组合问题教案(优秀17篇)
教案中应该包括教学目标、教学过程、教学方法、教学评价等内容,以便教师能够有条不紊地进行教学活动。教案的编写需要关注学生的情感体验和学习动力。以下是小编为大家精心挑选的一些教案资源,希望对大家的教学工作有所帮助。
组合问题教案篇一
植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题。下面给大家提高了植树问题例3的教案设计,一起来看看吧!
1、掌握在一个封闭图形中植树问题的解答方法,并能灵活运用这一基本方法解决生活中存在的与“植树问题”类似的实际问题。
2、在探索和解决问题中,体会从简单到复杂的数学推理方法,体验数学学习成功的喜悦,增强学好数学的信心。
:正方形,围棋棋盘、棋子。
脑筋急转弯:把4棵树栽成4行,每行数数都有2棵?怎么栽?
1、让学生独立思考,提示学生可用画图的方法进行思考。
2、全班交流,找出方法,并在正方形上把它表达出来。
3、观察这个图形,你有什么发现?与我们前面学习的植树问题有什么不同?
4、在学生的思考中,导入新课,板书课题:植树问题。
1、教学例3。
(1)出示围棋棋盘。
数一数。
围棋棋盘的最外边每边能放几个棋子?(19个)。
(2)算一算。
最外层一共可以摆放多少个棋子?
学生先独立思考,寻找出自己的计算方法。
全班交流,学生叙述自己的算法和结果。
方法一:19×4=76(个)。
方法二:19×4-4=72(个)。
方法三:18×4=72(个)。
(3)议一议。
全班交流,指名叙述每种方法的理由。
方法一忽略了角上算重的情况,多算了4个。
方法二考虑了4个角上算重了,所以在总数中去掉了多算的4个。
方法三每边都只算一个端点,这样每边有18个,3边正好是6个。
(4)比一比。
你用了哪种思考方法,还有其它方法吗?你认为哪种方法最好?
(5)想一想。
前面我们已经学习了在一条线段上植树的问题,知道间隔数和棵数之间的关系,那么我们现在来观察一下,围棋最外层摆放的棋子有多少个间隔?学生自主探究:数一数间隔数,指名回答,围棋最外层摆放的棋子数等于最外层每两个棋子的间隔数。
(6)类推。
(7)归纳规律。
与前面学习的内容比较及在练习中你发现了什么?即封闭的图形的“植树问题”有什么规律?组织学生讨论,在学生回答的基础上总结出:植树的棵数正好等于间隔数。
(2)学生自主探究或和同伴交流,教师巡视指导后进生用画图的方法帮助理解。
(3)集体交流,指名学生说出算理。
(4)教师有针对性地进行指导,并启发学生以每边人数求总人数的方法进行验证。
例3后面的“做一做”
今天我们学习的是封闭图形内的“植树问题”。你发现了什么规律?
练习二十第4、6、7题。
封闭图形中的植树问题例3教学前,学生只是通过直观的方式与以往的知识经验来解决的,此时的学生很少把它看作植树问题,因此教学时我安排摆棋子一环节,主要用意在于:1、巩固练习围棋问题中的解决方法。2、通过这道题把它与植树问题进行沟通,使学生知道其实这些题也可以用植树问题的思考方法来解决。3、虽然教参中并没有强求学生一定要探索出封闭图形植树问题中的规律(即间隔数等于棵数),但这个规律对学生后继的学习很重要,学生可以利用这个规律更容易解决一些实际问题,比如:在解决正多边形的植树问题时,特别是在解决封闭曲线的植树问题(如绕一个圆形的溜冰场一周种树时)显得尤为方便。否则,学生很难想到用间隔数去解决问题,也和前面的例1、例2失去了联系。所以我要通过这道题来与植树问题进行沟通,初步感知规律,然后再回到例3中的问题,引导学生用植树问题的思考方法再次解决例3。并在沟通的过程中,让学生有所感悟:封闭图形的植树问题都可以按照一端种一端不种的植树问题的规律(即间隔数就等于棵数)来加以解决。
教学时我是这样设计的:大屏幕出示围棋图,先让学生数一数每边有多少棋子,学生数出每边都有19个棋子。然后,接着问学生那正方形的4条边也就是一周一共多少颗棋子?放手让学生自己去解决出现了不同的结果,很多学生开始都认为每边放19个棋子,四条边,就用19×4=76个,而有的通过数,发现实际只数出有72个棋子,那为什么是72个而不是76个呢,有少部分同学能够发现“四个顶点上的不能重复算”,因此他们能够很快地列出算式:19×4-4=72个。最后,还有没有其他的方法,19×2+17×2=72个,还有18×4=72,然后老师重点引导新思路为什么是18×4,让学生自己去争论,发现规律:封闭图形棵树等于间隔数。
不足之处:
1.对于围棋中得植树问题,数量相对比较大,学生想象比较难,教学时引导不够,学生思考不到位。最好应该放慢教学速度,给学生动手操作的时间,这样感触更加深刻。
2.部分学生区分不开:间隔数和间距的概念,应该结合生活中得实例来说明。
3.在学习了三种类型的植树问题之后,对于给出的一些生活中类似植树问题相类似的问题,学生搞不懂是哪一种类型的植树问题。
植树问题对于学生的掌握,相对比较难,以上是我在教学中发现的学生中存在的问题,针对这些问题,安排一节练习帮助学生巩固和掌握。
组合问题教案篇二
原来这个单元的知识是休闲假日——混合运算,讲授分步计算和综合运算两种方法。学生虽然已经掌握了加、减、乘、除四种基本数量关系,但是一步计算到两步计算对于低年级学生来说已经是一个不小的跨越。解决两步计算的实际问题的关键是先根据题中的信息和问题之间的联系找到中间问题,分析与寻求中间问题的策略方法也是以后解决复杂实际问题的基础。如果直接跨入综合计算,对于大部分学生来说难度有点拔高了,所以本单元在以往的基础上进行了处理,只讲授分步计算。在解决一步计算的实际问题的基础上,学会解决稍复杂的实际问题,通过学习,形成解决问题的一些思路和基本策略,发展数学思考。
学生已经掌握了加、减、乘、除四种基本数量关系,并会运用这些数量关系解决一步计算的实际问题。
分步解决两步计算的实际问题是学生解决稍复杂的实际问题的开始,学生通过本单元的学习,形成解决问题的一些思路和基本策略,并为以后学习综合运算奠定坚实的基础。同时本单元教学是学生解决问题能力发展的重要转折点和关键点。
1、结合具体情境,学会分步解决两步计算的乘加(减)、除加(减)问题,初步了解用乘加(减)、除加(减)解用解决问题的思路。
2、经历用乘加(减)、除加(减)分两步计算解决实际问题的过程,初步学会有条理的思考问题,掌握一些解题思路。
3、有与同伴合作解决问题的体验,感受数学在解决生活问题中的作用,培养对数学学习的兴趣。
理解两步计算问题的数量关系,掌握分步解决两步计算问题的一般思路和解题策略。
学会分析数量之间的关系,试着找出中间问题,掌握分步解决两步计算问题的一般思路。
我主要是通过用图片摆一摆直观的呈现出数量之间的关系,学生更容易发现中间问题。
1、结合具体情境激发学生的学习兴趣。
选取的素材是学生们都非常喜欢的,也是比较熟悉的,因为大部分学生有外出旅游的经历,容易引起学生情感上的共鸣。教学时,可以先让学生根据亲身体验简单谈谈最难忘的一次旅游,激发学生的学习兴趣。教师要帮助学生在具体的情境中分析、找出数量之间的关系,掌握两步计算问题的解题思路。
2、注重相关信息的选择,提高学生整理信息的能力。
本单元的两个信息窗都提供了较多的信息,有的呈现的是对话,有的是标示牌,有的是需要学生亲自数一数的图画信息。因此,教学时,教师要注意引导学生根据提出的问题,仔细观察主题图,从众多的信息中选择有用的信息来解决问题。提高学生的分析、整理能力。
