之间是普遍联系的,函数就是揭示运动规律和内在联系的一个数学工具。同样,人也是运动发展的,知识也是有连续性的。很多人在初中时可以用机械的方法把函数“学得很好”,一进高中,不到一个学期,集合、映射、函数,一下就晕了,以至到后面脱节越来越严重。
初中数学函数教案篇十三
函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。
本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学i必修本(a版)》第94—95页的第三章第一课时3、1、1方程的根与函数的的零点。
本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形、它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3、1、2)加以应用,通过建立函数模型以及模型的求解(3、2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系、渗透“方程与函数”思想。
总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
知识与技能:
1、结合方程根的几何意义,理解函数零点的定义;
2、结合零点定义的探究,掌握方程的实根与其相应函数零点之间的'等价关系;
3、结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法。
情感、态度与价值观:
2、培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3、使学生感受学习、探索发现的乐趣与成功感。
教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
导学案,自主探究,合作学习,电子交互白板。
(一)、问题引人:
请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根?
学生活动:回答,思考解法。
学生活动:思考作答。
设计意图:通过设疑,让学生对高次方程的根产生好奇。
(二)、概念形成:
预习展示1:
学生活动:观察图像,思考作答。
教师活动:我们来认真地对比一下。用投影展示学生填写表格。
一元二次方程。
方程的根。
二次函数。
函数的图象。
(简图)。
图象与轴交点的坐标。
函数的零点。
问题1:你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与。
轴交点的坐标以及函数零点的关系吗?
学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。
教师活动:我们就把使方程成立的实数x称做函数的零点、(引出零点的概念)。
根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?
学生活动:经过观察表格,得出(请学生总结)。
2)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标、
3)方程有实数根函数的图象与轴有交点函数有零点。
教师活动:引导学生仔细体会上述结论。
再提出问题:如何并根据函数零点的意义求零点?
学生活动:可以解方程而得到(代数法);
可以利用函数的图象找出零点、(几何法)、
设计意图:由学生最熟悉的二次方程和二次函数出发,发现一般规律,并尝试的去总结零点,根与交点三者的关系。
(三)探究性质:
(四)探索研究(可根据时间和学生对知识的接受程度适当调整)。
讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?
[师生互动]。
师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。
生:分组讨论,各抒己见。在探究学习中得到数学能力的提高。
第五阶段设计意图:
一是为用二分法求方程的近似解做准备。
二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。
(五)、课堂小结:
零点概念。
零点存在性的判断。
零点存在性定理的应用注意点:零点个数判断以及方程根所在区间。
(六)、巩固练习(略)。
初中数学函数教案篇十四
2、把已知条件(自变量与函数对应值)代入解析式,得到关于待定系数的方程(组);。
3、解方程(组),求出待定系数;。
4、将求得的待定系数的值代回所设的函数解析式,从而得到所求函数解析式。
例、已知:一次函数的图象经过点(2,-1)和点(1,-2).
(1)求此一次函数的解析式;(2)求此一次函数与x轴、y轴的交点坐标。
分析:一般一次函数有两个待定字母k、b.要求解析式,只须将两个独立条件代入,再解方程组即可.凡涉及求两个函数图象的交点坐标时,一般方法是将两个函数的解析式组成方程组,求出方程组的解就求出了交点坐标.
解:(1)设函数解析式为y=kx+b.
(2)当y=0时x=3,当x=0时y=-3。可得直线与x轴交点(3,0)、与y轴交点(0,-3)。
评析:用待定系数法求函数解析式,求直线的交点均与解方程(组)有关,因此必须重视函数与方程之间的关系.
初中数学函数教案篇十五
3.能够综合运用各种法则求函数的导数.。
函数的和、差、积、商的求导法则的推导与应用.。
1.问题情境.。
(1)常见函数的导数公式:(默写)。
(2)求下列函数的`导数:;;.。
(3)由定义求导数的基本步骤(三步法).。
2.探究活动.。
例1求的导数.。
思考已知,怎样求呢?
函数的和差积商的导数求导法则:
练习课本p22练习1~5题.。
点评:正确运用函数的四则运算的求导法则.。
函数的和差积商的导数求导法则.。
1.见课本p26习题1.2第1,2,5~7题.。
初中数学函数教案篇十六
(二)能画出简单函数的图象,会列表、描点、连线;。
(三)能从图象上由自变量的值求出对应的函数的近似值。
重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。
难点:对已恬图象能读图、识图,从图象解释函数变化关系。
1.什么叫函数?
2.什么叫平面直角坐标系?
