六年级数学面积的变化教案六年级数学面积题(优质20篇)
教案是教师教学活动的依据,是教学内容、教学目标和教学过程的具体化。在编写教案时,教师应该注重教学内容的分析和归纳,保证教学过程的有机衔接。欢迎大家一同分享优秀教案范文,促进教师之间的专业交流。
六年级数学面积的变化教案六年级数学面积题篇一
教学目的:
1、引导学生回忆整理平面图形周长和面积的意义及其计算公式的推导过程,并能熟练地应用公式进行计算。
2、通过知识在实际生活中的运用,体验数学与生活的联系,培养学生数学来源于生活,又运用于生活的数学意识。
教学准备:多媒体课件。
教学过程:
一、整理知识:
二、复习知识:
1、由长方形的周长你还能想到什么图形的周长?你是怎么想的?分别是怎么计算的呢?(板书公式)。
2、计算周长时,你认为要注意些什么?
3、除了想到周长的计算,你还能想到什么?
5、计算面积时,你认为要注意些什么?这么多的公式怎样记忆比较快?(板书公式)。
6、小结:从这些公式的推导过程中,我们可以发现它们之间是有联系的。我们每学习一个新的图形计算公式,通常是把它转化成一个已经学过的图形来推导公式进行计算的。(板书:转化)。
7、对于这部分内容,还有什么问题?什么地方最难?
三、巩固练习:(课件)。
1、判断:{=小学教学设计+}。
(1)一个长方形长20厘米,宽10厘米,它的周长是30厘米。()。
(2)半径是2厘米的圆,它的周长和面积相等。()。
(3)一个梯形,上底4厘米,下底6厘米,高3厘米,它的`面积是15厘米。()。
(4)在同一个圆中,半圆的周长比圆周长的一半长。()。
(5)一个三角形,底6分米,高5分米,它的面积是30平方分米。()。
(6)一个边长5米的正方形,它的面积是20平方米。()。
(7)一个圆,直径是2厘米,它的面积是12.56平方厘米.()。
2、抢答题:
(1)一个梯形的面积是15平方分米,上底与下底的和是5分米,它的高是()分米。
(2)小圆半径2厘米,大圆半径3厘米,小圆周长与大圆周长的比是(),小圆面积与大圆面积的比是()。
(3)一个平行四边形和一个三角形等底等高,已知平行四边形的面积比三角形的面积大8平方厘米,三角形的面积是()平方厘米,平行四边形的面积是()平方厘米。
(4)一个梯形的面积是15平方分米,上底和下底的和是5分米,它的高是()分米。
3计算下面图形中阴影部分的面积:
五、总结,注重体验。
六、作业,留有回味。(网上交流)。
六年级数学面积的变化教案六年级数学面积题篇二
1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。
2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。
教学重点。
教学难点。
理解分解图形时简单图形的差较难分解。
教具、学具。
教师指导与教学过程。
学生学习活动过程。
设计意图。
一、试一试。
教师引导学生读题,理解题意。
二、练一练第1题。
1、请学生任意分割,后说说分割的是什么已经学过的图形。
2、老师要求再分割。
3、想一想出了分割还有没有其他方法。
这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。
学生自己进行分割,
再分割为最少的学过的图形,比一比谁分的最少,而且还是我们学过的图形。
适当地添上相关的条件进行分割,要求分割的合理,能够计算。
培养学生的空间分析能力。
通过三个层次的分割,使学生明白在组合图形的`分割中,学要根据所给的条件进行合理的分割和添补。
教师指导与教学过程。
学生学习活动过程。
设计意图。
三、练一练第3题。
学生看书上的图。教师读题,
四、作业。
完成练一练的第2题。
理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。
除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。
独立完成练习。
六年级数学面积的变化教案六年级数学面积题篇三
教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
基于以上的教材和学情分析,我制定了以下的教学目标:
1、认知目标:
提供圆面积的计算公式推导课件,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。
2、能力目标:
培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力,同时让学生接触并更能理解极限转化等数学思想方法。
3、情感目标:
通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力。
教学重点:
正确掌握圆面积的计算公式。
教学难点:
圆面积计算公式的推导过程。
(一)创设问题情境,激发学生学习兴趣。
1、感知圆的面积:(课件出示一大一小的圆)。
师:圆的大小是由什么决定的?(板书:由半径决定)。
(选择两个面积不同的圆)。
师:大家看,这两个圆的面积一样大吗?说明:圆的面积有大有小。
师:那谁能说说什么叫做圆的面积?
(揭示:圆所占平面的大小叫做圆的面积。)。
[设计意图:通过想办法表示圆的面积和比较两个圆面积的大小,以及区分圆的周长和面积等途径,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。
(二)学生合作探索,交流操作经验。
1、初步感悟:
(1)课件出示:书103例7图。
师:图中每一小格表示1平方厘米。你知道正方形的面积是多少么?