3、帮助学生初步形成解决问题的基本思路。
求什么”的思路进行,还体会到要确定“先求什么”也是有章可循的,既可以从信息想起,也可以从问题想起。在此基础上,教师还要继续丰富学生的体验,让学生运用刚刚获得的经验和方法尝试解决“自主练习”中的问题,并让学生完整的表达自己的思考过程。
4、对学生进行多角度评价。
本单元的评价,要注意考查学生是否能通过对信息的分析分步解决两步计算的实际问题,同时,还要注意考查学生是否能积极主动地参与小组合作学习,是否愿意与同伴交流等,以促进学生的全面发展。
课件、圆片等。
休闲假日——解决问题
课本101的信息窗1和相应练习。
组合问题教案篇三
1、通过“商店买东西”的情境,灵活运用有关除法知识解决实际生活中简单的问题。
2、通过独立探索、小组合作的方式学习,进一步加强对2——6的乘法口诀计算除法的掌握。
3、调动学生的学习兴趣,引导学生获得有价值的信息,培养学生解决问题得能力。
4、培养学生勇于表达自己的想法,认真倾听他们的意见。在问题处理中,体验成功,培养数学学习兴趣。
运用表内除法知识解决生活中的简单问题,做到学与用的有效结合。
多媒体课件等。
1、创设情境。
六一儿童节快到了,明明想要给自己买一些新玩具,可是面对那么多好玩的商品,明明不知道手中的零花钱能买多少个玩具,同学们,你们愿意帮助明明吗?现在,就让咱们一起跟着明明去商店看一看吧!(出示教材图片)。
师:从图中你知道了哪些信息?
预设:知道了一些商品的价钱。玩具熊6元1个,地球仪8元一个,皮球9元1个。汽车的价钱被遮住了。要帮助明明求出56元钱可以买几个地球仪。
师:要解决这个问题,需要哪些信息呢?
(小组交流汇报:需要知道地球仪的价钱,从图中可以知道一个地球仪是8元钱)。
(1)请同学们思考,根据以上的数学信息应该如何解决问题。小组合作,讨论解决的方法,教师巡视指导。
(2)汇报。
预设:一个地球仪8元,求能买几个就是求56元里面有几个8元。
这属于平均分问题,应该用除法计算。
如何列式计算呢?
56÷8,想七八五十六,商是7。
3、独立思考,验证结果。
同学们真聪明,这么快就解决了问题,那么我们做得正确吗?你怎么知道的?
(一个地球仪8元,7个一共78=56元,所以是对的。)。
师:很好,我们可以用乘法来验证除法计算的结果是否正确。
4、想一想,如果24元买了6辆小汽车,一辆小汽车多少钱?
师:谁愿意交流一下,你是怎么计算小汽车辆数的?
预设:(1)24元钱可以买6辆车,就是将24平均分成4份,求每份是多少。
(2)也是用除法计算。可以列式24÷6=4(元)。
(3)一辆4元,6辆就是46=24(元),计算正确。
师:根据图中的信息,你还能够提出其他数学问题并解答吗?
小组内2人合作,一问一答,其他小组成员看一看他们的回答是否正确,错误的相互改正,看谁提出的问题多,谁发现的问题多。
1、完成“练习九”第2题。
先组织学生观察情境图,收集图中的数据信息,再让学生独立解决问题,并指名说一说解决问题的思路和方法。
2、完成“练习九”第4题。
(1)出示图片,学生观察后说知道了哪些信息。
(2)独立思考解决第1、2小题分别需要哪些信息,应该如何解答。再在小组内探讨根据所知道的信息还能提出哪些数学问题。
3、完成“练习九”第6题。
出示情境图,学生观察图中的信息,分小组讨论,看能知道哪些信息。
能提出哪些用乘法或除法解决的问题呢?说一说,算一算。
同学们,我们在这节课里提出了许多数学问题,也解决了这些问题,说明数学就在我们身边,生活中处处有数学。
56÷8=7(个)。
56=30(元)。
36÷9=4(个)。
组合问题教案篇四
本节课是青岛版小学数学四年级上册第六单元《快捷的物流运输—解决问题》信息窗中第二个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。因为相遇问题牵扯到两个物体的运动情况,其中的数量关系比较复杂,学生理解起来有一定困难,因此学生要首先理解和掌握速度、时间和路程三者的关系,然后在此基础上,创设他们感兴趣的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动经验。
1、 在具体情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。
2、 在解决问题的过程中,经历“发现问题----提出问题----分析问题----解决问题”的过程,积累数学活动经验。
3、 在合作交流中体验学习的乐趣,培养学习数学的积极情感。
用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。
理解“相遇问题”的基本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。
多媒体课件,两个能在一条线上自由活动的小人。
谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。
ppt出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。
根据这个信息,你能提出什么问题吗?
ppt出示:刘老师家距离人民公园有多远?
你会解决吗?
ppt:60×5=300(米)
这60表示什么?5呢?300呢?
通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。
今天我们就在这个关系式的基础上来研究点新问题,好不好?
1、初步感知相遇问题
预设:让学生用语言或者肢体动作来解释这几个词的含义。
把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。
此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。
2、合作演绎相遇问题
现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。
学生活动,教师巡视。
(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?
预设:出现相遇点在中间和相遇点不在中间两种情况。
通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。
3、理解速度和
老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:
一分钟后他俩分别走了多少?一共走了多少?
两分钟后他俩又走了多少?一共走了多少?
三分钟?四分钟?五分钟呢?
通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。
4、画线段图
你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?
投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?
学生补充和完善自己的线段图。
师出示课件演示画线段图的过程。
5、自主解决问题
你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。
找2生板书2种方法,点评。
回顾这两种方法,我们是怎么解决相遇问题的?