3.在坐标平面内,什么叫点的横坐标?什么叫点的.纵坐标?
4.如果点a的横坐标为3,纵坐标为5,请用记号表示a(3,5).
5.请在坐标平面内画出a点。
6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)。
我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x为自变量时,y是x的函数。
这个函数关系中,y与x的函数。
这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。
初中数学函数教案篇十七
(3)能正确使用“区间”及相关符号,能正确求解各类的定义域.。
2.通过概念的学习,使学生在符号表示,运算等方面的能力有所提高.。
(1)对记号有正确的理解,准确把握其含义,了解(为常数)与的区别与联系;
(2)在求定义域中注意运算的合理性与简洁性.。
3.通过定义由变量观点向映射观点的过渡,是学生能从发展的角度看待数学的学习.。
1.教材分析。
(1)知识结构。
(2)重点难点分析。
是的定义和符号的认识与使用.。
2.教法建议。
初中数学函数教案篇十八
认知基础:学生在七年级下册第四章已学习了《变量之间的关系》,对变量间互相依存的关系有了一定的认识,但对于变量间的变化规律尚不明确,理解的很肤浅,也缺乏理论高度,另外本章在认知方式和思维深度上对学生有较高的要求,学生在理解和运用时会有一定的难度。
活动经验基础:在七年级下册《变量之间的关系》一章中,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。
知识与技能目标:
(1)初步掌握函数概念,能判断两个变量之间的关系是否可以看作函数。
(2)根据两个变量之间的关系式,给定其中一个变量的值相应的会求出另一个变量的值。
(3)会对一个具体实例进行概括抽象成为函数问题。
过程与方法目标:
(1)通过函数概念初步形成利用函数的观点认识现实世界的意识和能力。
(2)经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。
情感态度与价值观目标:
(1)经历函数概念的抽象概括过程,体会函数的模型思想。
(2)能主动从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
初中数学函数教案篇十九
一、教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
三、教学过程:
(一)创设情景。
学生回答:y与x之间的关系式,可以表示为y=2x。
问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%。求出这种物质的剩留量随时间(单位:年)变化的函数关系。设最初的质量为1,时间变量用x表示,剩留量用y表示。
学生回答:y与x之间的关系式,可以表示为y=0.84x。
引导学生观察,两个函数中,底数是常数,指数是自变量。
问题:指数函数定义中,为什么规定“a?0且a?1”如果不这样规定会出现什么情况?
(1)若a0会有什么问题?
x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x0,a无意义)。
(3)若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要。)。
师:为了避免上述各种情况的发生,所以规定a?0且a?1。
1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大小:
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
(五)课堂小结。
(六)布置作业。
初中数学函数教案篇二十
一、教学目标:
1、知识与技能:
(1)结合实例,了解正整数指数函数的概念.
(2)能够求出正整数指数函数的解析式,进一步研究其性质.
2、过程与方法:
(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.
(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.
3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.
二、教学重点:正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.
三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。
四、教学过程。
(一)新课导入。
[互动过程1]:
(2)请你用图像表示1个细胞分裂的次数n()与得到的细胞个数y之间的关系;。
(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到的细胞个数.
解:
分裂次数12345678。
细胞个数248163264128256。
(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.
小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而逐渐增多.
[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量q近似满足关系式q=q00.9975t,其中q0是臭氧的初始量,t是时间(年),这里设q0=1.
(1)计算经过20,40,60,80,1,臭氧含量q;。
(2)用图像表示每隔臭氧含量q的变化;。
(3)试分析随着时间的增加,臭氧含量q是增加还是减少.
(2)用图像表示每隔20年臭氧含量q的变化,它的图像是由一些孤立的点组成.
(3)通过计算和观察图形可以知道,随着时间的增加,臭氧含量q在逐渐减少.
小结:从本题中可以看出我们得到的臭氧含量q都是底数为0.9975的指数,而且指数是变量,取值为正整数.臭氧含量q近似满足关系式q=0.9975t,随着时间的增加,臭氧含量q在逐渐减少.
正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.
说明:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.
(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.
分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.
解:根据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).
练习:课本练习1,2。
解:一个月后他应取回的钱数为y=2000(1+2.38%),二个月后他应取回的钱数为y=2000(1+2.38%)2;,三个月后他应取回的钱数为y=2000(1+2.38%)3,,n个月后他应取回的钱数为y=2000(1+2.38%)n;所以n与y之间的关系为y=2000(1+2.38%)n(nn+),一年后他全部取回,他能取回的钱数为y=2000(1+2.38%)12.
(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数。