原来我们数方格的时候,不满一格算半格,这里有两格特别接近满格,(课件闪烁)我们数的时候安满格计算。
通过数圆的面积,得到整圆的面积,然后把表格填完整。
学生填表、计算,汇报。
小结:通过数方格的方法我们得到了圆的面积是它半径平方的3倍多一些,想知道圆的面积到底是多少,看来还需要知道圆的面积的计算公式。
2、充分发挥学生的主动性,小组合作操作推导圆面积的计算公式。
师:那么,这节课我们就来共同找出求圆面积的方法。
3、师:同学们,我们以前都学过哪些平面图形呢?你会计算它们的面积吗?以平行四边形为例,想一想,我们是怎样推导出它的面积计算公式的?(课件演示)。
[设计意图:创设问题情境,启发学生回忆平行四边形面积计算公式的推导过程。并利用电脑课件的演示,达到通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。
师:那我们应该怎样推导圆的面积计算公式呢(板书:圆的面积)。
[设计意图:,引起学生的求知欲望,对由直线图形过度到曲线图形有了初步的感知,同时培养学生的“问题”意识,让学生在生动、愉悦、民主的学习气氛中开始新的学习。为学生开展想象提供了广阔的空间。
你想采用什么方法把圆转化成学过的图形?
[设计意图:通过研究圆的面积与半径的关系,引导学生寻找用半径求圆面积的方法,并以此为主线展开圆面积计算公式的探究。
师:请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。
[注:在要给给学生充分的时间动手操作,让学生在交流合作中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。
师:请大家把各自的拼图展示给大家(鼓励不同的拼法),并且给大家介绍一下你们组拼成的是什么图形,是用什么方法剪拼的。(学生可能出现拼成近似平行四边形、近似长方形、近似三角形、近似梯形等方法。)。
六年级数学面积的变化教案六年级数学面积题篇四
出示例题。
出示例3:算出下面长方形的面积和周长各是多少。
学生试做,指名板演。评析板演情况。
2、比较整理。
学生回答后板书:
概念计算方法计量单位。
(2)分组讨论:周长和面积在概念、计算方法、计量单位上有些什么不同?并完成下表。
投影展示各组填写的表?并指名说一说长方形和正方形的周长、面积有哪些不同。
(3)学生看表回答:
为什么计算长方形的周长用(长+宽)×2,
计算长方形面积用“长×宽”?
正方形的周长、面积方法分别与长方形的周长、面积计算方法有什么关系?
三、练习中深化比较。
1、出示:一张长30厘米、宽5厘米的长方形纸。
(1)指名回答:
根据学生的回答,板书解答过程。
(2)摆一摆。每个学生拿出课前准备好的6个边长是5厘米的小正方形。4人一组,动手摆一摆,6个小正方形可以摆出哪些不同的图形。
(3)投影展示学生摆出的不同图形:
(4)讨论:
这些图形的面积相等吗?为什么?
算一算,这些图形的周长都相等吗?
想一想,你发现了什么?
结合学生的汇报,引导学生得出;面积相等的图形,周长不一定相等。
(2)讨论:
周长相等,它们的面积相等吗?
周长一定时,面积的大小与长、宽之间的差有怎样的关系?
在什么情况下,这个花坛里种的花的最多?
结合学生的汇报,引导学生得出:当长方形和正方形周长相等时,面积不一定相等。周长一定时,长与宽的差越小,面积越大;长与宽相等即正方形时,面积最大。
六年级数学面积的变化教案六年级数学面积题篇五
教学目标:
1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。
2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。
教学重点:进一步培养学生学会观察。
教学难点:进一步学会找隐蔽条件。
教学过程:
一、复习基本知识。
1、我们已学过哪些平面图形?(请生回答,并出示图形)。
2、请生回答这些平面图形的面积怎样计算?用字母公式表示。
3、基本练习:求各图形面积。(单位:厘米)开火车。
二、变化练习。
1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)。
2、学生汇报:(边出示,边板书)。
(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)。
(2)正方形面积-角形面积列式:4×4-4×4÷2。
(3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2。
(4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2。
(5)长方形面积+半圆的`面积列式:3.14×22÷2+4×2。
(6)长方形面积-半圆的面积列式:4×2-3.14×22÷2。
3、小结,并回答以下问题:
(1)由几个简单图形组成的图形叫做。
(2)在你拼摆的过程中,你发现图形的组合一般有几种情况?
(3)求组合图形的面积时,解答的步骤是什么?关键是什么?
三、强化练习。
1、如图:阴影部分平行四边行的面积是36平方厘米,求出三角形的面积。(单位:厘米)。
6(1)先让学生独立思考,然后再请生回答。
(2)你有几种解法?并在大屏幕出示。
9
2、求下列各个阴影部分的面积。(单位:厘米)。
(1)(2)。
6
6d=6。
a:先让学生做在自己的本子上。
b:并让学生说一说你是怎样解答的?
c:核对,并在大屏幕演示。
d:小结:如果组合图形不能直接拆成几个简单图形,那该怎么办呢?