小结:方法1:路程1+路程2=总路程
方法2:速度和×相遇时间=总路程
6、体会线段图的好处
对比题目文字和线段图,你有什么感觉?
小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。
1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)
2、
两队分别从两头同时施工,4个月开通。这条隧道长多少米? (只列式不计算)
3、两人同时打印一份稿件,甲的打字速度是85字/分,乙的打字速度是65字/分。1小时后两人共同录完。请问这份稿件一共多少字?(只列式不计算)
刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?
小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。
这节课你有什么收获?学会了什么?
德州市实验小学 刘丽
组合问题教案篇五
1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同的方法解决问题。
2、培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
3、通过学习,使学生认识到小括号的作用。
4、通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
使学生知道可以用不同的方法解决问题,体会解决问题策略的多样性,提高解决问题的能力。
从不同的角度发现并提出问题以及不同的方法解决问题。
多媒体
一、创设情景,生成问题
2、投影出示游乐园面包房图,问:“我们看看图中的小朋友们在做什么?”把学生的注意力吸引到画面上来。
3、让学生观察画面,提出问题。教师适当启发引导:还剩多少个面包?学生自由发言,提出问题。
二、探索交流,解决问题
2、观察了解信息:从图中你知道了什么?
3、小组交流讨论。
(1)应该怎样计算:还剩多少个面包?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班中交流解决问题的方法。
4、把学生解决问题的方法记录在黑板上。
5、比较两种方法的异同。明确两种方法的结果都是求:还剩多少个面包?,在解决问题的思路上不同。
6、把两个小算式你能写成一个算式吗?学生尝试列综合算式。
板书:(1)54-8-22(2)54-(8+22)
交流:你是怎么想的?若第二种综合算式有困难教师进行点拨指导。特别强调计算时先算小括号里面的。
7、完成练习一第5题先让学生仔细看图,明确要解决的问题,并找到解决问题的办法。
8、小结。
三、巩固应用,内化提高
1、练习一的第2题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的`学生以启发。
2、练习一的第3题,让学生自己独立完成。汇报解决问题的思路时,强调小括号的使用。
四、回顾整理,反思提升
通过今天这节课我们又学到了什么?你能用这些知识解决生活中的问题吗?
一、教材简析
本单元是在学生学会计算两步式题的基础上编排的。本单元的主要内容有:运用加法和减法两步计算解决问题,并学会使用小括号;运用乘法和加法(或减法)两步计算解决问题。教材从学生熟悉的游乐园情境入手,让学生通过观察发现生活情境中的数学问题,使学生经历从生活问题到数学问题的抽象过程,感受数学知识的现实性。本单元教材在编写上有以下几个特点。
1.结合生活情境发现数学问题并解决问题。
在学生的学习和生活中有许多数学问题。教材从学生熟悉的游乐园场景入手,让学生通过观察发现生活情境中的数学问题,使学生经历从生活问题到数学问题的抽象过程,感受数学知识的现实性。学会从数学角度去观察、分析、解决现实问题,从而激发学生认真观察、积极探索的精神,获得成功的学习体验。
组合问题教案篇六
(1)让学生学会观察图画,理解图画内容,知道图上加括号和问号的用意,能从图中看清告诉了什么,要求什么,能选择合适的方法进行计算,学会用数学知识解决简单的实际问题。
(2)创设亲身经历用6、7的加减法解决问题的时空,初步感受数学与日常生活的密切联系,感受数学就在我们的生活之中。
(3)引领学生体验数学的魅力,体验学数学、用数学的乐趣,激发学生学习数学的兴趣。
(4)培养学生善于观察,勤于思考的良好学习习惯。
(5)渗透环保教育,使学生热爱我们的大自然,热爱我们的生活,促进学生在情感、态度等方面的健康发展。
(1)结合学生的认知水平知道大括号、小问号的意义。
(2)理解画面内容表达的意思,根据条件和问题之间的关系选择适当的方法算出要求的问题。
对于一年级的数学学习,新生无论在数学知识上还是数学能力上都有所准备。就数的认识来看,一年级的学生二十以内的数数非常流利和连贯,可以正数倒数,学生在这方面具有良好的知识准备的。但一年级学生在数感方面的发展是不平衡的。学生对数的意义理解有一定困难。学生根据实际情况很难作出正确的回答,对于图形学生的理解有一定的困难。这可能是学生对图形的认识造成了对数的基数序数意义理解的干扰。根据学生已有的知识经验和认知规律,结合“以学生发展为本”的教学新理念。
自主学习和问题探究的策略
课件
一、激情导入:
1、导入课题
师:同学们上节课我们认识了两位数字朋友6和7,今天我们接着和它们一起去数学王国中探索奥秘。
板书(6和7)
2、明确目标
师:今天的课上老师又给同学们带来了几位新朋友,你们想认识他们吗?同学们想认识他们,那得先闯过老师这关。
第一关:快速抢答。出示题卡
第二关:想一想,填一填。看大屏幕(课件)
3、效果预期
师:好,同学们都已经掌握了学过的知识,你们都是认真听讲的好学生。
二、探究新知:
任务一:引导学生学习加法图文应用题。
1、任务呈现
(1)师:接下来,我们有请第一位好朋友。几只可爱的小白兔。我们先看一下画面上的小白兔给我们带来了哪些数学信息?(左边有4只小白兔,右边有2只小白兔。)
(2)师:根据这两个数学信息,你能提出什么数学问题?(一共有几只小白兔?)
(3)引出大括号、问号并解决问题。
1、这个问题在图上怎样直观地表示出来呢?我们的数学家找到了一种简洁明了的方法,你们想知道吗?(想)好,我们就一起来认识两个新的数学朋友吧!
2、(出示、粘贴大括号)我们的这个新朋友叫大括号,它表示把两部分小朋友合在一起。
3、(出示、粘贴“?只”)这是我们认识的第二个新朋友,它表示我们提出来的问题。
2、自主学习
师:现在,请同学们自己先想出解决问题的方法。然后,同桌说一说自己的想法。最后,大家把答案写在自己的本子上。(师巡视)
3、展示交流
生交流,师板书:4+2=6(只)。
任务二:引导学生学习减法图文应用题。
1、任务呈现
(1)师:同学们真聪明,这么快就帮老师解决了一个问题,而且认识了两个新朋友。现在,老师带你们去池塘边看看,认识第三位新朋友。(一些青蛙)
(2)师:此时,你们找到了哪些数学信息?想到了什么数学问题?快说出来大家一起来分享吧!(一共有7只青蛙,跳走了2只,还剩几只?)
(3)师:那怎样表示?怎样解决呢?
2、自主学习
小组讨论。
3、展示交流
汇报交流。师适时粘贴图画,并让学生说清楚采用了什么方法,为什么要这样解决?
