北师大版数学教案(汇总18篇)
教案包括教学目标、教学重点、教学难点、教学方法、教材选择等内容,是教师备课的重要组成部分。教案的编写应当充分考虑到学生的兴趣和掌握程度。在这里,你可以找到一些经典的教案案例,以及教学设计的思路和方法。
北师大版数学教案篇一
教学重点。
通过学生的实际操作,能够分辨什么样的物体轻,什么样的物体重、
教学难点。
1、通过中介物体、等量代换比较物体的轻重、
2、运用多种方法比较物体的轻重、
教学用具。
弹簧秤、皮筋、简易天平、水槽和托盘、蓝、绿、黄、红四种颜色的盒子各九个(绿的和蓝的为空盒子,绿的比蓝的轻,黄和红盒子中装东西,轻重相近,比白蓝盒子都重,四个盒子中绿的最大,蓝的最小,黄的和红的大小中等且相近、)。
教学过程。
一、活动一:“掂球游戏”感受轻重。
(一)游戏。
(三)小结。
二、活动二:掂自己身边的物体,感受轻重。
(二)小组汇报。
教师:哪个组已经掂完了,愿意把你的感受说给大家听一听吗?
三、活动三:掂不同的盒子,感受轻重。
(一)实验一。
教师:我看到想参加我们活动的同学,现在都已经坐好了,在等我把东西发给他、
1、发蓝盒子和绿盒子。
2、你觉得他们两个比,谁轻谁重?为什么?(大的重)。
3、到底谁轻谁重,赶快试一试!(学生动手掂、)。
4、说说你的感受?还想接着玩吗?
(二)实验二。
教师:想玩的同学又已经做好准备了,眼睛都看着老师呢、
2、教师请同学说自己的猜想、
3、到底谁猜的对呀?你们是不是特别想知道、动手试试吧!
4、教师提问:这个绿盒子怎么一会儿轻,一会儿重?它到底是轻还是重?
5、这次为什么很多同学没猜对呢?
6、小结:看来,并不是物体越大就一定越重,越小的物体就一定轻、
(三)实验三。
教师:如果还想玩就请把绿、蓝盒子轻轻放到位子里,看哪个组的动作又快又轻!
2、怎么这次有很多同学都不做判断?怎么不发表意见了,有什么困难吗?
3、同学们都认为,只凭观察已经不能判断它的轻重了,你们想怎么办?(动手掂一掂)。
4、说说你的感受,有不同的感受吗?换手再掂一掂、
教师提问。
(1)你们有同样的感觉吗?(学生出现分歧、)。
(2)咱们的意见不一样了,这可怎么办呀?
(4)小组讨论,汇报、
四、活动四:总结探索结果。
(一)教师介绍生活中的测量物体重量的工具。
(二)完成课后练习、
1、出示图片:练一练1。
2、出示图片:练一练2。
3、出示图片:练一练3。
教学设计点评。
在这节课的设计中,教师注意让学生亲身经历比较的'过程,通过多个实验,比较物体的轻重。教学时,教师自创情境,从学生喜爱的游戏引入,通过动手操作,让学生体验比较轻重的过程,感悟出比较轻重的具体方法,提高了学生的学习兴趣。
探究活动。
左重右轻。
活动目的。
1、让学生逐步加深对轻重的体验与理解,感受数学与生活的联系、
2、培养学生的动手操作能力、
3、为学习10以内的加法做铺垫、
活动准备。
1、天平。
2、1克、3克、4克、5克、6克的砝码各1个,2克的砝码2个。
活动题目。
在天平的右边放入2克和6克的砝码各1个,天平的左边放入5克的砝码1个,现在天。
活动过程。
1、以小组为单位共同操作、
2、总结方法、
3、分组演示并说明、
参考答案。
方法一:只在左边放、
1、使天平左右平衡:
在左边放入质量是1克、2克的两个砝码,由于1+2+5=2+6,因此天平左右平衡、
2、使天平左重右轻:
方法二:在左右两边都放一个、
北师大版数学教案篇二
教学目标:
1、通过直观操作等活动,使学生理解面积的意义,认识面积单位,建立面积单位的正确表象。
2、经历用不同方式比较图形面积的过程,体会建立统一面积单位的重要性,经历面积单位产生过程。
3、在动手操作,合作交流过程中,提高交流,实践能力。
教学重点:
认识面积和面积单位。
教学难点:
理解面积的意义,建立面积单位的正确表象。
教学准备:
学具盒、课件。
教学过程:
一、引入。
2、全班交流。
3、提示课题:你知道,刚才同学们提到的#平方米是指房间的什么?今天这节课咱们就来探讨有关面积的知识。(板书:面积)。
二、感知体验,建立概念。
1、认识物体表面的大小。
(1)在我们身边的每个物体都有面,有的面大一些,有的面小一些。
(3)看一看看一看黑板的面,课桌的面相比,怎样?
(4)想一想生活中的物体,你还能比一比哪些面的大小?