3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)。
先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。
4、小结:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。
四、发散练习。
(5分钟内看谁做得最多,方法最巧妙)。
五、板书设计。
六年级数学面积的变化教案六年级数学面积题篇六
教学目标:
1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。
2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。
教学重点:进一步培养学生学会观察。
教学难点:进一步学会找隐蔽条件。
教学过程:
一、复习基本知识。
1、我们已学过哪些平面图形?(请生回答,并出示图形)。
2、请生回答这些平面图形的面积怎样计算?用字母公式表示。
3、基本练习:求各图形面积。(单位:厘米)开火车。
二、变化练习。
1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)。
2、学生汇报:(边出示,边板书)。
(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)。
(2)正方形面积-角形面积列式:4×4-4×4÷2。
(3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2。
(4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2。
(5)长方形面积+半圆的面积列式:3.14×22÷2+4×2。
(6)长方形面积-半圆的面积列式:4×2-3.14×22÷2。
3、,并回答以下问题:
(1)由几个简单图形组成的图形叫做。
(2)在你拼摆的过程中,你发现图形的组合一般有几种情况?
(3)求组合图形的面积时,解答的步骤是什么?关键是什么?
三、强化练习。
1、如图:阴影部分平行四边行的面积是36平方厘米,求出三角形的面积。(单位:厘米)。
6(1)先让学生独立思考,然后再请生回答。
(2)你有几种解法?并在大屏幕出示。
9
2、求下列各个阴影部分的面积。(单位:厘米)。
(1)(2)。
6
6d=6。
a:先让学生做在自己的本子上。
b:并让学生说一说你是怎样解答的?
c:核对,并在大屏幕演示。
d::如果组合图形不能直接拆成几个简单图形,那该怎么办呢?
3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)。
先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。
4、:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。
四、发散练习。
(5分钟内看谁做得最多,方法最巧妙)。
五、板书设计。
(1)三角形面积+正方形面积。
列式:4×4-4×4÷2。
(2)正方形面积-角形面积。
列式:4×4÷2+4×4。
(3)半圆的面积+梯形面积。
列式:(3+5)×4÷2-3.14×22÷2。
列式:3.14×22÷2+(3+5×4÷2。
(5)长方形面积+半圆的面积。
列式:3.14×22÷2+4×2。
(6)长方形面积-半圆的面积。
列式:4×2-3.14×22÷2。
六年级数学面积的变化教案六年级数学面积题篇七
《组合图形面积》是义务教育课程标准实验教科书,北师大版五年级上册第五单元的第一课,学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课是这两方面知识的发展,也是日常生活中经常需要解决的实际问题。在此基础上学习组合图形,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。
2、学情分析。
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。所以在探索组合图形面积的计算方法时,我通过自主探索、小组合作交流等方式达到方法的多样化。重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。因此我设计本节课的教学目标如下:
3、教学目标。
(1)在自主探索的活动中,归纳计算组合图形面积的多种方法,并运用计算方法解决生活中的实际问题。
(2)通过学生动手拼、剪、补的方法,引导学生探究计算组合图形面积的计算方法。
(3)进一步渗透转化的数学思想。培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。
4、教学重、难点。
针对五年级年级学生的年龄特点和认知水平我确定本节课的教学重点为:
教学难点:理解、运用“分割”与“添补”法,正确计算组合图形的面积.
二、说教法、学法。
1、说教法。
(1)多媒体教学法。
在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的积极性,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是转化图形的几种方法通过课件的演示,学生一目了然,直观形象,更好的突出了教学重点、突破了教学难点。
(2)自主探索和合作交流教学法。
动手实践、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。
2、说学法。
(1)自主观察思考。
学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决问题的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的.知识体系。
(2)小组合作学习。
小组合作学习能够帮助学生在有限的时间里,通过与他人的交流与合作,获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。
(3)学习归纳。
改变了以往的教师总结为学生自己归纳总结,相对来讲学生收获的不仅仅是知识还有更多的学习经验。
三、教学流程。
为完成本节教学目标,突出教学重点,突破教学难点,根据小学数学新课程标准强调的数学与现实生活的联系,我在教学本节课时从学生感兴趣的事物和熟悉的生活情境出发,让学生充分体会到数学就在身边,感受到组合图形的趣味性,体会到数学的魅力。所以制定了以下教学环节:
(一)、创设情境、复习引入。
(二)、自主探索、合作交流。
(三)、运用新知、学以致用。
(四)、当堂检测、实践新知。
(五)、畅谈收获、总结全课。
(一)创设情境,复习导入。
让学生拆开老师给大家的礼物袋,看看里面是什么礼物,学生会立刻认识到正方形、长方。
形、平行四边形、三角形、梯形,从而复习正方形、长方形、平行四边形、三角形、梯形的面积公式,为确保正确的计算组合图的面积打下基础。
(二)自主探索、合作交流。
1、(活动一)拼一拼。
(这一环节设计的目的是让学生在拼一拼,看一看,说一说的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识来源于生活.)。
教师出示如何求组合图形的面积?引发学生思考总结归纳出用分割的方法求组合图形的面积。
2、(活动二)剪一剪,补一补。
通过对一个长方形的剪切和还原,引发学生小组讨论进而归纳总结出用添补的方法求组合图形的面积。
3、师生总结分割法添补法:
接下来让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”和”添补法”这两种计算方法,并且让学生明确,在分割组合图形时,分割图形越简洁,解题方法越简单。无论是分割还是添补,都是要把组合图形转化为我们学过的基本图形,这样就很容易计算出它的面积了。
(三)运用新知、学以致用。
4、出示例题图。
由老师拼的一个图形,引导学生观察,看看像什么?学生会说像我家客厅的地面的形状,老师再次引出,我家客厅的地面形状也是这样的(出示ppt1),最近我家的房子正在装修,正计划铺地板呢?我量了一下,(出示ppt2)给出数据信息,提出问题,你能根据这些信息帮我算一算我该买多少平方米的地板呢?(在解决这一生活问题环节中,给学生足够的时间和空间,让学生积极主动地参与到学习中,通过自主探索,小组交流,获取更多的解题方法,让他们在小组活动中都有成功的体验和经验的收获)。
2、小组汇报学习情况。
汇报时用多媒体将学生的学习成果演示出来,会出现下面几种情况:。
(1)将组合图形分割成两个长方形。
(2)将组合图形分割成一个正方形和一个长方形。
(3)将组合图形分割成两个梯形。
(4)将组合图形填补上一个小正方形,使它成为一个大长方形,再用大长方形的面积减去小正方形的面积。
(5)将组合图形分割成两个长方形和一个正方形(或则其他情况)。
(学生汇报时,其他同学一边倾听,一边与自己的思路进行比较,一边质疑,一边引起集体的讨论,并及时发现错误及时纠正过来。汇报结束后,再让学生对小组成员的汇报情况作评价,最后其他小组作补充汇报)。
(四)当堂检测、实践新知。
为了巩固新知,又突出本课的教学难点,将书上练一练的2道练习题以随堂测试的形式出示学生独立完成并汇报展示。
(五)畅谈收获、总结全课。
同学们,今天,我们共同探索学习了什么知识?你有什么收获,或者有什么心得?(学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结.也可以评价他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展)。最后,我鼓励学生利用今天所学的知识,解决上课开始时,自己设计的组合图形的面积,由课内延伸到课后,让学生把掌握的知识拓展到实际生活中去,引导学生对学习内容进行梳理,将知识系统化、条理化。对在获取新知中体现出的数学思想方法策略进行反思,从而加深对知识的理解。
本节课,我紧密联系学生的实际经验,向学生展示了生活中的组合图形,并联系实际生活情景,从中提出数学问题,并加以解决,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣,也培养了学生提出问题,解决问题的能力。
四、板书设计。
六年级数学面积的变化教案六年级数学面积题篇八
数学来源于生活,生活中处处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。在第一环节中,教师就创设了“可比克”情景,要求商标纸的面积就是求圆柱的侧面积,如何求一个曲面的面积?导入新课。激发了学生求知的愿望。再有就是练习的设计,也是从生活实际出发,解决生活中求圆柱侧面积的问题(如,压路机前轮压过的.路面的面积大小;油漆圆柱状的柱子需要多少油漆?……)。
2、重视学习过程的实践性。
创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。本节课的第二环节让学生在动手操作中发现圆柱侧面展开的情形,在实践中推出圆柱的侧面积的计算,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
3、重视练习设计的层次性和多样性。
当学生推导出圆柱的侧面积公式后,先后设计了已知底面周长和高求侧面积、已知直径和高求侧面积及已知半径和高求侧面积的梯度练习,使学生的应用能力不断提高。在巩固阶段,我又设计了判断、填表等形式多样的练习,加深学生对本节课内容的理解。在解决生活实际问题中,处处从生活入手,紧密联系生活实际,增强学生的学习兴趣,提高学生解决实际问题的能力。
不足之处:
1.课前的导入,可以不用教具,用和学生一样的“可比克”,和学生更加贴近。
2.限制学生思维的发展。在让学生思考长方形的长与宽和圆柱的关系时,可让学生充分思考,在这里我让学生很明显可以感受到教师的暗示,让他们要注意研究的方向。束缚了学生的思维。对于学生思维的训练教师要有长远的培养计划。
六年级数学面积的变化教案六年级数学面积题篇九
《组合图形的面积》是北师大版五年级第五单元的第一课。学生在三年级已学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题。在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。
二、教学目标。
1、知识与技能。
(1)在自主探索的活动中,理解计算组合图形的多种方法。
(2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
(3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。
2、过程与方法。
让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
3、情感态度与价值观。
(1)结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
(2)渗透转化的数学思想和方法。
三、教学重、难点。
1、教学重点:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。
2、教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。
四、学情分析。
本课的授课对象是五年级的学生,学生通过之前的学习对于平面图形直观感知和认识上已有了一定的基础,也掌握一些解决基本图形问题的方法。作为五年级的学生应进一步提高知识的综合运用能力,在学习中去探索掌握解决问题的思考策略。
五、说教法。
情境导入。
创情境导思维使学生乐学。因此在教学中我有意识地利用直观、努力创设情景,对提高教学效果大有裨益。有趣的七巧板,通过拼一拼,说一说导出组合图形的意义。
直观演示法。
直观形象学生乐学,直观容易记忆,快乐激发学习。利用多媒体课件、学具,让学生通过动手实践、操作、亲身体验知识的获取过程。
引导式教学。
在教学中教师要激发学生的'学习动机,使之对学习产生浓厚的兴趣,师精导、生巧学,以学论教,扶放结合。由学生小组合作共同探索问题的解决方法时,当学生想出各种不同的方法时,引导学生自己比较方法的异同点,并进行归纳,同时在此基础上懂得根据条件选择合适的方法来解决问题。
六、说学法。
1、自主观察思考。
学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。
2、小组合作学习。
小组合作学习能够帮助学生在有限的时间里,通过与他人的合作获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。
以前总是老师帮助学生对所学的知识进行总结,现在由学生自己来对所学的知识进行归纳总结,这样可帮助学生对新知的学习得到进一步的提高。
七、教学过程。
(一)创设情境,复习导入。
1、猜一猜:
让学生猜测老师准备的信封里是什么平面图形,再让学生从信封中一一摸出来。(以前学过的正方形、长方形、平行四边形、三角形、梯形。)。
2、说一说:以上各种图形的面积计算方法,用字母公式如何表示?(多媒体出示图形)。
3、拼图活动导入新课:
(1)同桌合作利用事先准备好的七巧板,任先其中的若干个,拼成一个你们喜欢的图案,最先完成的还可以把你们的作品贴到黑板上向同学们展示。
(2)请同学说说看你拼的图案像什么?是由哪些基本图形组成的?