(5)小结:比较异同。
提问:这两幅图在表示上有哪些相同的地方和不同的地方?(相同的地方:都用到了“大括号”和“问号”;不同的地方:第一幅图的“?”表示把两部分小兔子合起来作为一个整体,求一共有几只。第二幅图的“?”表示两部分中的一部分,求还剩几只。)解法又有什么不同呢?(求整体,用加法计算,求部分,用减法计算。)
(三)说儿歌学数学
师:同学们,你们真棒,这么快就和大括号、小问号成为了好朋友。好了,又到了我们说儿歌学数学的时间了。(课间出示)大括号,小问号,在一起,我会算。小问号,在尖尖,求一共,用加法。小问号,在两旁,求部分,用减法。
三、知识运用:
师:你们还想到其它地方玩玩,继续用数学知识解决问题吗?
1、目标检测
让学生看图独立完成后,再集体订正。(选一小题让生说说想法。)
2、结果反馈,集体订正
3、反思总结
师:通过今天的学习,你学会了什么?
师讲述:同学们真聪明,这节课大家发现了许多数学信息,提出了很多数学问题,并解决了它们。记住你这节课交到的好朋友,它能帮助我们解决很多实际问题,我们要用好数学知识并用心学好它。
板书设计:
6和7解决问题
组合问题教案篇七
人教版《义务教育课程标准实验教科书数学》四年级下册第117、118页例1、例2。
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.进一步培养学生从实际问题中发现规律,应用规律解决问题的.能力。
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.培养学生从实际问题中发现规律,应用规律解决问题的能力。
3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。
课件、表格、尺子等。
一、教学“间隔”
1.教学“间隔”的含义。
师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)。
师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。
二、自主探究找出规律。
预设:学生可能大多数对得到20棵。
师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?
全班交流汇报。(重点让用线段图来验证的小组来说明理由。)。
师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。
根据学生的回答,师填写表格:
总长(米)。
20。
全班观察表格寻找规律。
师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)。
师:对得到的这个规律有没有不同意见?
三、巩固练习。
师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?
(1)基础练习。
师:请看题目,谁愿意来说一说?
a2.如果是每隔10米栽一棵呢?(口答)。
c.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。
(2)拓展练习。
师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑。想听听它的钟声吗?
课件出示解放碑的大钟及题目。
解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?
师:请同学们独立的在练习本上完成。
小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。
四、数学文化。
介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?
五、全课总结。
1.通过这节课的学习你有什么收获?
2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。
组合问题教案篇八
知识目标:通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
能力目标:经历探索简单事物排列与组合规律的过程。
1.培养学生有序地全面地思考问题的意识。
2.感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。
教学重点;经历探索简单事物排列与组合规律的过程。
教学难点:初步理解简单事物排列与组合的不同。
教学媒体:乒乓球、套餐组合图片、纸箱、每组三张数字卡片、吹塑纸数字卡片。
今天我们学习的题目是《数学广角》,这里边有许许多多的数学知识。想知道吗?跟老师一起去看看吧。(板书课题)。
一、情境创设,激发兴趣。
孩子们,我给你们介绍一位新朋友(课件出示明明的自我介绍。)那咱们快去吧。
二、自主合作,探究新知。
1.排数:
(1)(情景创设)提出问题:
师:看,明明的好朋友也来了。他们在一起快乐的玩。(课件:情景创设。明明说:我们来做一个数学排数游戏吧。用1、2这两个数字可以组成几个两位数?)。
师:孩子们,你们会吗?用1、2可以组成哪些两位数?指名回答。(课件:明明说:如果是1、2、3这三个数字,选其中的两个而组成的两位数,有多少个呢?)。
师:从这三个数字选其中的两个而组成的两位数,有哪些呢?(2)自主探究:师:小组的小朋友交流交流,也可以拿出数字卡片摆一摆,然后把你们排出的数记录在纸上。学生活动,教师巡视。
(3)汇报结果。
2.你们小组排出了哪些数?怎样排的?指名学生一边操作一边汇报。其他学生一起说数。
3、检查一下,有没有重复的?还有吗(有没有漏掉的)。
4、谁发现了他们小组排数的规律?(可以让排数的学生说,也可以指名其他同学说。)。
(4)观察、比较、分析、小结。
5.孩子们,看看,这几个组排出的都是哪些数?
8、教师小结:看来,这种先固定最前面一个数,再用这个数,与其他两个数分别组合在一起,这种方法最快最准,不容易重复,也不容易漏掉。
9.抽奖孩子们,你们学习非常认真,我们来做个抽奖游戏,想参加吗?每个小朋友都有中奖的机会哦。
(1)教师出示4个号球:这里有四个号球:2、5、7、8。
(2)什么样的号码能中奖呢?我给你们透露点信息:中奖号码就是从这4个数中选出的两个数组成的两位数。猜猜,什么号码可能中奖?这个号码肯定能中吗?再猜?看来,可能中奖的号码有很多个。有什么好办法肯定能中奖?(把你认为能中奖的号码都写出来吧)(把用这四个数能组成的所有两位数都写出来,教师巡视,“有孩子写出来8个两位数,她还在继续写,看来不止8个”“你是先固定最前面一位数?”)。
10.握手。
(1)师:孩子们,你们也是一群善于动脑的好孩子。这么多同学中奖了,来,咱们握握手,祝贺祝贺!加油!
(2)提出问题:三个小朋友,每两个人只能握一次手,一共要握几次手呢?猜猜看!生1:6次!生2:4次!
师:究竟几次,小组长作裁判,小组内的三个同学握一握,试一试,到底几次?
(3)学生汇报表演。小组长指挥说明。他们握手,咱们一起来数吧!教师引导学生一起数握手的次数。(注意握过小朋友一边休息)。
(4)师问:a和b握手了吗?b和a握手了吗?这算一次还是两次呀?
(5)小结:看来,两个人相互握手,只能算一次,和顺序无关。刚才排数,交换数的位置,就变成另一个数了,这和顺序有关。
三、拓展应用,深入探究。
1.菜肴搭配。
课件:情景创设:妈妈为孩子们准备了好吃的`菜肴。妈妈说:孩子们,菜的营养要合理搭配,又不浪费,每个小朋友从这六个菜选一个荤菜和一个素菜。
(1)师:该吃午饭咯,妈妈为孩子们准备了丰富的自助餐。老师都流口水了拉。这么多好吃的菜,你选那些菜肴呢?听听妈妈怎么说:(课件出示)。
(3)把你们想到的搭配用线连起来,比赛哪个小组的最快,方案最全:不重复,不遗漏。
(4)学生连线。学生小组汇报,有和他们想法不一样的吗?