(5)归纳:刚才我们通过摸一摸、看一看知道了物体的表面有大有小,物体表面的大小叫做它们的面积。(板书:物体的表面)我们把书表面的大小叫做书面的面积,把黑板面的大小叫做黑板面的面积。
2、认识封闭图形的大小。
(1)出示。
(2)归纳:看来只有象a、b、c这样封闭的图形才能判断它的大小。封闭图形的大小,也就是它们的面积。(板书:封闭的图形)。
3、归纳面积的意义。
谁能说一说什么叫做面积?完整板书,齐读。
三、操作探究,认识单位。
1、比较面积的大小。
请同学们从学具里取出三个图形,这三个图形的面积谁大谁小呢?下面请同桌合作,一起来想办法比较一下。
北师大版数学教案篇三
两位数的乘法。
1、通过问题解决,使学生感知两位数的计算与实际生活的联系,感知数学就在生活中。
2、能独立思考、探索两位数的计算方法,体验算法多样化,并能交流计算(含估算)过程。。
3、能运用两位数乘两位数的计算方法,解决一些简单的实际生活中的数学问题。
重点:理解掌握两位数乘两位数的计算方法,并能解决一些简单的实际问题。
难点:
1、能结合具体情境,正确进行估算,为计算结果指出某个取值范围。
2、理解掌握两位数乘两位数的算理和算法。
1、充分利用和发挥教材主题图的引导作用,让学生在具体生动的生活情境中学习数学。
2、充分利用已学知识的迁移作用,沟通新旧知识间的内在联系,形成基本的计算能力。
北师大版数学教案篇四
活动内容:
师生互相交流总结点和圆的三种位置关系;怎样判断其位置关系,日常生活中利用圆的例子,与圆有关计算、证明的题目等。
活动目的:
鼓励学生结合本课的学习,谈自己的收获与感性(学生畅所欲言,教师给予鼓励),包括日常生活中利用圆的例子,点和圆的位置关系,如何判断,怎样利用圆的知识计算、证明。
北师大版数学教案篇五
知识技能1、了解无理数及实数的概念,并会对实数进行分类.
2、知道实数与数轴上的点具有一一对应关系.
3、学会使用计算器探求将有理数化为小数形式的规律.
4、学会使用计算器估算无理数的近似值.
5、学会使用计算器计算实数的值.
数学思考。
1、通过计算器探求将有理数化为小数形式的规律,使学生经历观察、猜想、实验等数学活动过程,培养学生数学探究能力和归纳表达能力.
2、在使用计算器估算和探究的过程中,使学生学会用计算器探究数学问题的方法.
3、经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.
4、经历对实数进行分类,发展学生的分类意识.
5、通过使用计算器估算无理数的近似值和计算实数的活动,使学生建立对无理数的初步数感.
解决问题1、通过无理数的引入,使学生对数的认识由有理数扩充到实数.
2、通过计算器对无理数近似值的估算和对实数计算,使学生发展实践能力.
3、在交流中学会与人合作,并能与他人交流自己思维的过程和结果.
情感态度1、通过计算器探求将有理数化为小数形式的规律,激发学生的求知。
欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.
2、通过了解数系扩充体会数系扩充对人类发展的作用.
3、敢于面对数学活动中的困难,并能有意识地运用已有知识解决新。
问题.
重点了解无理数和实数的概念,以及实数的分类;会用计算器计算实数.
难点对无理数的认识.
教学流程安排。
活动流程图活动内容和目的。
活动1通过对有理数探究,激发进一步学习的欲望.
通过用计算器计算有理数和研究有理数的规律,得出对数的进一步研究的重要性,引出本节课要研究的课题.
活动3通过教师演示和学生活动,建立实数与数轴上的点的一一对应.通过在数轴上找到表示的点,认识无理数可以用数轴上的点表示,理解实数与数轴上的点建立一一对应的关系.
活动4用计算器估算无理数近似值.在使用计算器估算和验证的过程中,使学生学会用计算器求无理数近似值的方法,渗透用有理数逼近无理数的思想,加深对无理数的理解.
活动5用计算器求实数的值.学会用计算器求实数的精确值或近似值.
活动6小结归纳,课后作业.回顾梳理,总结本节课所学到的知识,完善原有认知结构,升华数学思想.
教学过程设计。
问题与情境师生行为设计意图。
[活动[活动1]。
通过对有理数探究,激。
发进一步学习的欲望.
问题:。
(1)利用计算器,把下列有理数3,-,,,,转换成小数的形式,你有什么发现?
(2)我们所学过的数是否都具有问题(1)中数的特征,即是否都是有限小数和无限循环小数?教师提出问题(1).
教师引导学生观察计算结果,得出任何一个整数或整数比即有理数都可以写成有限小数或无限循环小数的形式.
教师提出问题(2).
学生回顾思考,通过学生对有理数的再认识,师生共同归纳无理数是无限不循环小数,从而得出无理数既不是整数也不是分数的结论.
活动1中,教师应关注:(1)学生通过实际计算实现有理数到小数的转化,激发进一步学习无理数的欲望;(2)学生了解无理数的主要特征.计算器是将有理数转化为小数的主要计算工具,通过组织学生的计算活动,发现规律,并与学过的无限不循环小数作对比,为学习无理数概念作准备.
通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促进学生对数学学习的兴趣,培养学生初步的发现能力.
注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的。激发学生的求知欲。
[活动2]。
通过对数的归纳辨析,教师引出无理数和实数的概念,并引导学生学会对实数如何分类.
问题:。
你能对我们学过的数进行合理的分类吗?教师引出无理数和实数的概念,。
教师引导学生独立思考:当对数的认识扩充到实数范围之后,怎样在实数范围内对学过的数进行分类整理?教师在参与讨论时启发学生类比有理数的分类,同时鼓励学生相互补充、完善,并帮助总结出实数的分类结构图.
实数。
活动2中,教师应关注:。
(1)学生对有理数和无理数的概念以及它们之间的差异与联系的了解程度;。
(2)学生在讨论中能否发表自己的见解,倾听他人的意见,并从中获益;。
(3)学生是否能用语言准确地表达自己的观点.
通过对实数进行分类,让学生进一步领会分类的思想,培养学生从多角度思考问题,为他们以后更好地学习新知识作准备.同时也能使学生加深对无理数和实数的理解.
通过学生互相的讨论和交流,可以深刻地体验知识之间的内在联系,初步形成对实数整体性的认识.