(3)观察黑板上的这些图形,看看它们有什么共同特点?引导发现这些图形都是由以前学过的基本图形组成的。
(二)自主探索新知。
1、谈话式进入例题的自主探索学习。
小华家新买了住房,计划在客厅铺地板,请你估计他家至少要买多大面积的地板。(用多媒体出示)。
2、学生估计图形的面积有多大,随后老师抛出问题:如何准确计算出这个客厅的面积呢?
3、学生独立与小组合作交流解决组合图形面积计算问题。
学生可能出现分割法和添补法(将学生可能出现的方法用多媒体显示)。
分割法即将上述图形分割成几个基本图形。
4、讨论分割法。
a、对于分割法需要与学生讨论其合理性,要让学生明确:分割的图形越简洁,其解题的方法也将越简单。
b、要考虑分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就是失败的。
5、讨论添补法。
a、为什么要补上一块?
b、补上一块后计算的方法是怎样的?(让学生都理解这一算法)。
(三)实际应用。
1、小试身手。
解决书本76页的试一试。由学生尝试独立解答,全班进行方法交流,并让学生试着从中归纳出较好的方法。(进行知识巩固)。
2、出示老师事先拼好的一个七巧板的图形。
(1)让学生想一想,想求该图形的面积,可将其转变成一些已学的图形?有几种方法?
(让学生懂得在有多种方法时,选择简便、合适的方法进行解答。)。
3、动手实践。
学生针对前面自己所拼的七巧板的图形,小组中选出一图,自己动手测量所需数据,求出图形的面积。(学习能力的进一步培养,让学生学习在观察图形的基础上,结合所选择的计算方法去测量自己所需的数据,再进行计算。)。
(四)质疑问难。
六年级数学面积的变化教案六年级数学面积题篇十
教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。
学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。教学目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学过程:
1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。
2、学生回答后老师让学生上前展示自己的方法。
1、教师引导观察,说说从中得到那些数学信息?
2、老师引导,找出与圆的面积有关的数学问题。
3、学生回答,老师板书(圆的面积)。
(1)与同桌说一说你是怎么估的。
(2)汇报,
(3)老师引导有没有更好的方法。
2、探索圆面积公式。
(1)学生操作。
(2)指名汇报。
(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)。
(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?
(5)观察汇报:由长方形的面积公式推导圆形的面积计算公。
式,并说出你的理由。
(6)总结:1、计算圆的面积要那知道那些条件。
2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。
教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:
一、复习占用的时间不当。
复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。
二、探究没有充分放手。
在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。
三、没给问题爆发的机会。
六年级数学面积的变化教案六年级数学面积题篇十一
(1)知识与技能目标:学生结合具体情境认识组和图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
(2)过程与方法目标:通过自主合作,培养学生独立思考、合作探究的意识。
(3)情感态度与价值观目标:学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高学习好数学的自信心。
教学重点:组合图形的认识及面积计算。
教学难点:对组合图形的分析。
多媒体课件,各种基本图形纸片。
一、创设情境,谈话引入。
同学们,在中国古代的建筑中我们经常会见到“外放内圆”“外圆内方”的设计,下面请同学们欣赏几组图片。(生欣赏完后)师提问:这些图片美吗?(生:美)。
师:这些图片的设计中包含了我们学过的哪些平面图形?(生:圆、正方形、长方形等)。
1、教师出示例3的两幅图并出示自学提示出示自学提示:
(1)上面两幅图有什么不同之处?
(2)右图中的正方形的对角线和圆得直径有什么关系?
(3)上图中两个圆的半径都是r,你能求出正方形和圆之间的半部分的面积吗?
生汇报问题(1):这两幅图都是由圆和正方形组成,左图是外圆内方,右图是外方内圆。
生汇报问题(2):右图中的正方形的对角线和圆得直径相等。
生汇报问题(3):左图阴影面积=正方形的面积-圆的面积列式为:s正=2×2=4(m2)s圆=3.14×12=3.14(m2)4-3.14=0、86(m2)左图:圆的面积减去正方形的面积(1/2×2×1)×2=2(m2)3.14×12=3.14(m2)3.14-2=1.14(m2)。
师:同学们做的很好!可我又有问题了,若两个圆的半径都是r,那结果又是如何呢?生派代表回答:
左图;(2r)-3.14r=0.86r。
答:左图中正方形和圆之间的面积是0、86m、右图中圆与正方形之间的面积是1.14m。
四、总结引导,知识生成这节课你有什么收获?