(5)一共有多少种搭配?你这么快就知道啦,是不是有什么发现呀?(点数或者加法:3+3+3=9)。
2.合影:
课件:情景创设:妈妈说:孩子们,给你们三个合个影作纪念。你们三个排成一排赶紧站好了。
(1)师:明明和红红、东东站成一排,可以怎样排呢?一共有多少种排法?(给学生一定的思考时间,可以画一画,摆一摆,同学一起排一排)。
(2)谁来说说,他们三个可以怎样排?你是怎么想的?(固定左边的小朋友;固定右边的小朋友;固定中间的小朋友)(师:所有的方案他说完了吗?还有补充吗?谁能够把所有的方案都能说一说?有这么多排法啊,你是怎么想的,能说得这么全面一个都没漏掉也没重复?)。
组合问题教案篇九
(湘版音乐实验教材七年级上册第五单元)。
教学目标。
1.学生能够根据歌曲的不同特点与风格,采用组合的形式创造性地表现歌曲的情绪和意境。
2.能自信地、有表情地当众演唱所学歌曲。
3.能在演唱活动中对自己、他人、集体的演唱作简单的评价。
教学重点。
让学生充分地参与歌曲表现并获得丰富的个性体验。
教学难点。
合理安排教学时间,调控好教学活动,激发学生的主动参与意识。
教学过程。
一. 一、激情导入。
1.引入演唱组合欣赏。
2、播放组合演唱片断,自由欣赏。
学生可随意讲出所熟悉的演唱组合的名称,也可跟唱所熟悉的歌曲。师生共同营造热烈、民主的学习气氛。
3、指名答问,组织交流。
二. 二、学唱歌曲。
1.介绍歌曲及作者。
(3)介绍作者及作品风格。同学们都熟悉他的歌曲。有人称王洛宾先生为西部歌王。王老先生是北京人,曾在法国留学学习音乐,但他为了民族的音乐,一生扎根新疆。他的作品都吸取了新疆民族音乐的素材,他一生整理、创作、收集了七百多首作品。他把新疆的民歌介绍给了全国,介绍给了全世界,国内外许多歌唱家都非常喜欢演唱他的作品。
2.随乐学唱。
(1)听赏全曲,按照自己的创意拍击节奏。让我们一起来感受一下《青春舞曲》的活力,请同学们跟随音乐拍击节奏,看看谁拍击的最有创意。(播放歌曲音乐,学生边听边拍击节奏,老师记节奏)。
(2)边拍节奏边唱歌曲。有的同学拍的节奏很有创意,老师也记在了黑板上,我们一起来拍一拍,唱一唱。(师生边拍边唱,老师再加一些简单的身势节奏,学生模仿。)。
3.随乐舞蹈。
(1)学生齐唱歌曲,教师跳新疆舞。
(2)激发学生设计舞蹈动作,表现歌曲。组合演唱的第二大特点是边歌边唱,充满活力。平常同学们都很活泼,好动,还有些同学会跳现代舞,现在让我们一起随音乐跳起来。
2.介绍几个有特色的演唱组合。
1.提出演唱组合的要求。
刚才,我们既饱了眼福,又饱了耳福。现在,轮到我们了要来开一个班级组合演唱会,现在给同学们10分钟的时间准备。组合方式是5至8个人自由组合成一组,小组成员可以坐到一起商定歌曲和组合演唱的形式。同时请同学们为自己的组合起一个响亮的名字,并用新颖的形式写好组合名、演唱名和演唱人数贴到黑板上,老师已给你们准备好了纸和笔。
2.尝试组合演唱。
学生分组合进行讨论、排练。
五.组合演唱会。
1.推选主持人。
2.分组合上台演唱。
六.课堂小结。
电视上的组合是“台上一分钟。台下数年功”,而我们的组合则是“台上一分钟,台下十分钟”。同学们今天都表现的很棒,在这么短的时间内,同学们就迅速完成了各自的组合,并为自己的组合起了这么特别的名字,还采用了很多表现手法生动地表现自己选唱的歌曲,非常了不起。让我们为自己出色的演出鼓掌庆贺。
五、教学反思:
能在全县中小学音乐教材培训中展示自己的教学风格,和同行们进行交流,对我来说是一种幸运,更是一次磨练。下面,我就来谈谈我执教这节课的感受。
夸美纽斯说:“兴趣是创造一个欢乐和光明的教学环境的主要途径之一。”基于这一点,我选择了中学生们很喜欢,也很熟悉的“组合演唱”来作为本节课的教学内容。整个教学过程,学生思维活跃,兴趣盎然,生命活力得到极大的焕发。与传统教学相比,本节课最大的优点就是老师给了每一位学生一个展示才华、张扬个性的舞台,学生们自由组合、自己选择演唱曲目和表演形式、选出自己的主持人、制定节目单等活动,最大限度地调动了学生的自主性、创造性,就连表演后的点评都由学生来完成。这些都很好的体现了“以兴趣爱好为动力”、“面向全体学生”、“注重个性发展”、“鼓励音乐创造”等新课程理念。
通过这节课,让我也发现了自己的不足,使我更进一步的认识到“给学生一碗水,教师先要有一桶水”,作为一名音乐老师,更需要有扎实的基本功,另外,自己的课堂语言还有待于提高,特别是评价语言,教师要对学生的各种表现做出迅速的反应,还要注意语言的机智性、幽默性、科学性。这些还需要我不断去充实自己,正所谓“台上十分钟,台下十年功”,一节课,短短的45分钟,其中却是学问颇多。
总之,通过这节课,让我体验到了自身的价值,积累了教学经验,丰富了教学经历,这将成为我音乐教学生涯中的一个新起点,我将孜孜不倦,继续努力。
组合问题教案篇十
1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:使学生理解并运用假设的策略解决问题。
教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。
2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。
1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。
分别板书:假设都是鸡假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗?现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。
师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条)。
表示实际多画了10条腿。4-2=2(条)。
表示一只兔比一只鸡多2条腿。102=5(只)。
表示鸡有5只。8-5=3(只)。
表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。
教师小结:我们可以首先假设全部是兔,然后数出兔的腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。
兔的只数。
腿的条数。
和22条腿比较。
师根据学生的回答分别板书。
4442+44=24。
多了2条在这里多了2条,表明什么?按照刚才的假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。
4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。
5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。
1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。
2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。
兔的只数182023。
腿的条数171512。
小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。
2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
组合问题教案篇十一
师:3月是全国学雷锋活动月,而植树节也恰好也在3月,有一个班的同学为了践行雷锋乐于助人的精神,决定一起去敬老院参加植树种花活动,,即学习了雷锋精神乐于助人、尊老爱老,又能为保护我们的环境贡献自己的一份力量。去之前,同学们准备了三种花的花苗,分别是红花、黄花、紫花。这个班的同学提前画了一张设计图,准备在敬老院门口这样种(出示图片)。
1、数一数。
师:那么现在,我请同学们猜一猜,第17棵花是什么颜色的?