[活动3]。
通过教师演示和学生活动,建立实数与数轴上的点的一一对应。
问题:。
教师提出问题.
学生独立思考后小组讨论交流,学生借助的得出过程进行探究,。
教师参与并指导实际操作(利用多媒体课件演示圆滚动的过程).
本节由于学生知识水平的限制,教师直接给出有理数和无理数与数轴上的点是一一对应的结论.
活动3中,教师应关注:。
(1)学生利用边长为1的正方形的对角线为的结论,在数轴上找到表示的点;。
(3)学生是否主动参与探究活动,是否能用语言准确地表达自己的观点.本次活动是从学生已有的知识水平出发,找到数轴上的位置,体会无理数也可以用数轴上的点来表示.
借助数轴对无理数进行研究,从形的角度,再一次体会无理数.同时也感受实数与数轴上的点的一一对应关系.进一步体会数形结合思想.
通过多媒体教学使学生了解无理数数也可以用数轴上的点来表示,从而引发学生学习兴趣.
通过探究活动,在数轴上找到了表示无理数的点,使学生了解无理数的几何意义.
数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,让学生进行探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、抽象、概括的思维能力.
[活动4]。
用计算器估算的近似值.
1、讨论:到底有多大?
问题:。
(1)哪个数的平方最接近3?
(2)在哪两个数之间?
并将讨论结果,发现结论通过表格明晰出来.(填〉,〈).
〈_3__〉3。
〈_3__〉_3。
〈_3_〉_3。
〈_3_〉_3。
2、验证.
用计算器估算的近似值.
教师利用有理数逼近无理数的方法,引导学生逐步估算的范围.
学生通过用计算器估算,可以寻找到的范围.
用计算器的计算功能估算的近似值。在此使学生对无理数有进一步的感知.
活动4中,教师应关注:(1)学生能否估算出。
的范围;。
(2)学生是否学会了用。
计算器估算无理数近似值的方法.如何求无理数的近似值?在此给出来两种估算的方法:对于第一种方法,利用夹逼的办法,通过分析的一系列不足近似值和过剩近似值来估计它的大小,加深对无理数的理解.而第二种方法,则是直接用计算器求值.
利用计算器的计算功能可提高这节课的实效性.在教学中计算器可作为一种探究工具,在这节课中让学生自己动手实验、验证,调动学生学习的积极性,增强数感,利用计算器的计算功能探究用有理数逼近无理数,使学生感受计算器在求无理数近似值的优越性.
[活动5]。
用计算器求实数的值.
例1:计算.
(1)。
(结果保留3个有效数字);。
(2)。
(精确到0.01);。
例2:比较下列各组数的大小.
(1)4,;。
(2)-2,-。
当数的范围由有理数扩充到实数以后,对于实数的运算,教师强调两点:一是有理数的运算率和运算性质在实数范围内仍然成立;二是涉及无理数的计算,利用计算器求其近似值,转化为有理数进行计算.
教师布置练习后,巡视辅导,并通过投影展示同学的计算过程。
活动5中,教师应关注:。
(1)学生是否会正确使用计算器计算实数;。
(2)是否按所要求的精确度正确地用相应的近似有限小数来代替无理数.安排例1的目的是想通过具体例子说明,有理数的运算律和运算性质同样适合于实数的运算,同时巩固使用计算器求实数的方法.
例2是比较数的大小,教学中可以引导学生运用多种方法,比如可以先求出无理数的近似值,把无理数化成有理数,再比较两个有理数的大小等.
活动5使学生能够熟练运用计算器求实数的值.使学生加深对实数的认识.
[活动6]。
小结归纳,课后作业.
问题:。
1、本节课你学到了什么知识?你有什么收获?
2、本节课如何发挥计算器的功能帮助你进行数学探究的?
课后作业:。
(1)课本第22页习题5.3之复习巩固1,2,4;。
(2)第23页课本习题之综合运用8.如图。
教师提出问题.
学生独立回答,教师根据学生的回答,结合结构图总结本节知识.
活动7中,教师应关注(1)学生对无理数和实。
数概念的理解程度;。
(2)学生是否能够认真地倾听与思考;。
(3)学生是否能够发现其中的数学题,并有意识地运用所学知识解决;。
(4)学生能够对知识的归纳、梳理和总结的能力的提高;。
(5)学生能否在本节知识的基础上主动思考,类比有理数的性质和运算来学习实数;。
(6)学生能否学会用计算器进行计算、探究解决数学问题.通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.同时为以后的学习作知识储备.
学生通过独立思考,完成课后作业,教师能够及时发现问题并反馈学生的学习情况,以便于查漏补缺,优化课堂教学.
教学设计说明。
(1)本节是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围.从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学有重要意义.在中学阶段,多数数学问题是在实数范围内研究.例如,函数的自变量和因变量是在实数范围内讨论,平面几何、立体几何中的几何量(长度、角度、面积、体积等)都是用实数表示等.实数的知识贯穿于中学数学学习的始终,学生对于实数的运算,以后还要通过学习二次根式的运算来加深认识.同时在本节课中充分发挥计算器的计算、验证、探究功能。因此本节的作用十分重要.