七、作业布置p73第10、11、
课后小结。
这节课你有什么收获?
课后习题。
1、出示教材p70做一做。
2、完成教材p72第9题。
板书。
左图:s正=2×2=4(m2)右图:(1/2×2×1)×2=2(m2)。
s圆=3.14×12=3.14(m2)3.14×12=3.14(m2)。
4-3.14=0.86(m2)3.14-2=1.14(m2)。
六年级数学面积的变化教案六年级数学面积题篇十二
教学目标:
知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。
教学重点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。
教学难点:根据组合图形的条件,有效地选择汁算组合图形面积的方法。
教学方法:动手实践、自主探索、合作交流。
教学准备:师:多媒体、各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
教学过程。
一、情境导入。
1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)。
2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。
通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)。
二、互动新授。
l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。
这些组合图形里有哪些是学过的图形?同学们试着找一找。
小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。
2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。
学生可能会想到:厨房里的三角架、房子的分布图、桌子等。
3.引导思考:关于组合图形,你还想研究它的什么知识?
4.出示教材第99页例4:一间房子侧面墙的形状图。
组织学生小组合作学习,说一说是怎样分的',然后再算一算。集体汇报。
三、巩固拓展。
1.完成教材第101页“练习二十二”第1题。
2.完成教材第101页“练习二十二”第2题。
3.完成教材第101页“练习二十二”第3题。
四、课堂小结。
师:这节课你学会了什么?有哪些收获?
板书设计:
由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
5×5+5×2÷2(5+5+2)×(5÷2)÷2×2。
=25+5=12×2.5÷2×2。
=30(2)=30(2)。
教学反思:
六年级数学面积的变化教案六年级数学面积题篇十三
教材首先设计了估算飞标板面积的活动。呈现了两种估算方法:一是先估算每个小三角形的面积,再估算飞标板的面积;二是把飞标板剪开,拼成近似的长方形,然后利用长方形的面积公式计算出飞标板的面积。接着是,小组合作探索圆面积的计算公式,在试一试中,让学生用刚推导出的面积公式计算飞标板的面积。教学中要给学生充分的观察、动手操作和讨论交流的空间,使学生学会转化的数学方法,体会极限的思想。
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形面积时,已学会了用割、补、移等方法,把把新知识转化为旧知识,探究推导直线平面图形的面积。因此教学本课时,可引导学生用以前学的“转化”的数学思想来推导圆的面积公式,在推导学习中不仅扩大了学生的知识,提高学生分析、解决问题的策略,空间观念也得到进一步的发展,为以后学习圆柱、圆锥等知识打好良好基础。
知识与技能目标:
1、理解圆的面积计算公式的推导,让学生利用已有的知识,运用转化的思考方法,推导出圆面积的`计算公式。
2、初步运用圆面积计算公式进行圆面积的计算。
过程与方法目标:
通过教师设置问题情境————学生猜想————小组合作————表达交流————归纳总结,引导学生通过多次不同的实验,运用转化方法,通过多媒体课件演示,把曲线平面图形转化为直线平面图形,推导圆的。面积计算公式。
情感态度和价值观:
通过圆面的剪拼,境况学生操作、观察、分析的能力,渗透极限思想。
教学重点:圆面积公式的推导。
教学难点:极限思想的渗透与公式的推导。
教学方法:通过直观教具演示和课件展示,学生通过猜想然后再用合作学习法动手操作验证猜想,得出结论。
教学手段:利用游戏、媒体等手段激发学生思维,让学生亲自动手操作,感受学习的乐趣。
多媒体课件一套、圆形纸片。
两个完全一样的圆片、透明胶带、刻度尺、量角器、剪刀、小刀。
一、复习引入。
1、幻灯片出示复习题目。
2、激趣导入。
同学们,今天我请你们欣赏一幅图。请看!(课件出示)在欣赏图的同时,思考右面的问题。学生猜想牛最多吃多少草是什么的图形?(课件出示)是一个圆形,要求牛吃多少草也就是求圆的面积,引出圆的面积(板书课题)。
二、合作探究,推导公式。
1、圆面积定义。
2、圆面积公式推导。
那么怎样计算圆的面积呢?我们知道圆有大有小,如果用面积单位直接。
教师根据学生说的过程,通过课件演示出转化的过程。
想一想:这些图形面积公式的推导过程有什么共同点?(学生回答)。
下面请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
(小组合作,探究交流。)。
谁能告诉老师你们小组把圆转化成了什么图形?(小组汇报并展示所拼图形)。
小组1:我们平均分成了8份,拼成的图形非常像平行四边形。
小组2:我们把圆平均分成了16份,拼成的图形也像个平行四边形。
小组3:我们把圆平均分成了16份,拼成的图形很像一个三角形。
小组4:我们拼的图形像个梯形。
小组5:我们平均分成了4份,拼成的图形像平行四边形。
学生回答:分的份数越多越接近长方形。
下面请同学们仔细观察、分析拼成的长方形与圆的关系,小组讨论并思考以下几个问题:
(1)圆的面积与这个长方形的面积有什么关系?