(生:数一数)。
师:这个方法好像可行,那我们来数数看吧!(数至17)现在我们知道了,第17棵花是黄色的。
2、圈一圈。
师:有的同学好像有思路了,有的同学跟老师一样,还有点困惑呢,那现在请小组内部商量一下,看看大家一起思考,能不能找出什么好方法吧!
(小组内部研讨)。
【通过讨论总结出花的颜色是每三种一轮换,即三种颜色为一组。】。
师:同学们,你们有什么好方法吗?
(生:花的颜色是每三种颜色为一组)。
(生:都是按照红、黄、紫的顺序种的/红、黄、紫为一组,不断重复出现/三种颜色一组,不断重复出现)。
师:那么请问,每组的第一棵花都是什么颜色?
(生:红色)。
师:每组的第二棵、第三棵呢?
(生:第二棵是黄色、第三棵是紫色)。
师:你们观察的可真仔细,眼力真好!那也就是说,每一组里每个位置上的花,颜色都是相同的,所以我们只要列式算一算,通过余数知道第17棵花是它所在那一组的第几个位置,就可以知道它是什么颜色了。
(生:每三个颜色为一组圈起来)。
(生:二三得六)。
(依次圈下去,一边圈一边背口诀,直到圈到第五组,三五十五)。
师:同学们,我们现在已经圈出了5组花,也就是说15棵花,再往后就是第16棵、第17棵了,第17棵花的颜色是黄色。这个方法比刚才数一数的方法要快多了、也简单多了,但是如果种的花特别多,这个方法也会浪费很多的时间。那么,我们就需要利用刚才这个规律再找到一个更简便的方法。
3、算一算。
(生:17÷3)。
师:没错,那么请你们来算一算这个算式吧!
(生:17÷3=5······2)。
师:这个17是什么意思?3是什么意思?商是5表示了什么意思?
(生:17是指17棵花,3是每3棵为一组,5是指17里面有这样的5组)。
师:同学们,那这个余数2是什么意思呢?
(生:还剩下2棵花)。
师:那这剩下的2棵花是第几组里的呢?
(生:第6组)。
师:那我再请你们思考一下,第17棵花是在第6组的第几个位置?
(生:第二个位置)。
师:你们的思路很正确,在这个算式里,这个余数2,就已经直接告诉了我们,第17棵花在第6组的第二个位置。
【这个地方比较抽象,要结合图片来讲解,尤其是余2和第2之间的关系】。
师:刚才我们已经总结了,每一组里固定位置上的花,颜色都是相同的,所以我们只要列式算一算,通过余数知道第17棵花是它所在那一组的第几个位置,就可以知道它是什么颜色了。
(生:3月12日)。
师:那现在我请同学们来猜猜谜,如果3月1日是星期一,那3月12日是星期几呢?
师:一个星期有几天,你们知道吗?
(生:7天)。
师:那,从3月1日到3月12日,一共有几天呢?
(生:12天)。
师:这12天里包含了几个7?又余下了几天呢?我们来列式算一下吧!请同学们写到作业纸上。
(生列式计算,然后请一位同学念答案:12÷7=1······5)。
(生:12里有1个7/12天里有一个完整的七天)。
师:那这个余数5又说明了什么呢?
(生:还余下5天)。
师:那么,你现在能直接说出来3月12日是星期几吗?
(生:星期五)。
师:你是怎么知道的呢?
(生:余下的5说明是新的一星期里的第五天,就是星期五)。
师:你说的太棒了!所以,我们可以直接通过余数是5知道,3月12日是星期五。
2、师:种完了花,这个班同学们决定在每棵花的前面树上一个带标语的牌子,每个牌子上都有一个字,连起来就是“爱护环境从我做起”,提醒路人保护环境。这个班的同学们轮着树标语牌子,他们班的人数是40。那请问,这个班的最后一个同学树的牌子上,会是什么字呢?请你们小组讨论一下,然后来列式解决吧!
师:请一位同学来说一下,你列的算式是什么吧!
(生:40÷8=5)。
师:40是什么意思呢?
(生:40个人)。
师:除数8是什么意思呢?
(生:每组标语的字数是8个字为一组)。
师:商是5说明了什么?
(生:40里有5个8)。
师:那现在,我们能知道最后一个牌子上的字是什么字了吗?
(生:是“责”)。
师:是的,这一次算到最后没有余数,那就说明最后一个牌子是最后一组的最后一个,也就是“责”。
同学们,我们这节课学习了怎么去发现图形排列中的周期规律,还学习了怎么利用规律来解决实际问题。希望同学们以后在生活中也能继续保持一双慧眼,善于观察、勤于动脑,把学过的知识学以致用,解决生活中更多的问题!
组合问题教案篇十二
教材第78页的例3,练习十九第1、2题。
知识与技能
(1)使学生能根据乘法和所学的乘法口诀解决生活中简单的实际问题。
(2)初步学会口述应用题的条件和问题。
过程与方法
通过学生观察、讨论、汇报交流等活动,使学生初步学会根据乘法的含意解答求相同加数的和的乘法应用题。
情感态度与价值观
在学习过程中,培养学生的分析能力,让学生体验成功的喜悦,增强学习数学的兴趣。
重点:用乘法和所学乘法口诀解决实际问题。
难点:学会用不同的方法解决问题。
教法:谈话、讨论法。
学法:小组探究法。
多媒体课件。
一、创设情境,复习引入
(1)常规练习,齐背8的乘法口诀。
(2)听算:
第一组:2×8,3×8,8×2,4×8,5×7
第二组:8×4,4×7,7×4,6×8,8×5
(3)课件演示:教材例3。
(小军和小红一起逛超市,在超市的文具专柜有许多的文具:文具盒每个8元,铅笔每枝3元,橡皮每块2元,日记本每个4元……)
二、提出问题,解决问题
(1)看一看,说一说。
请同学们仔细看图,把看到的情景讲给大家听,同桌互相说一说。
全班汇报,交流。
(2)提出问题。
你能根据这幅图说出解决的数学问题吗?
文具盒每个8元,买3个文具盒,一共多少元钱?
橡皮每块2元,买7块橡皮,一共多少钱?
铅笔3元一枝,要买5枝一共多少钱?
日记本每个4元,买6本,一共多少钱?
……
(3)解决问题。
以小组为单位,合作解决问题。
汇报学习过程。
三、练习巩固
(1)比一比,算一算。
出示练习十九的第2题:让谁算得又对又快。
(2)看图列算式。
出示练习十九第1题图,请同学们仔细观察,列出算式,再集体交流。
(3)每横排有6颗星,4排有几颗星?
每列有4颗星,6列有几颗星?
(3)第横排有7个圆,3排有几个圆?
每列有3个圆,7列有几个圆?