在本节课中为了突出重点,突破难点,我将教学分层次进行,先从从一个探究活动开始,活动中要求学生把几个具体的有理数写成小数的形式,并分析这些小数的共同特征,从而得出任何一个有理数都可以写成有限小数和无限循环小数的形式.把有理数与有限小数和无限循环小数统一起来以后,指出在前两节学过的很多数的平方根和立方根都是无限不循环小数,它们不同于有限小数和无限循环小数,也就是一类不同于有理数的数,由此给出无理数的概念.无限不循环小数的概念在前面两节已经出现,通过强调无限不循环小数与有限小数和无限循环小数的区别,以使学生更好地理解有理数和无理数是两类不同的数.帮助学生建立有意义的知识联结,顺应认知结构中的原有体系,以逐步探究的思路实现对问题的深层次理解,增强思维的深刻性。
(2)在探究有理数规律的过程中,使学生在探究时,经历了观察、实验、归纳、总结以及由具体到抽象、由特殊到一般的学习过程,体会到了研究问题、解决问题的方法,加深了对无理数的理解。在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从情境设计-例题选择-课堂引申都是以教材内容为载体,充分开发教材的功能。循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。
(3)计算器在本节课的教学中,起到了重要作用,体现在三个活动过程:第一个过程是利用计算器探求有理数的规律,从而引出无理数的概念;第二个过程是利用计算器估算无理数的近似值;第三个过程用计算器计算实数的值.发挥了计算器的计算功能和探究功能。
(4)本节课通过学生的主动智力参与,动手实践、自主探索与合作交流等活动,使学生在教师的主导作用下,实现对实数概念的自我建构。
(5)教师在培养学生学习兴趣,激发良好学习动机中承担一定的责任。恰当地提出问题和恰当地运用课堂互动策略十分重要。在课堂的准备与指导阶段充分了解学生,进行有效提问,为学生提供及时适当的反馈,运用课堂竞争、合作策略来促进良性课堂互动,实现教学目标。
北师大版数学教案篇六
包装问题在日常生活中经常遇到,教材创设了“包装糖果”的情景,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它体现了数学的优化思想。同时有助于学生提高解决实际问题的能力,感受数学与实际生活的密切联系。
【学情分析】。
1、学生已有的知识基础。
在本课学习之前,学生已熟练掌握了长方体的特征,能准确、迅速的计算出长方体的表面积;初步认识了由两个相同的正方体拼成一个长方体后表面积发生的变化。
2、学生已有的生活经验。
学生大都接触过物品的包装,清楚地意识到用包装纸包装物品就是求物体的表面积,但实际所需的包装纸又比物体的表面积大,因而教师要和学生理清本课研究的是“接口处不计”的包装方式,这样的活动才能和生活进行有效沟通。
3、学生学习本课内容可能遇到的困难及学习方式的研究。
学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方法的多样化与策略的最优化可能存在问题,因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同探讨。
【教法学法】。
让学生通过小组活动,在合作探究中探索出不同的包装方法,再引导学生观察、比较、交流、总结,领会最节约包装纸的包装策略。使学生积累数学活动经验,感悟优化的数学思想。
【教学目标】。
知识与技能目标:利用表面积等有关知识,探索多个相同长方体叠放后使其表面积最小的最优策略。
过程与方法目标:1、体验解决问题的基本过程和方法,提高解决问题的能力。
2、通过解决包装问题,体验策略的多样化,发展优化思想。情感态度与价值观目标:渗透节约的意识,体会包装的学问在生活中的应用,感悟数学与生活的联系。
教学重点难点。
重点是:利用表面积等有关知识,探究多个相同长方体最节省包装纸的叠放方法。
难点是:理解最节省包装纸的包装策略。
【教具准备】:多媒体课件,师生共同准备若干个长方体纸盒。
【教学过程】。
一、课前交流。
师:请同学们看一看今天的课堂有什么不同?(有很多听课的老师)。
师:这么多的老师来听课,来一睹同学们的风采,你想对自己说些什么?让我们一起说“加油!我是最棒的!”。(生齐说)。
师:谢谢同学们,我们可以开始上课了吗?(生:可以)上课!
二、激发兴趣,导入课题。
上课之前先请同学们欣赏几幅关于包装的图片(课件出示图片)。师:你们看了这几幅图片后有什么感受,请说一说。
物品经过包装,显得更精美,可包装的目的不仅如此,在包装中还有许多其它的学问,今天我们就来学习《包装的学问》。(板书课题)。
再过几天就是李老师的4岁小侄子的生日,我买了盒蛋卷,(课件出示一盒长方体形状的蛋卷盒(10cm×8cm×5cm))老师也打算把这盒蛋卷包装后送给他,(课件演示用包装纸包装蛋卷盒)在包装时我遇到了个问题,请看。(课件出示问题:如果接头处不计,最少需要多大面积的包装纸呢?)。
师:谁能帮老师想一想怎样解决这个问题?(生:就是计算它的表面积。)怎么计算你可以说说吗?(生回答)。
师:下面我们就一起动手计算一下这个长方体蛋卷盒的表面积好吗?(生完成后交流反馈,课件展示老师的计算。)。
【设计意图:既复习了旧知识,又为下面组合长方体表面积计算打。
下了知识基础和情感基础。】。
三、动手操作,初步感知。
1、小组活动,自主探究。
师:老师的爱人也买了一盒同样的蛋卷,包装时一共需要多大面积的包装纸呢?(一个需要340cm,两个就是需要680cm。)。
师:有没有不同的意见?说一说。(可以合起来包装,就不是680cm了。)。
问:合起来包装为什么就不需要680cm包装纸呢?(有的面重合起来了。)。
师:重合的面在包装时需要用包装纸包装吗?(不需要)。
师:可以怎样包装呢?请同学们同桌合作,拿出两个长方体纸盒摆一摆。(学生同桌合作,探索组合包装的方法。)。
请一名学生展示摆放的方法。(教师在黑板上用实物展示。)。
问:还有没有其他的包装方法?再指名展示,老师在黑板上用实物展示。(展示结束,课件出示三种组合包装的方法图。)。
2、展开猜想,交流讨论。
师:大家观察一下,这三种包装方法有什么不同?(重合的面不同。)师:同学们观察得很仔细。请看第一种方法重合的是哪些面?(生:两个最大的面。)。
师:我们可以说“重合了两个大面”。第二种方法和第三种方法呢?(生:第二种方法重合的是两个中面,第三种方法重合的是两个小面。)。
师:请同学们猜想一下,这三种方法中哪种方法最节约包装纸?(生:第一种)。
问:第一种方法最节约,你能说一说你是怎样猜想的吗?(指名交流。)。
3、验证猜想,得出结论。
师:这个猜想是不是正确呢?我们可以通过什么方式来验证呢?(可以分别计算出三种组合后的长方体的表面积,再比较一下就知道了。)。
问:怎样计算大长方体的表面积?(预设学生回答:可以根据组合后的大长方体的长宽高直接计算出表面积;也可以把两个小长方体的表面积之和减去重合面的面积。)。
先让学生计算出第一种方法包装后的大长方体表面积。(指名板书)师:有不同的计算方法吗?(再指名板书)。
师:我们来比较一下哪种方法简单一些?(指名回答)(把两个小长方体的表面积之和减去重合面的面积。)。
师:请同学们用自己喜欢的方法计算另两种的表面积。(指名板书)师:从计算的结果看,是不是和我们刚才的猜想一致呢?(一致)师:谁能说一说在包装时究竟怎样包装才能节约包装纸吗?(指名回答)。
四、组合三个,再次体验。
北师大版数学教案篇七
3.培养学生的观察、归纳与概括的能力.
