正比例反比例教案(模板13篇)
教案需要结合学生的实际情况和学科特点进行设计,具有一定的灵活性和可操作性。在编写教案时,要充分考虑到学生的思维特点和认知规律,提高教学效果。如果你需要一份优秀的教案,这里有一些范例可以供你参考。
正比例反比例教案篇一
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。
教学重点。
理解正反比例的意义,掌握正反比例的变化的规律.。
教学难点。
理解正反比例的意义,掌握正反比例的变化的规律.。
教学过程。
一、导入新课。
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问。
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量。
(三)教师谈话。
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学。
(一)成正比例的量。
例1.一列火车行驶的时间和所行的路程如下表:
时间(时)12345678……。
路程(千米)90180270360450540630720……。
1.写出路程和时间的比并计算比值.。
(1)。
(2)2表示什么?180呢?比值呢?
(3)这个比值表示什么意义?
(4)360比5可以吗?为什么?
……。
2.思考。
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度。
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。
3.小结:有什么规律?
教师板书:商不变。
(二)成反比例的量。
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。
工效(个)102030405060……。
时间(时)603020151210……。
2.教师提问。
(1)计算工效和时间的乘积.。
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。
3.小结:有什么规律?(板书:积不变)。
(三)不成比例的量。
1.出示表格。
运走的吨数10203040。
剩下的吨数90807060。
总吨数(和不变)100100100100。
2.教师提问。
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。
(四)结合三组题观察、讨论、总结变化规律.。
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化。
不同点:第一组商不变,第二组积不变,第三组和不变.。
总结:
3.分别概括正、反比例的意义。
4.强调第三组题中两种相关联的量叫做不成比例。
5.教师提问。
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式。
三、巩固练习。
判断下面各题是否成比例?成什么比例?
正比例反比例教案篇二
教学过程。
谈话导入。
师:谁能用比的知识说一说我们班男女同学的人数情况?
(指名汇报)。
师:今天我们就一起来整理和复习比和比例的有关知识。
回顾与整理。
1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。
预设。
生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。
生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。
生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。
生4:配制农药会应用到比的知识;地图上一般都有比例尺。
……。
(2)说一说比与比例有什么区别。
比
比例。
各部分名称。
0.9∶0.6=1.5。
前项后项比值。
基本性质。
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个内项的积等于两个外项的积。
(3)出示教材83页“回顾与交流”2题。
学生独立完成,思考比、分数、除法之间的关系,并全班交流。
预设。
生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。
生2:除法算式的商相当于分数的分数值,相当于比的比值。
强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。
正比例反比例教案篇三
1、甲数除以乙数的商是2.8,甲、乙两数的最简比是()。
2、圆的周长与直径的比值是();正方形的周长与边长的比值是()。
3、在24的约数中选出四个数,组成一个比例是()。
4、如果苹果重量的1/6与橘子重量的20%相等,那么苹果重量与橘子重量的比是()。
5、在一个比例中。两个内项互为倒数,其中一个外项是最小的合数,另一个外项是()。
6、用一张长和宽之比为2:1的纸剪两个最大的圆,这张纸的利用率是()。
7、一根钢管长3米,截去1/3后又截去1/3米,比原来短了()米。
8、圆柱体的侧面积一定,()和高成反比例。
9、两个长方形的面积比是8:7,长的比是4:5,宽的比是()。
10、请写出两个内项相等,两个比的比值都是0.4的一个比例。
二、判断题。
2、等第等高的平行四边形与三角形的面积之比为2:1。
4、甲、乙两个足球队的比赛结果是3:0,这个比的前项是3,后项是0。
5、两个正方体的棱长之比为2:3,则他们的体积之比为4:9。
三、选择题。
1、一种长5毫米的零件,画在图纸上长10厘米,这副图的比例尺是()。
a、1/2b、2/1c、1/20d、20/1。
2、圆的面积和()成正比例。
a、半径b、直径c、半径的平方d、
3、一项工程,甲独做5天完成,乙独做6天完成,甲、乙两人的工作效率的比是()。
a、5:6b、6:5c、1/6:1/5d、5/11:6/11。
4、路程一定,所走的路程和剩下的`路程()。
5、xy+2=k(一定),x和y()。
6、下列选项中,()成正比例,()成反比例,()不成比例。
a、比的前项一定,比的后项和比值。
b、比例尺一定,分母和分数值。
c、正方形的边长和面积。
四、计算题(解比例略)。
五、解决问题。
6、一个长方形操场长100米,宽50米,把它画在比例尺是1/2000的图纸上,长和宽各应画多少厘米?请画出这个长方形。
正比例反比例教案篇四
教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重点:成正比例的量的特征及其判断方法。
教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.