(2)这个长方形的长与圆的周长有什么关系?
(3)这个长方形的宽与圆的半径有什么关系?
(4)如果圆的半径是r,这个长方形的长和宽各是多少?
(小组合作,探究交流,推导出面积公式)。
小组内说一说圆面积计算公式推导过程,师板演。
小组合作推导三角形和梯形的面积公式,并汇报交流,师演示课件。
小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)。
三、实践运用,体验生活。
那么圆的面积公式到底有什么用呢?
现在我们会求牛最多吃多少草吗?
四、课堂小结。
这节课你有什么收获,学到了哪些知识?
五、课外思考。(幻灯片出示)。
已知一个圆的周长,你能计算这个圆的面积吗?
六年级数学面积的变化教案六年级数学面积题篇十四
1、通过观察、操作、分析和讨论,推导出圆的面积计算公式。
2、能够利用公式进行简单的面积计算。
3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学重点:源面积计算公式的退到。
教学难点:通过观察、操作、分析和讨论,推导出圆的面积计算公式。
一、情景导入。
1、师:看一看图中这幅画,工人叔叔提出了一个什么问题?
所有的草坪铺满将是一个什么形状?
那么求这个圆形草坪的占地面积就是求什么了?
引导学生说出求这个圆形草坪的占地面积就是求圆的面积。
这节课我们就来研究圆的面积。
师:看着这个课题你想知道什么?你有什么想法?想从这节课中学到什么?
二、导入新课。
1、师生总结板书?圆的面积与什么有关?
圆的面积有没有计算公式。
板书:圆的面积与半径r有关。
师:总的来说,先把他们剪切,再拼接,最后转化成熟悉的图形。
板书:拼切——转化——化未知为已知。
师:那么你们可以把这种转化的思想运用于求圆的面积上吗?
生:可以(不可以)。
师:那你想怎么切,怎么拼,把圆转化成什么图形,自己动手做一做。有想法的请举手告诉老师。
师:由于操作的局限性,我把大家拼接的效果用电脑展示出来。
首先,首先先把圆等分成8份,再拼接在一起,它大致像一个什么图形。
(平行四边形)。
师:总结如果分的份数越多,每一小份就会越小,拼成的图形就会越接近长方形。
板书:近似。
三、推导圆的公式。
拼成的近似长方形的长和宽与圆的周长、半径有什么关系?
这就我们今天要学习的圆的面积公式,从公示中得出,圆的面积大小和什么关系密切,验证了刚才的猜想是正确的,所以在学知识的时候,不仅要大胆的猜测,还要用实践去验证猜测。
练习题。
1、求出下列圆的面积:
2、圆形草坪的直径是20米,它的面积是多少平方米?
3、练习十。
六、3小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?
四、总结。
六年级数学面积的变化教案六年级数学面积题篇十五
教学目的:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用先约分再相乘的方法进行计算。
教学重点:分数乘整数的意义。
教学难点:分数乘整数的计算法则:如何先约分再乘。
教学过程:
一、复习。
1、5个12是多少?
用加法算:12+12+12+12+12。
用乘法算:125。
问:125算式的意义是什么?被乘数和乘数各表示什么?
2、计算:
问:有什么特点?应该怎样计算?
3、小结:
(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。
(2)同分母分数加法计算法则是分子相加作分子,分母不变。
二、新授。
教学例1。
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:(块)。
用乘法算:(块)。
问:这里为什么用乘法?乘数表示什么意思?
得出:分数乘以整数的意义与整数乘法的意义相同,
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)。
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)。
六年级数学面积的变化教案六年级数学面积题篇十六
教学内容:冀教版《数学》六年级上册第92、93页。
教学目标:
1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。
2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。
3、感受数学在解决问题中的价值,培养数学应用意识。
课前准备:一个蒙古包图片。
教学过程:
1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。
师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?
生:蒙古包。
师:对,蒙古包。看,老师带来了一张蒙古包的图片。
图片贴在黑板上。
师:观察这个蒙古包,你都想到了哪些和数学有关的问题?
2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。
师:如果要计算蒙古包的占地面积,怎么办?
生:测量出蒙古包的直径,就能计算出它的占地面积。
生:不好测量。
生:测量出周长。
师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。
板书:周长18.84米。
1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。
师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。
学生讨论。
师:谁来说说已知圆的周长是多少,怎样求圆的面积?
生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。
学生说不完整,教师参与交流。
师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。
学生独立计算,教师巡视并指导。
生:我先计算出蒙古包的半径,列式2×3.14×r=25.12求出r=4,再计算蒙古包的占地面积3.14×42=50.24(平方米)。
学生说的同时,教师板书:
蒙古包的半径:
2×3.14×r=25.12。
r=25.12÷6.28。
r=4。
蒙古包的占地面积:
3.14×42=50.24(平方米)。
如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。
1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。
师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。
学生独立完成,教师个别指导。
师:谁来说一说你的做法,这个蓄水池的占地面积是多少?