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
一、从学生原有的认知结构提出问题
二、师生共同研究的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.
三、运用举例 变式练习
例1 (1)分别写出9与-7的;
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的
1.当a=7时,-a=-7,7的是-7;
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习
1.填空:
(1)+1.3的是______; (2)-3的是______;
(5)-(+4)是______的; (6)-(-7)是______的
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义――代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“”号排列出来.
解:在数轴上画出表示-a、-b的点:
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
北师大版数学教案篇八
教学内容:
1.分数的乘法。
2.分数混合运算。
3.用分数解决问题。
教材分析:本单元是在整数乘法、分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数、小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。
三维目标:
知识和技能:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。使学生能够应用分数乘整数的计算法则,比较熟练的进行计算。通过观察比较,培养学生的抽象概括能力。知道分数乘整数的意义,学会分数乘整数的计算方法。
情感、态度和价值观:通过引导学生探究知识间的内在联系,激发学生学习兴趣,感悟数学知识的魅力,领会数学美。
教法和学法:通过演示,使学生初步感悟算理。
指导学生通过体验,归纳分数乘整数的计算方法。
教学重点、难点:使学生理解分数乘整数的意义。掌握分数乘整数的计算方法;。
引导学生总结分数乘整数的计算方法。
授课时数:10课时。
第1课时。
学期总第1课时。
教学课题分数乘整数。
主备教师使用教师授课时间月日。
教
学
目
标知识。
与
技能在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程。
与
方法通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
情感。
态度。
与价。
值观引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点引导学生总结分数乘整数的计算法则。
教法与学法直观演示法。
教学准备及手段课件。
教学流程二次备课。
北师大版数学教案篇九
教学目标:
1、知道连加、连减算式的含义和运算顺序。
2、能比较熟练地口算连加、连减式题。
3、初步感知连加、连减式题与日常生活的联系,学会表达和交流,培养学生观察和解决简单的实际问题的能力。
教学重点:通过联系实际情境,体会连加连减的意义和理解运算顺序。
教学难点:
1、学生在学习的过程中学会如何用语言表达数学问题,同时学会倾听、交往与合作。
2、理解连减的含义。
教学过程:
一、情境引入。
1、课件演示情境图(聪明屋)。
师:今天,我们要去数学聪明屋里去玩玩。在聪明屋里有很多聪明题,看看我们班上谁最聪明。看,四位小动物先出来欢迎我们了。看看他们给我们带来了什么题目。(课件)。
长颈鹿小狗小乌龟小猫。
师:你想和谁交朋友,就算算它带给你的题目吧!(请四位学生口答)。
2、小结。
师:今天我们用学到的数学知识为小动物解答了难题,你们可真了不起,希望你们在聪明屋里学到更多的数学知识。
二、探究新知。
(一)探究连加。
1、说图意。课件演示小鸡图(动态)。请学生仔细观察。
(1)师:小鸡也想和我们交朋友,在图上你看到了什么?
(原来有5只小鸡在吃米,先跑来了两只,又跑来了一只。)。
(2)师:根据你看到的,你可以提什么数学问题?(一共有多少只小鸡?)。
学生复述图意,指名说,同桌说,齐说。
2、尝试列式。
师:要知道一共有几只,我们可以用什么方法做?(加法)为什么?
(1)名学生口头列式。5+2+1=。
(2)读算式。(师:刚才的小朋友读得真不错,你也跟着他读一读吧)。
(3)比较不同。(请小朋友观察一下,这个算式和我们以前学的有什么不一样?——有三个数,两个加号)。
(4)小结:像这样把三个数或更多的数加在一起,就叫连加。(板:连加)。
3、说算理。
师:这个算式你会算吗?(指名说:先算5+2等于7,再算7+1等于8)。
请学生跟说,齐说,同桌说。
(二)探究连减。
1、说图意。
师:你们帮小鸡解决了难题,他们可高兴了,过了一会儿,又发生了什么事呢?
(原来有8只小鸡,先跑掉了3只,又跑掉了2只,还剩下几只?)。
指名说图意(同连加)。
2、写算式。
(1)师:这道题该用什么方法来解决呢?——减法,为什么?