教学过程:
一、四顾旧知,复习铺垫。
1、已知路程和时间,求速度。
2、已知总价和数量,求单价。
3、已知工作总量和工作时间,求工作效率。
二、引导探索,学习新知。
1、教学例1:
出示:一列火车1小时行驶90千米,2小时行驶180千米,
3小时行驶270千米,4小时行驶360千米,
5小时行驶450千米,6小时行驶540千米,
7小时行驶630千米,8小时行驶720千米……。
(1)出示下表,填表。
一列火车行驶的时间和路程。
时间。
路程。
填表,思考:在填表中你发现了什么?
时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)。
根据计算,你发现了什么?
相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(板书)。
(2)教师小结:
同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)。
2、教学例2:
(1)花布的米数和总价表。
数量1234567……。
总价8.216.424.632.841.049.257.4……。
(2)观察图表,发现什么规律?
用式子表示它们的关系:总价/米数=单价(一定)。
3、抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?
(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(3)看书p39,进一步理解正比例的意义。
x/y=k(一定)。
4、看书p40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
四、课堂练习:
1、p41做一做。
2、p43~44练习七第1~5题。
第二课时。
教学内容:p42成反比例的量。
教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.
教学难点:利用反比例的意义,正确判断两个量是否成反比例.
教学过程:
一、复习铺垫。
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?
二、探究新知。
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征--成反比例的量。
2、教学p42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
a、表中有哪两种量?这两种量相关联吗?为什么?
b、水的高度是否随着底面积的变化而变化?怎样变化的?
d、这个积表示什么?写出表示它们之间的数量关系式。
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)。
三、巩固练习。
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节。
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习。
p45~46练习七第6~11题。
第三课时。
教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。
2、使学生能正确判断正、反比例。
3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。
教学难点:正反比例的联系和区别。
教学重点:能判断正、反比例。
教学过程:
一、复习:
判断:下面每组中的两个量成什么关系?
1、单价一定,数量和总价。
2、路程一定,速度和时间。
3、正方形的边长和它的面积。
4、时间一定,工效和工作总量。
二、新知:
1、出示课题:
2、教学补充例题。
出示表1。
路程(千米)5102550100。
时间(时)1251020。
表2。
速度(千米/时)1005020105。
时间(时)1251020。
分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。
总结路程、速度、时间三个量中每两个量之间的比例关系。
速度×时间=路程=速度=时间。
判断:
(1)速度一定,路程和时间成什么比例?
(2)路程一定,速度和时间成什么比例?
(3)时间一定,路程和速度成什么比例?
3、比较正比例、反比例的关系。
正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。
不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。
三、巩固练习。
1、做一做。
判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么?
单价一定,数量和总价-。
总价一定,数量和单价-。
数量一定,总价和单价-。
2.判断下面一些相关联的量成什么比例?为什么?
(1)除数一定,和成比例。
被除数-定,和成比例。
(2)前项一定,和成比例。
(3)后项一定,和成比例。
(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。
正比例反比例教案篇五
p50第3——8题,正反比例关系练习。
进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。
一、揭示课题。
二、基本知识练习。
2、练:950第4题。
先说出数量关系式,再判断成什么比例?
三、综合练习。
1、练习:p50第5题。
想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?
口答并说说怎样想的。
2、做练习十二第6题、第7题。
3、做第8题。
提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?
四、延伸练习。
下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?
1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。
2、某工厂3小时织布1800米,照这样计算,8小时织布x米。
五、课堂。
通过这节课的练习,你进一步认识和掌握了哪些知识?
六、作业。
《练习与测试》p25第五、六题。
正比例反比例教案篇六
p47~48,例7、正、反比例的比较。
进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。
一、复习
判断下面两种理成不成比例,成什么比例,为什么?
(1)单价一定,数量和总价。
(2)路程一定,速度和时间。
(3)正方形的边长和它的面积。
(4)工作时间一定,工作效率和工作总量。
二、新授。
1、揭示课题
2、学习例7
(1)认识:“千米/时”的读法意义。
(2)出示书中的问题要求学生逐一回答。
(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?