四、拓展学习
(1)找一找,生活中还有哪些问题可以用乘法解决,与同学们说一说。
分析:这是一道先乘后减的应用题,首先利用乘法口诀算出小兰花钱总数,再用妈妈给的钱数减花掉钱数求剩余。
五:总结
通过今天的学习,你们有什么收获?还有哪些问题没有解决?
板书设计
用乘法解决问题
文具盒每个8元,买3个文具盒,一共要多少元?
分析:求3个文具盒的价钱总数,可以用1个文具盒的价钱乘买的个数。
解答:3×8=24(元)
答:买3个文具盒要24元。
本节课充分让学生难过摆、看、想、说、算等实践活动感知新旧知识的内在联系,在此基础上理解数量关系。教师适时点拨,帮助学生完成了新知识的主动建构。我进一步认识到学生的知识不仅仅是教会的,而更应该是由学生自己摸会的。
组合问题教案篇十三
《植树问题》是新课程标准实验教材四年级下册的内容。
《新课标》指出“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“植树问题”通常是指沿着一定的路线,这条路线的总长度被分成若干间隔。由于路线不同,植树要求不同,路线被分成的间隔和植树之间的关系就不同。本节课主要通过让学生自主探究、分析、比较的方法,找“植树问题”的规律。
教材将植树问题分为几层次:两端都栽、两端不栽、环形情况等,其目的在于通过解决问题渗透数学思想方法。不同的教师在处理植树问题的教学上各有差别,而俞正强老师,一个衣着朴素、老式的布鞋、光亮的脑门、憨厚的笑容,对“植树问题”有自己独特的教学和见解,他抛开课本给出解决植树这类型问题的方法,从练习题的引入出发,层层递进的引导学生思考、分析、具体问题具体分析,使学生在轻松、愉快的学习氛围中完成。
1、通过动手操作、合作交流,理解一条线段上植树问题的规律。
2、学会应用植树问题的模型去解决实际问题的方法。
3、经历和体验“复杂问题简单化”的解题方法和策略。
引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。
为完成上述教学内容和目标要求, 俞老师从简单的习题着手,进一步联系到生活中的植树等实际问题,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
一、练习引入,构建新知。
课前创设简单易懂的题目“20米,平均每5段一份,可以分几份?”学生很快列出算式20÷5=4(段),紧接着引出例题“20米路,每5米栽一棵树,可以栽几棵?”学生列出算式20÷5=4。
俞老师没有直接告诉学生答案,而是询问,为什么用除法?问题(1)中两道题有什么共同点?目的在于,让学生在练习中,突现知识的起点----平均分。而不同点又是什么?一是求点数,一个求线段。那么一共可以栽几棵树呢?学生通过观察知道了一共可以栽4+1=5(棵)树,整节课条理清晰,层次分明,浅显易懂,始终围绕重点内容进行展开教学。
二、注重实践,体验探究。
教学中,俞老师多次引导学生观察、假设、思考,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个端点,也就是要在5棵树。使学生发现和理解,植树问题并非简单的除法就可以解决,植树问题种在的地方就是点,而非线段上,接着俞老师从生活实际出发,引导学生思考和观察,生活中哪些人把什么做在点子上?学生通过思考后纷纷答道:电线杆、垃圾桶、栽花、纽扣、排队等,从而发散了学生的思维,激起了学生的学习兴趣。在学生兴趣盎然的时候,俞老师提出问题“段数和点数有什么样的关系?”启发学生透过现象发现规律,也就是栽树的棵树要比段数(间隔数)多1。让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、联系生活,拓展思维。
体验是构建的基础,俞老师通过有趣的游戏激发学生理解植树在实际生活中的利用。让一排学生当“点”每2米栽一棵树,可以栽几棵树?转变为如果路尽头有了一座房子,我们该怎么植树?如果路的头尾各有一个房子,又怎么植树?栽几棵?简单实在的实际问题,把本节课的知识点良好的应用到实际生活当中,使学生从旧知向隐含的新知迁移了,本节课也因此达到了升华。
总之,本节课,以学生的设计为出发点,通过线段这一简洁、直观的方法的观察、分析,引导学生积极认真的思考,进而透过现象发现不同情况下的棵树与段数之间的关系。本节课,俞老师没有课件,一支粉笔,一块黑板,真正是一节难得的常态课,值得我学习和借鉴。
组合问题教案篇十四
1、建立并理解在线段上植树(两端都不栽)的情况中“棵数=间隔数—1”的数学模型。
2、通过画线段图初步培养学生探索解决问题的有效方法的能力,尝试用植树问题的模型解决实际生活中的简单问题,培养应用意识。教学重点:建立并理解“棵数=间隔数—1”的数学模型。教学难点:培养学生探索解决问题的有效方法的能力。
课件。
一、创设情境,导入新课:
师:同学们,你们参加过招聘会吗?
生:没有。
师:想不想拥有这样一次经历?
生:想。
师:瞧,老师带来了一份招聘启示。(课件演示)
招聘启示:
新兴学校将对校园进一步绿化,特聘请校园设计师一名。要求设计植树方案一份,择优录取。
师:愿意试试吗?我们先来看看设计有什么要求。(课件演示)
为了美化环境,要在的一条60米长的小路一边植树,每隔3米栽一棵,需要准备多少棵树苗呢?。
说一说,你们打算怎样植树?
师:哪位同学愿意来说说你的想法?
学生汇报讨论结果
生1:两端都栽。
生2:头栽尾不栽。
生3:尾栽头不栽。
生4:两端都不栽。
师:从这份要求上,你能获得哪些信息?
生:路全长有60米,只在路的一边栽,每隔5米栽一棵。
师:两端都栽要栽多少棵?这节课我们来研究两端不栽的植树问题。
二、民主导学:
任务呈现:
1、你都知道了什么?
2、你认为一共要栽多少棵树?
师:这道题和上节课学的植树问题有什么不一样呢?
自主学习:
小组四人每人选一个长度,间距还是3米,来画一画,填一填。展示交流:
师:大家发现棵数和间隔数有什么关系?间距、间隔数和总长有什么关系?
生:棵数=间隔数—1
间距×间隔数=总长
60÷3=20(个)
20—1=19(棵)
19×2=38(棵)
教师追问:为什么要“×2”?(因为小路两旁都要栽树)
师:大家在做题的时候,一定要判断是“两端要栽”还是“两端不栽”。
三、检测导结:
师:在刚才的学习过程中,同学们既发现了规律,又总结了方法,真了不起。老师这里有几道题,把明明难住了,我们来帮帮他。
1、目标检测:
一、填一填
1、一排同学之间有7个间隔,第一排有()个同学。
2、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。
二、算一算
1、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,一共有几个车站?
2、结果反馈:
3、反思总结:
师:通过今天的学习,大家有哪些收获?
学生畅谈收获。
师:同学们的收获真不少!通过今天的学习,我们不仅发现了植树问题中两端都栽和两端不栽的规律,而且还学会了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的问题还有一端栽一端不栽,下节课继续研究!