学生列式。(板书:8-3-2=)齐读算式。
(2)师:这道算式和以前的减法有什么不同?你能给它取个名字吗?(板书:连减)。
(3)小结:像这样从一个数里连续去掉几个数,用连减。
3、说算理。
师:你会算吗?(先算8-3等于5,再算5-2等于3)。
学生跟说,齐说,同桌说。
(三)小结。
今天我们学会了连加、连减,在计算时,一般是从左往右的顺序依次计算的。
三、练习巩固。
师:聪明屋里还有很多聪明题,需要我们小朋友来解答,请你们帮帮这些小动物的忙。
1、课件出示燕子图、猪八戒吃西瓜图。(请学生复述图意,再在课本上列式计算,并说算理)。
2、课件出示小棒图和三角形图。(方法同上)。
3、算式(折叠卡片)。——学生说出计算过程。
3+4+16+4+04+3+22+2+4。
8-5-39-5-410-6-28-0-6。
北师大版数学教案篇十
第一课时:直方图(1)。
学习目标:了解频数分布表的制作步骤。
重点、难点:频数分布表的制作。
学习过程:
问题一:下面数据是截止2002年费尔兹奖得主获奖时的年龄:。
293935333928333531313732。
383631393238373429343832。
353633293235363739384038。
373938343340363637403138。
请根据下面的不同分组方法,你觉得比较哪一种分组能更好地说明费尔兹奖得主获奖的年龄分布,并列出频数分布表,画出频数分布直方图.
解:1.计算极差(最大值与最小值的差):。
2.决定组距与组数:。
3.列频数分布表:。
年龄分组划记频数。
合计。
4.画出频数分布直方图。
课堂练习:
1、光明中学为了解本校学生的身体发育情况,对八年级同龄的名女生的身高进行了测量,结果如下(数据均为整数,单位:):。
将数据适当分组,绘制频数分布直方图。
2、体育委员统计了全班同学60秒跳绳的次数,并列出下列频数分布表:。
(1)全班有名同学;。
(2)组距是,组数是;。
(3)跳绳次数在范围的同学有人,占全班同学%;(精确到0.01%)。
(4)画出适当的统计图表示上面的信息;。
(5)你怎样评价这个班的跳绳成绩?
3、为了进一步了解七年级学生的身体素质情况,体育老师对七年级(1)班50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下图所示.
组别次数x频数(人数)。
第1组801006。
第2组1001208。
第3组120140a。
第4组140。
第5组160。
请结合图表完成下列问题.
(1)表中的a=______.
(2)请把频数直方图补充完整.
(3)若八年级学生1min跳绳次数(x)达标要求是:x120为不合格,120140为合格,140160为良,x160为优,根据以上信息,请你给学校或七年级同学提一条合理化建议.
第二课时:直方图(二)。
学习目标:能正确画出频数分布直方图和画频数折线图。
重点、难点:能正确地画出频数分布直方图。
学习过程:
解:(1)计算极差:(4)画频数分布直方图和频数折线图:
(2)决定组数和组距:
(3)列频数分布表:
平行线及平行公理。
教学建议。
1、教材分析。
(1)知识结构。
本节从实例中概括出平行线的概念,给出了平行线的记法和它的画法,并引出了平行公理及其推论.
(2)重点、难点分析。
本节的重点是:平行公理及其推论.承认经过直线外一点有且只有一条直线与这条直线平行的几何是欧氏几何,否则是非欧几何.由此可见,平行公理在几何中的地位十分重要.在教学时,学生可以从用直尺和三角板画平行线的画图过程中,理解平行公理.特别是真正地体会到公理中的有且只有的意义.
本节难点是:理解平行线的概念以及由平行公理导出其推论的过程定义中的在同一平面内的这个前提,是为了区别立体几何中异面直线的情况.教学时只要学生能意识到,空间的直线还存在另一种不相交的情形的,即异面直线.
另外,从平行公理推导出其推论的过程,渗透了反证法的思想.初中学生难于理解,教材对反证法既不作要求,也不必提出反证法这个词,只要把道理说明白即可.
2、教法建议。
(1)概念的引入:学生从教师创设的情景中,可以直观地认识平行线.从实例中,体会平行线在现实中是存在的,并且有它固有的属性,因此很有必要认真地研究它.当然,我们首先要能深刻地理解它的定义.
(3)掌握平行线的画法:学生刚开始接触几何,为降低难度,适应学生的发展,提高学生的学习兴趣,作图时不要求学生写出已知,求做,证明等步骤,只要保留作图痕迹.通过作图的教学使学生能准确而迅速地画出几何图形,为今后的几何学习打下良好的基础.
(4)平行公理及其推论。
在学生画图的过程中,教师可以提出问题,过直线外一点有几条直线可以与已知直线平行呢?学生在动手操作后,可以体验到公理的客观存在性.并且可以让有数学素养的同学,尝试说明平行公理推论的正确性,通过说理,体会数学的严谨性与逻辑性.
教学设计示例。
一、教学目标。
1.了解平行线的概念,理解学过的描述图形形状和位置关系的语句.
2.掌握平行公理及推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;会用学过的几何语句描述简单的图形和根据语句画图.
3.通过画平行线和按几何语句画图的题目练习,培养学生画图能力.
4.通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力.
二、学法引导。
1.教师教法:尝试法、引导法、发现法.
2.学生学法:在教师的引导下,尝试发现新知,造就成就感.
三、重点、难点及解决办法。
(-)重点。
平行公理及推论.
(二)难点。
平行线概念的理解.
(三)解决办法。
通过引导学生尝试发现新知、练习巩固的方法来解决.
四、教具学具准备。
投影仪、三角板、自制胶片.