(4)填空:用下面的形式分别表示两个表的内容。
当()一定时,()和()成()比例关系。
还有什么样的依存关系?
(5)教师作评讲并。
(6)用图表示例7中的两种量的关系。
指导学生描点、连线
在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?
用同样的方法观察右表。
3、正、反比例的特点(异同点)
由学生比、说
三、巩固练习
1、练一练第1、2题
2、p49第1题。
四、课堂:
正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?
五、作业
p49第2题(1)(4)(5)(6)(9)
六、课后作业
1、p49第2题(2)(3)(7)(8)(10)
2、收集生活中正、反比例关系的量并分析。
正比例反比例教案篇七
在数学中,比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。两种相关联的量,一种量变化,另一种量也随着变化。表示两个比相等的式子叫做比例。
比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。
比例有四个项,分别是两个内项和两个外项。
正比例反比例教案篇八
1.一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。
(1)学生独立思考。
(2)同桌交流。
3)全班交流。
a自然语言b列表c画图d关系式。
2.举出生活中正、反比例的例子。
3.完成课本84页巩固与应用。
独立完成,班内交流。
正比例反比例教案篇九
教学内容:
教科书第64页例3,完成随后的练一练和练习十三第6~8两题。
教学目标:
1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2、使学生在认识成反比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重难点:理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
教学准备:实物投影。
教学过程:
一、谈话导入。
前面我们已经初步学习了如何判断两种相关联的量是否成正比例,并且知道正比例的图象是一条直线。今天我们将共同学习两种相关联的量可能出现的另一种比例关系——反比例。
板书课题:认识成反比例的量。
二、教学例3。
1、出示例3的表格,让学生说一说表中列出了哪两种量。
2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:单价扩大,数量反而缩小;单价缩小,数量反而扩大。
小结:数量和单价是两种相关联的量,单价变化,数量也随着变化。
3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的数量和单价的乘积。
根据学生的回答,教师板书关系式:数量×单价=总价(一定)。
5、教师对两种量之间的关系作具体说明:数量。
和单价是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定,也就是总价一定时,单价和数量成反比例,单价和数量是成反比例的量。
三、教学“试一试”
1、要求学生根据表中的已知条件先把表格填写完整。
2、根据表中的数据,依次讨论表格下面的三个问题,并仿照例3作适当的板书。
3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
四、抽象表达正比例的意义。
1、引导学生观察上面的两个例子,说说它们有什么共同点。
2、启发学生思考:如果用字母x和。
根据学生的回答,板书关系式:xy=k(一定)。
五、巩固练习。
1、完成第65页的“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。
2、做练习十三第6~8题。
第6、7题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。让学生完整地说出判断两种量是否成反比例的思考过程。
第8题。
1、让学生根据左边表格中的要求收集数据,并回答问题(1)。
2、让学生根据右边表格中的要求收集数据,并回答问题(2)。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的积一定时,它们才能成反比例。
五、课堂练习:补充习题相关练习。
正比例反比例教案篇十
优点:
3、题目与现实生活联系紧密,让大家感觉学习数学很有用;
4、课堂上学生讨论的时间充足,参与度较高,且时效性较强;
5、课堂调控能力较强,有自己的教学风格;
6、板书明确、清晰,一目了然;