组合问题教案篇十五
学情分析:
三年级的学生以形象思维为主,而且抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。
教材分析:
“植树问题”原本属于经典的奥数教学内容,而解决植树问题的思想方法是实际生活中应用比较广泛的`数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
这个数学内容既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过画线段,再来发现栽树的棵数和间隔数之间的关系,从而会应用植树问题的模型解决一些相关的实际问题。
设计理念:
《新课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。
教学目标:
知识与技能:
1、理解间隔概念,知道间隔数与棵树之间的关系,初步建构植树问题的数学模型。
2、能根据数模解决简单的实际问题,培养学生观察、分析及推理能力。
数学思考:
1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
解决问题:
能够应用本节所建构的植树问题的数模以及探寻到的规律,针对实际情形灵活的来解决问题。
情感态度与价值观:
让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学重难点。
教学重点:会应用植树问题的规律解决一些相关的实际问题。
教学难点:建构数模,探寻规律。
教学准备:
课件、实物投影仪、每组一张表格。
教学流程:
一、创设情景,导入新课。
1、猜谜语。
师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你知道在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”
“现在看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)。
2、找间隔。
“生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)。
“我们的身边还有间隔吗,一起来找找吧!”
3、揭示课题出示课件5、6。
师:“你更喜欢那组画面?怎样才能拥有这样美丽的环境呢?”“对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家知道吗?在我们数学王国里植树可是有一定的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)。
二、自主探究,构建模型。
师:“春天到了,为了美化校园,我们学校也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)。
1、设计不同方案。
师:“画一条线段表示12米的小路,你想怎么载就用示意图或线段图画出来吧!”教师巡视。
2、展示不同方案。
投影仪展示学生的设计方案,问:“你是怎么画的?”
师板书三种情况,分别是:两端都栽,只栽一端,两端都不栽。
师:“今天这节课我们先来探讨两端都栽的情况。”
3、小组探索、加强体验。
(1)提出问题。
出示例1(课件9)学生默读题目,找出关键词并做解释。
师:“需要多少棵树苗呢?”指名说出不同的答案并板书。
师:“现在出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。
组合问题教案篇十六
理解用转化的方法解决问题的思路,能根据具体问题找到对应的转化方法,从而解决问题,了解转化思想在数学课程中普遍存在。
通过转化比较两个不规则图形面积大小的过程,提高观察、分析、解决问题的能力;通过对解决问题过程的反思,提高归纳、总结、概括的能力,以及知识迁移能力。
在主动参与数学活动的过程中,感受成功的体验,提高学习数学的兴趣。
大屏幕出示学习多边形面积时的图片,引导学生回忆之前比较两个图形面积时,用到数方格、平移等方法。
教师指出前面接触的图形相对简单,本节课进一步学习比较两个图形面积的大小。
引出课题——解决问题的策略。
大屏幕出示教材图片,并提问下面两个图形,哪个面积大一些?
学生根据之前学习经验,直观的会提出数方格,教师引导学生注意其中涉及不满一格的情况,若按照前面数方格时不满一格按半格计算,得到的结果不够准确,并且较为繁琐,引发学生思考更为确切的比较方法。
学生根据导入中的情境,能够想到可以通过平移将不规则图形转化为规则图形进行比较。
教师组织学生小组活动,5分钟时间,探究图片中的不规则图形可否转化为较为规则的图形,若可以,思考如何转化。小组代表做好讨论记录,探究结束找小组分享讨论结果。教师巡视,对于有困难的学生及时给予指导。
教师总结学生回答,两个图形都可转化为规则的矩形,通过平移或旋转的方法得到。通过比较转化后的图形面积(数方格、数边长)得到两个图形面积相等。教师利用多媒体演示图形多种变化过程。
教师组织学生思考上述图形变换前后的区别与联系,总结图形转换的方法与特点,同桌之间交流分享。
教师总结学生回答:
(1)变换前后图形的形状改变了,由复杂变为简单熟悉,但面积的大小不变;
(2)图形转化可通过平移、旋转、翻折、拼接等方法;
(3)经过转化之后将无解变得可解,将复杂问题变成简单问题。
教师讲解其为转化的策略解决问题,即将未知事物转化为已知事物,从而解决问题的方法。组织学生回忆学习过程中,哪些知识的学习中用到了转化的策略,小组间进行交流总结。
教师总结学生回答:探究平行四边形、三角形、梯形、圆的面积时;代数领域学习异分母分数运算、小数乘法等。通过回忆学习过程,感受数学知识间的联系。
算一算下列三个图形中阴影部分面积占整个面积的几分之几。
小结:总结本节课学习内容。
作业:课后练一练。
组合问题教案篇十七
教材第21页例6及做一做。
1.使学生掌握比较两数多少的方法。
2.使学生初步学会解答求一个数比另一个数多几(少几)的应用题,初步培养学生分析推理能力。
能用画图策略帮助理解数量关系,从而解决比多少的问题。
一、复习
1.口算下面各题。
16-7
13-9
17-8
12-5
6+13
12+4
2.比多少。
小猫吃了18个,小猴吃了9个,谁吃得多?多几个?
教师提示:用一个对一个的方法想。
二、合作探究,交流展示
教学例6。
1.出示例题。指名读题。知道小雪、小华各套中多少个?
2.要解决的问题是什么?可以怎么解决?
3.让学生自己摆学具,比多少。
出示:小雪套中8个,小华套中12个。
教师:请大家用摆小棒的方法,第一行摆小雪的个数,第二行摆小华的个数。
[学生动手摆小棒,并向学生说明小雪和小华的个数要一个对一个地摆,这样便于观察。]
提问:哪一行摆得多?
你能把小华的分成两部分吗?(和小雪同样多的部分和比小雪多的部分)
并指出小华比小雪多的个数,说出小华比小雪多了几个。
[教师:要求小华比小雪多套几个,应该怎样想呢?(就是要求小华比小雪多的部分)
教师:用什么方法计算?]
5.请学生列式:12-7=4(朵)
口答:小华比小雪多套中4个。
6.想一想:小雪比小华少套几个?怎样解答?
[小华和小雪套的圈相差几个?怎样解答?]
7、小结:无论是求一个数比另一个数多(少)几,还是求两个数相差几,都要用减法计算。
三、巩固练习
1.完成p21页的做一做。
[小林家养了15只白兔和9只羊,兔比羊多几只?羊比兔少几只?]
2.方民家收了8棵大白菜,15棵圆白菜。圆白菜比大白菜多多少棵?
四、小结
板书设计:
求一个数比另一个数多几的应用题
12-7=5(个)
本节课在学生的摆一摆、画一画的过程中理解了求一个数比另一个数多(少)几的应用题的题意,确定了正确的计算方法,从而建立减法的模型,明确了要用减法计算的原因。