生:我先求出这个蓄水池的半径3.14×2×r=31.4求出r=5,再计算蓄水池的占地面积:3.14×52=78.5(平方米)。
师:看第2题,求花池的面积。自己解答。
交流时,请学习稍差的学生回答。
答案:3.14×2×r=18.84。
r=3。
3.14×32=28.26(平方米)。
2、练一练第3题,提示学生思考木桶铁箍长是底面的什么,再计算。师:请同学们读第3题,想一想,这个木桶铁箍的长是这个木桶底面的什么?再解答。.
学生完成后,指名汇报。答案:。
3.14×2×r=100.5。
r=16。
3.14×162=803.84(平方厘米)。
生:就是把树锯断后的圆面。
师:树木的周长相当于这个横截面的什么?
生:周长。
师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。
学生读题。
学生可能出现不同意见,都不做评价。
1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。
师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。
学生合作研究,教师参与指导。
学生可能出现不同的假设。如:(1)假设铁丝长1米。
正方形的边长:1÷4=0.25=25(厘米)。
正方形面积:25×25=625(平方厘米)。
圆半径:100÷2÷3.14≈16(厘米)。
圆面积:3.14×162≈803(平方厘米)。
结论:圆的面积大。
(2)假设铁丝长2米。
正方形的边长:2÷4=0.5=50(厘米)。
正方形面积:50×50=2500(平方厘米)。
圆半径:200÷2÷3.14≈32(厘米)。
圆面积:3.14×322≈3215(平方厘米)。
结论:圆的面积大。
(3)假设铁丝长4米。
正方形的边长:4÷4=1(米)。
正方形面积:1×1=1(平方米)。
圆半径:4÷2÷3.14≈0.64(米)。
圆面积:3.14×0.642≈1.29(平方米)。
结论:圆的面积大。
3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。
师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。
生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。
六年级数学面积的变化教案六年级数学面积题篇十七
2.掌握圆柱侧面积和表面积的计算方法。
(二)能力目标。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……。
师:我坚信你们一定不会让老师失望的。
一、引入新课:
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……。
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程。
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)。
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
二、探究新知。
指名学生摸其表面积,并追问:怎样求它的表面积?
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)。
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)。
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高。
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)。
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)。
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答。
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高。
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)。
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)。
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积。
3、反馈练习:(略)。
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)。
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……。
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)。
六年级数学面积的变化教案六年级数学面积题篇十八
教学目的:
1、使学生理解倒数的意义。掌握求一个数的倒数的方法。
2、渗透事物都是普遍联系观点的启蒙教育。
教学重点:理解倒数的意义和怎样求倒数。
教学难点:求倒数方法的叙述。
教学过程:
开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。
自学书本p19。并思考以下问题:
1、什么叫倒数?
2、怎么求一个数的倒数?
3、是不是任何数都有倒数?小数有吗?带分数有吗?
1、什么叫倒数?
2、看下面四道题,你能说一些什么有关“倒数”的话。
3、存在倒数有那些条件
(1)两个数。
(2)这两个数的乘积是1。
4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?
5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
6、总结求一个数的倒数的方法。
0.2的倒数是多少?
请学生说一说这节课学习了哪些内容。
练习五3—8。
六年级数学面积的变化教案六年级数学面积题篇十九
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点。
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点。
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程。
一复习旧知。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的.计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)。
(2)底面积:3.14×2×2=12.56(平方分米)。
(3)表面积:56.52+12.56=81.64(平方分米)。
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。
六年级数学面积的变化教案六年级数学面积题篇二十
通过实例感受面积单位的必要性,通过实例认识面积单位,认识面积单位有多大。
【过程与方法】。
通过借助实例探索面积单位的过程,感受面积单位的大小,提升数感。
【情感、态度与价值观】。
体验数学的学习过程,提高对数学的学习兴趣,感受数学与实际生活的紧密联系。
二、教学重难点。
【重点】面积单位的认识。
【难点】理解统一面积单位的必要性,感知常用的面积单位的大小。
三、教学过程。
(一)导入新课。
回顾之前如何表示面积的大小。请学生用方格纸测量数学书封面的大小。
预设有学生数出6个格子,有学生数出24个格子。
请学生分析原因,明确是由方格大小不同导致的。
提出统一面积单位的需求。引出课题。
(二)讲解新知。
提问:你们听说过哪些面积单位?
预设学生说出平方厘米、平方分米、平方米。
教师介绍三种面积单位的含义及符号:
边长为1厘米的正方形的面积是1平方厘米,符号表示为cm2;
边长为1分米的正方形的面积是1平方分米,符号表示为dm2;
边长为1米的正方形的面积是1平方米,符号表示为m2。
学生活动:在学具中分别找出面积为1平方厘米、1平方分米、1平方米的纸片,感受大小。
(三)课堂练习。
请学生找一找身边面积约为1平方厘米、1平方分米、1平方米的物体表面。
预设学生举出指甲盖、粉笔盒的一面、地砖等例子。
(四)小结作业。
小结:提问学生有什么收获。
作业:利用今天所学,说一说生活中一些物体表面的面积。
四、板书设计。