7、设计合理,处理偶发事件的能力较强。
缺点:
1、课堂气氛没有以前活跃;
2、知识量太大,难度较大,很少有不经过思考或稍作思考就能回答出来的问题;
3、小组合作时,没有分好工,导致在计算相对应的每组数的和、差、积、商时,每个同学都在计算,因而用的时间较多,如果四人小组分好工,没人计算一种运算,时间就会节约一半。
4、对学生的鼓励性语言欠缺;
5、板书中的字体不太规范,要加强基本功的训练;
针对听课老师和学生的评价,在以后的教学中,我会发扬优点、克服不足,不断提高自己的教学水平。
正比例反比例教案篇十一
正比例和反比例复习反思复习阶段,似乎少了往日的轻松,时而还夹杂着匆忙的气息,感觉孩子们的表情略显凝重了,或许,要整理与复习整个小学阶段的所有知识点,确实不是一件轻而易举的事。而我,这个阶段不仅是孩子们知识复习中的领路人,更应该是缓解他们内心不安的强大后盾。于是,我尽量会让复习课堂变得轻松一些,变得和谐一些,减少一切不必要的压力。
今天,与孩子们一起围绕课本上的复习进度,整理与复习《正比例与反比例》。
这个知识点大部分是六下的知识,并不是很早的学习内容,所以孩子们应该不会陌生。我想,如何让将旧知与其融合,才是本节课我最需要关注的。
这部分知识,主要复习比的意义和性质,以及正比例和反比例的量。课前,我让孩子们自主进行了整理,让孩子们对正比例和反比例的知识有一个全面地认识,使所学知识结构化、系统化。课上,按照课本上的设计意图,我结合了具体的例子,引导孩子们回忆并整理比的意义、基本性质以及比的应用,再利用填空的形式帮助孩子们进一步明确比与分数、除法的关系,顺利成章地过渡到比的基本性质、分数的基本性质和商不变规律的内在一致性。
对于复习正比例和反比例,重点是理解两者的意义。我先让孩子们回忆判断两种量是否成正比例或反比例的方法。孩子们还是很熟练的,都能按照定义来判断,比值一定成正比例,乘积一定就成反比例,两个量和或差一定时,两个量不成比例。而判断的关键还是在于找到数量之间的关系,当两个量成正比例关系的时候图像呈一条直线,而反比例的两个量的图像呈一条曲线。虽然曲线在课本中未出现过,但当时新知时,我还是让孩子们初步了解了,有了比较,我相信孩子们脑海中的印象是深刻的。此刻复习,孩子们果然记忆犹新,在孩子们判断的过程中,我发现孩子们基本已能熟练判断,对数量关系的理解,也比之前有所进步。
复习课上,专项练习是必备的。除了课本上安排的练习,我还为孩子们补充了一些解决实际问题的练习,让孩子们在实际问题中进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律,以及深刻理解正比例和反比例的意义。
正比例反比例教案篇十二
教学内容:
教科书第63页例2,完成随后的练一练和练习十三第4、5两题。
教学目标:
1、使学生初步理解图像上点所表示的实际意义,即每个点都表示路程和时间的一组相对应的数值。
2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学重难点: 认识成正比例量的变化规律,体会正比例图像的实际应用。
教学准备:实物投影。
教学过程:
一、教学例2。
1、出示例1的表格。
谈话导入:同学们,像例1中表中的数据,有时也可以用图象的形式来表示。出示已标出纵轴、横轴以及相关信息的方格图。
2、师先示范描点(一两个),让学生按照要求描出表示其他各组数据的点。
3、引导学生观察这些点的排布规律,用直线连接。
4、根据图像回答下列问题:
(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,其他点呢?
(2)图中所描的点在一条直线上吗?
5、对刚才的第(3)个小问题进行指导。(师边演示边讲解)。
(1)先在纵轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,与已知图像相交与疑点。
(2)再从交点起作横轴的平行线,与纵轴相交得到一点。
(3)最后依据与纵轴的交点进行估计。
(4)行驶440千米让学生独立完成,指名板演。
二、巩固练习。
1、完成“练一练”。
(1)根据表中数据判断两种量是否成正比例。
(2)用描点法画出表中两种量的正比例图像。
(3)利用图像进行估计,体会正比例图像的意义和作用。
2、练习十三第4、5题。
第4题的第(1)题,学生可以根据图像的特点来说明判断理由,也可以从图像上选取几个点,根据这些点所表示的路程与时间分别求出比值,再作判断。
第4题的第(2)题,要求学生根据图像进行估计,答案有些出入是允许的。
第5题,先让学生独立完成,在通过组织交流帮他们进一步明确方法,加深认识。还可以让学生再提出一些类似的问题,并进行解答。
三、全课小结。
这节课你学会了什么?通过这节课的学习,你还有哪些收获?