五、师生互动活动设计。
1.通过投影片和适当问题创设情境,引入新课.
2.通过教师引导,学生积极思维,进行反馈练习,完成新授.
3.学生自己完成本课小结.
六、教学步骤。
(-)明确目标。
掌握平行公理及其推论的应用,能画出平行线,会用几何语句描述图形的画法,培养学生的逻辑推理能力.
(二)整体感知。
以情境引出课题,以生活知识和已有的知识为基础,引导学生学习了平行公理及其推论,并以变式训练强化和巩固新知.
(三)教学过程。
创设情境,引出课题。
将本文的word文档下载到电脑,方便收藏和打印。
北师大版数学教案篇十一
2、交流、总结。
先小组内交流,再全班交流画法。
用量角器怎样画?要注意些什么?(注意内外圈的数,画完后可估一估)。
用三角板怎样画?要注意些什么?(用三角板只能画出一些特殊角度的角)。
3、画一个150度的角。
你能用几种方法?
北师大版数学教案篇十二
可翻书回顾所学的分数的知识,并和同桌说一说。
1、学生独立完成后,当“小老师”检查同桌作业并交流做法,评价作业。
练习课。
初步理解分数的意义。
二、师生互动,探究新知。
独立完成后,全班交流,订正答案。
四、合作交流,取长补短。
1.小组讨论:我的成长足迹。
(1)我解决了一个生活中的问题……。
(2)我读了一本有趣的数学读物……。
(3)我学会了有条理地思考问题……。
2.分组交流,然后全班交流。
小组总结汇报,师总结板书。
生独立思考,自由说:
学过平方厘米,平方分米、平方米、公顷、平方千米等。
平方厘米可用来测量橡皮、书本等的面积……米可用来测量教室的面积、黑板的面积等……。
学生讨论,小结:图形必须是封闭的。
独立做提。(可以拿出面积单位比一比,再思考。又组长主持讨论、评估、反思)。
生独立看图。
小组合作学生可能提:
(1)房间面积?
(2)瓷砖面积?
(3)需要多少块砖?
小组汇报,解决问题。
北师大版数学教案篇十三
1.同学们真厉害,这样小明就能准时参加淘气和笑笑的生日party了。既然你那么聪明,那你能计算出4个星期、5个星期、6个、7个、8个、9个星期更有多少天吗?(课件)请把你的结果填写在教材74页填一填的表格中。(填好的同学自己小声的说说你是怎样计算的)。
2.汇报交流。
师:谁愿意和大家说说你的结果和想法?
3.编口??
师:同学们,还记得老师教过大家编口诀的方法吗?
(齐说)一算,算什么?(用连加法计算结果)二编,编什么?(根据表格编口诀)三看,看什么?(看其中的规律和需要注意之处)四记,记什么?(根据规律记口诀)。
师:同学们真厉害,下面就转动自己的小脑筋用我们的方法快速的编口诀,记口诀吧。完成教材74页第2题。
4.汇报。
有没有别的办法呢?把你记口诀的方法说给同桌听听,比比谁的方法好(同桌交流)。
5.记忆口诀:下面就请大家在下面用自己喜欢的方法背一背这些口诀。
6.游戏(多种形式背口诀)。
(1)拍掌齐背。
你们记住了吗?老师准备考考大家,伸出你的双手,让我们一起背一遍。
(2)师生对口令。
我来问,你来答,准备好了吗?(打乱顺序问)。
(3)同桌对口令。
同桌两个人像老师这样对口令。
北师大版数学教案篇十四
1.师:你们背的真棒,老师想考考你,敢接受考验吗?听要求,读算式,说口诀(7x8=,8x7=,567=,568=)。
你们的小脑瓜转的可真快,看这两个式子,你能总结出什么?是不是每一句口诀都有四个对应的算式?(不是)。
真是个善于归纳总结的好孩子,请同学们打开教材75页,快速完成第一题目。
汇报!谁来汇报一下你的结果,和他一样的举手。真厉害!
2.下面老师要考考大家的口算能力,注意仔细看卡片,抢答,注意站姿。要求,直接说答案。(答错的起立读算式,说口诀)。
4.教材75页第3题还有更多的问题需要我们来解决,你愿意试试吗?(做好的同学尝试说说这几道题的数量关系。指名汇报。)。
6.好啦,请同学们看大屏幕,这是谁?他是哪里的人物?其实乘法口诀运用非常广,不仅能解决生活中的问题,在中国的四大名著之一西游记中也存在,比如说:孙悟空打白骨精不管三七二十一。用到了什么口诀?孙悟空被太上老君关在八卦炉里炼成火眼金睛,一共关了七七四十九天,用到了什么口诀?唐曾师徒四人西天取经要经历九九八十一难,用到了什么口诀?你看口诀是不是无处不在啊,所以我们一定要学好口诀。
北师大版数学教案篇十五
一、激趣导入。
你玩过七巧板吗?
七巧板是中国唐朝发明的一种非常有趣的游戏,它由一个正方形分割成五个三角形、一个平行四边形和一个正方形,19世纪初流传到西方,引起人们广泛的兴趣,并迅速传播,被称为“东方魔板”。下面是一年时你们用七巧板拼出的图形。
北师大版数学教案篇十六
小组实验、讨论解决方案。
2、用手比划1平方厘米、1平方分米、1平方米的大小。
3、想象7公顷7平方千米的大小。
1、完成书第52页第4题,第53页第6、7题。
问:怎样数才能数正确?
学生独立完成,指名汇报,全班订正。
北师大版数学教案篇十七
1.师生谈话由学生最近看过什么电影,在哪个电影院看的,电影院每排有多少个座位,有多少排,引出电影院座位问题。
请几个同学介绍。
师:谁仔细观察过,你去的电影院每排大约有多少个座位?有多少排?
生发言,教师对注意观察电影院座位的学生给予表扬。
师:-同学真不错,到电影院不光是看电影,还特别注意观察电影院的座位情况。今天我们就来解决一个电影院的座位问题。
用小黑板出示问题(1)。
2.用小黑板出示问题(1),让学生读题,了解其中的信息和要解决的问题。
师:请同学们认真读题,说说从中你了解到哪些数学信息?要解决的问题是什么?
学生说电影院原来的座位情况和问题。
二、解决问题。
1.提出问题(1),师生共同列出算式,鼓励学生自主计算。
师:求原来一共有多少个座位,怎样列式呢?
学生说,教师板书:36×30=。
师:36×30,这个算式你们都会计算,用自己的方法试着算一算吧!
学生自主计算,教师巡视,了解学生的计算方法。
2.交流学生个性化的计算方法,鼓励学生大胆介绍自己的想法和计算过程。
师:谁来说一说你是怎么想的?怎么计算的?
学生可能会有以下方法。
(1)先算10排共有多少个座位。
36×10=360(个)。
360×3=1080(个)。
(2)把30看成3个十,36乘3个十等于108个十,也就是1080。所以,36×3=1080(个)。
(3)用竖式计算。
第(2)种方法如果没有出现,教师可以交流,并接着列出竖式的简便算法。
如果出现,教师就结合学生的算法介绍简便算法。
3.介绍竖式计算的简便算法。
师:36乘30,可以把30看成3个十,这样写竖式。
边说边板书。
师:计算时,先算36乘3,得108,也就是108个十,在108的前面添上一个0。
边说边完成板书。
生:这样写很简便。
用小黑板出示问题(2)。
4.教师谈话,并说明要解决的问题。然后,用小黑板出示问题(2),让学生列出算式,用口算,说一说是怎样想的。
师:谁来说一说现在这个电影院的座位情况?
生:这个电影院现在每排有40个座位,还是有30排。
师:谁来说一说怎么列式?
生:40×30。
师:口算结果是多少?
学生可能会直接说出结果1200。
师:说一说你是怎样想的。
学生可能回答。
把40看成4个十,4个十乘30等于120个十,就是1200。
先算4乘3等于12,再在12的后面添两个0,就是1200。
教师重点指导口算方法。
5.教师介绍竖式计算,边说边写出竖式。
师:整十数乘整十数,可以直接利用口诀计算。先把整十数十位上的数相乘,再在积的后面添两个0。用竖式可以这样算。
教师介绍竖式的简便算法。
三、尝试练习。
1.教师在黑板上写。
出试一试中的6道题,让学生独立计算,然后进行交流。
师:同学们刚才用不同的方法解决了电影院的座位问题,而且学会了用竖式计算乘数末尾有0的乘法。现在,请同学们计算一下黑板上的几道题,看谁算得又快又正确。
学生自主计算,请两个人到黑板上板演。64×30和99×99。
10×10不要求有竖式。
全班交流。
2.提出议一议的问题,启发学生根据三道题的.乘数和积回答问题。
师:观察这几道题中乘数和积,想一想,两位数乘两位数,积最多是几位数,最少是几位数?说一说你判断的理由。
学生可能回答。
两位数乘两位数,积最多是四位数。因为99是的两位数,99×99=9801,所以两位数乘两位,积最多是四位数。
两位数乘两位数,积最小是三位数。因为10是最小的两位数,10×10=100,100是个三位数。所以,两位数乘两位数的积最小是三位数。
学生如果有困难,教师启发或参与交流。
四、课堂巩固。
1.练一练第1题。
(1)师生一起估计积是几位数。要给学生充分地表达不同想法的机会。
师:看来同学们不但学会了两位数乘两位数的计算方法,又知道积最多是几位数,最少是几位数。下面看练一练第1题,我们一起估计一下积是几位数。说一说你是怎样想的。
学生可能会出现不同说法。
如
26×40可能出现两种意见。
积最多是三位数,因为十位上的两个数2乘4等于8,不进位;。
积最多是四位数。把26看成25,40看成4个十,25乘4个十等于100个十,就是1000,所以积一定是四位数。
要给学生充分的讨论时间。
74×36,也可以有两种算法。
因为十位上的两个数7乘3等于21,要进位,所以积一定是四位数;。
因为70×30=2100,所以,70×36的积一定是比2100大的四位数。
(2)鼓励学生自己计算,检验估算的结果。
使学生了解判断积是几位数的一般方法:先看两位数十位上的数,十位上的两个数相乘超过或等于10,积一定是四位数。
师:好!现在请同学们自己计算一下,看看估计的结果对不对。
学生计算后,再总结估计积是几位数的方法:两位数乘两位数,十位上的两个数相乘进位,积一定是四位数。
2.练一练第2题,口算比赛。
师:这节课同学们表现得都非常棒,下面我们举行一个口算竞赛,看谁是咱们班的“口算能手”!
3.练一练第3题,先读题明确图意后,让学生独立解答,再交流解答问题的过程和结果。
学生回答后,自己列式计算,然后交流。
4.练一练第4题让学生先读题,弄懂题意,再计算。交流时,重点说一说是怎样判断的。
五、课堂小结。
同学们我们这节课学习了什么?你有什么收获?
北师大版数学教案篇十八
1.在学习了2~6的乘法口诀的基础上,应用旧知识与推理,编制7的乘法口诀。在探索规律的基础上掌握7的乘法口诀。
2.能正确地运用口诀计算表内乘法,解决实际问题培养应用意识。
3.让学生在编制口诀与应用中感受数学在日常生活中的应用。