四、课堂作业:补充习题相关练习。
课前思考:
这一课时的学习内容是新增的,借助直观的图像来帮助学生认识成正比例的量的变化规律,为以后的学习作适当孕伏。
虽然有配套的教学光盘可以使用,但我想在教学例题2时,教师还是在黑板上边讲边画图像比较适合。在例题2的学习中也就是在画图像的过程中,要结合第一个问题的思考要引导学生把所描出的这些点和原来表中的数据进行对照,以此来理解图像上的点所表示的实际意义;结合第二个问题的思考要让学生看到所描出的这些点刚好在一条直线上,初步认识正比例图像的特点。在画好图像后结合第三个问题的思考让学生加深对图像上的点所表示的实际意义的认识,并初步体会正比例图像的实际应用。教材编写无法展示画图像的动态过程,所以利用板书画图像的过程可以把这些问题穿插其中。
课前思考:
与孙老师有同感,这张图像是如何得到的?要将整个的过程比较完整地展示在学生面前。沈老师新授的处理太快了。
可以先出示图,引导学生理解横轴与纵轴所表示的含义,再引导学生根据例题1表格中第一列数据,找到在图上是哪个位置?你是怎样想的?在学生想通了如何看横轴与纵轴,会找横轴与纵轴的交汇点后再引导学生交流如何找其他几列数据在这个图上的位置。最后将所有的点连接,观察这个图像的特点。
第二层次:根据图像,进行类推判断。
今天没有将例题2的光盘好好研究,明天去看看。如果光盘可以这样操作,就使用光盘,如果光盘不能动态演示这个过程,将采纳孙老师的方法,将图画在黑板上研究。
对巩固练习中出现的类推判断习题,我觉得是让学生根据图像进行大致的观察与推断,不需计算精确数据。
课前思考:
例2的教学重点是帮助学生初步认识正比例的图像,并借助直观的图像加深对成正比例量的变化规律的认识。
我也比较倾向孙老师的方法,在黑板上向学生展示正比例图像的绘制过程。画出正比例图像后,通过指导学生根据图像解决问题3,帮助学生进一步掌握理解图像上任意一点所表示的实际意义,学会利用图像解决实际问题。
课后反思:
接受高老师的建议,新授的处理是太快了,所以接受了各位老师的意见,我利用实物投影,根据学生的回答逐步展示出来。由于学生经历了这一过程,学生很容易概括出正比例图像的特点是成一条直线。
在学生自己动手画图时,发现班级有个别学生画图的顺序不是很正确,所以也就顺势强调了画图的时候要先描点,再连线,并且将学生的画的图利用实物投影展示出来。
做练习十三的第4题时,“小军20分钟大约行了多少千米?”有的学生说是5,有的学生说是6,虽然教材上没有要求学生做出精确的判断,既然学生有了争论。我就让学生向办法通过计算来验证。基本上有两种方法,一种是先求出1分钟行了多少千米,再算20分钟。另一种是列出相应的比例式:根据图上的数据30分钟行8千米,那么对应的20分钟行多少千米呢?这里需要向学生说明的是根据图像找数据的时候一定要找很明显的点,不要去找那些没有标明具体数据的点。这里也涉及到一个问题,接下来求的是“行20千米大约用了几分钟?”两题结合在一起,学生如果用算术方法做的话,有一小部分学生会出错,因为上学期在解决这一类问题:“求1千米需要多少分钟和求1分钟行驶多少千米”的时候,尽管反复强调,仍然有一小部分学生会错。所以我个人认为有必要让学生掌握根据相对应的比例式来解答,也为以后的教学做铺垫。
接下来一个班上课的时候,我在教授完例题的时候就提出了让学生想办法验证自己根据图像找的数据是否正确,总的来说,较上节课相比,上下来感觉很轻松。
课后反思:
和沈老师有同感,本节课的学习内容比较清晰、易懂。在例题2的教学中,主要让学生了解了如何在图中找到各组数据相应的点,以及这些点的排列规律和图像的特点,最后是根据图像来估计。在后面的练习中,如有估计5分钟打了多少个字,打750个字要多少分钟这样的问题,有些学生在看图估计时会出现错误,错误原因是把第一组数据2分钟打100个字当成1分钟打100个字。还有一个错误是遇到问两个量是否成正比例时,学生就不去思考这两个量之间存在怎样的数量关系,直接计算比值,结果就出现用时间比路程或是订报纸份数比钱数。当然这样比,两个数量的比值相同,但学生就没有真正理解这两个数量之间的关系,没有认真思考这两个数量到底存在怎样的关系,它们的比值到底表示什么。在这里如果没有弄明白的话,那么下一课时学习反比例后,问题更大。
课后反思:
例2的教学,我先在黑板上画一个空的数轴图,让学生试着,在图中表示出表数的各组数据来,再让学生说说各点表示的意思,说说这些点看上去有什么规律(在同一条和直线上),在此基础上连点成线。最后让学生通过找对应量,并让学生通过计算进行了验证,计算还用了两种方法,一是算术法,一是解比例法),感受正比例图像直线特点。这一节课的设计是很有价值的,对日后中学数学的学习有很大的帮助。
正比例反比例教案篇十三
接到学期公开课任务的当天晚上就开始着手准备,查找相关资料,做到心中有数,怕自己做的不好,很是紧张。第二天先写好了常规的教学设计,也算是雏形已定。我觉得对我自己来说,教学设计一定要先把握好教学目标的分析,所以我参照要求设定了合适的教学目标。初稿是按照流水帐形式,和平时上课一样,按照复习引入、讲授新课、分析例题、练习巩固、归纳小结、布置作业等程序进行。初稿交给指导老师后,孟主任建议其中的复习引入环节做大的调整,对习题的设置也给出了指导建议,修改后流畅了很多。随后设计了学卷,给董老师把关指导。因为我定位于层次相对高的学生,在习题的数量设置、坡度设置上不合理,难度不适宜。有些题目过于简单,毫无价值;而有些则过难,在课堂上会耽误很多时间,于是想到变式训练,在题目设置的顺序和难度上下工夫。
在第一次试讲后,发现引入部分太拖沓,用了10分钟时间才归纳得出反比例函数的定义和形式,随后的两个针对定义设计的稍难的题目就直接跨过到待定系数法求反比例函数解析式,课程结束得比较匆忙。
在备课组老师的指导下,重新设置了题目的数量,第4题中原来为了复习设置了五个小问题,在函数概念上纠缠过多,反而引起学生理解困难;把引入部分第5题的练习由原来的四个减少到两个,剩下了的两个留在第7题作为练习。由于函数解析式的形式通过归纳与对比形成新知识并不需要太多雷同的题目,这样引入时间大大减少,而列关系式的题目难度并不大,把第一次的逐题讲解变成了答案展示,节约了近10分钟时间。其实开始是对学生的水平不太相信,怕题目过难,学生不能迅速完成,时间证明,引入部分的题目难度不大,学生能迅速完成,而我还是按照自己的想法进行第一次的试讲,所以时间显得很紧张,没有顾及学生的实际水平。
第3题的最后一问“反比例函数kxy=还可以表示成什么的形式”,这个问题显得很宽泛,学生也无从下手,不知从哪个角度入手,也不明白老师想问的问题到底是什么,这是一个无效的设计。后来结合要求,丽涛说新课只要求学生能辨认出伪装后的反比例函数或者说经过等价变形的反比例函数的形式,因此问题改成了以选择题的形式出现,这样学生也有了一定的目标范围,也不会因为问题设置不合理而耽误过多时间。当他能正确选择出答案时,也说明他知道了这几个答案是由标准形式经历了怎么样的等价变形而得到的。
第6题目更改设计后是使得教学过程流畅了很多且节约了时间,但是在实际上课过程中,对这个问题忽略了,认为学生能直接选择出答案就是他们已经牢记了这些形式。此处应该在学生选择了正确答案后,教师最好再花2分钟的时间讲解下变形过程,同时也回顾了分式的乘法、负指数的意义等知识,加深知识点之间的联系;或者让学生口头回答他选择的理由。总之在这里应该停顿回顾下这个重要的知识点,以加深对新知识的印象,及时总结归纳反比例函数形式的特点,要能突破这个学生理解的难点,要不会对第8题的影响就比较大。
第5题在讲解过程中花了过多的时间,说明前面kxy=及其变形讲解不透彻。k值(反比例系数)不能顺利求出,表示y是的x反比例函数疑惑颇多,讲解费时,在成反比例和反比例函数之间有混淆。经过对比板书,学生明白了题目要求的是y与x成反比例,为了巩固对反比例概念的理解,增加了练习6。
课堂归纳小结第一次设计的时候,就是问一句“本节课你有什么收获?”,对于这些宽泛的问题,学生一般都不知怎么回答,所以要紧扣定义,引导学生。这样,学生知道了本节课的内容,也明白了空白处就是本节课的重点要掌握的部分了。
在讲课的过程中,与学生的互动较少,没有充分调动起学生的积极性,自己也有点紧张,学生也有点紧张。在数次不停修改教学设计的过程中,自己的认识也在不断提高,题目设计水平也有了提高,指导老师,还有我的同事都给了我不少的建议和帮助,才使我的设计更臻完善,在此也感谢他们!