数学集合教案(专业16篇)
在制定教案的过程中,教师需要充分考虑学生的特点和需求。编写教案前,教师应该充分了解教学内容和学生的学习特点。下面是一份精选的教案范文,供大家参考学习。
数学集合教案篇一
师:小明一家来到装饰城,小明逛了一圈,看到了很多漂亮的地砖,小明经过认真的挑选,再三权衡,最后剩下两种地砖(课件出示两种地砖)。
师:现在小明无法取舍,同学们,你们能帮小明拿拿主意吗?
生讨论后汇报出:先分别算算用两种地砖铺满整个地面,至少需要多少块这样的地砖,需要多少钱?选择便宜的一种。
(二)解决问题。
师:现在我们一起来帮小明选便宜的地砖铺卧室。
生分组讨论。
1.所需40厘米40厘米地砖的数量及所需钱数。
2.所需30厘米30厘米地砖的数量及所需钱数。
3.比较选哪种便宜。
生汇报交流。
方法??
43=12(平方米)=120000(平方厘米)。
4040=1600(平方厘米)。
1200001600=75(块)。
875=600(元)。
方法二。
4040=1600(平方厘米)=0.16(平方米)。
10.16=6.25块。
43=12(平方米)。
6.2512=75(块)。
875=600(元)。
方法三。
解:设至少需要边长为40厘米的地砖x块。
4040x=4310000。
x=75。
875=600(元)。
(用同样的方法求出至少需要边长为30厘米的地砖的数量以及钱数)。
问题三:用哪一种地砖铺地面便宜些?便宜多少元?
生会很快答出用边长为30厘米的地砖便宜,便宜了70元。
三、巩固新知,练习反馈。
(生独立完成后汇报)。
(生汇报后,课件验证)。
(独立完成后,同桌交流,再汇报)。
数学集合教案篇二
一考纲要求。
1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
2.搜集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
二.高考趋势。
函数知识应用十分广泛,利用函数知识解应用问题是数学应用题的主要类型之一,也是高考考查的重点内容。
三.要点回顾。
解应用题,首先应通过审题,分析原型结构,深刻认识问题的实际背景,确定主要矛盾,提出必要的假设,将应用问题转化为数学问题求解;然后,经过检验,求出应用问题的解。其解题步骤如下:1.审题2.建模(列数学关系式)3.合理求解纯数学问题。4.解释并回答实际问题。
四.基础训练。
2.根据市场调查,某商品在最近10天内的价格与时间满足关系销售量与时间满足关系则这种商品的日销售额的值为.
3.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向公司交元的管理费,预计当每件产品的售价为元(9时,一年的销售量为万件。则分公司一年的利润l(元)与每件产品的售价的函数关系式为.
4.有一批材料可以建成200的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形场地面积为(围墙厚度不计)。
5.某建筑商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按右表折扣分别累计计算。
可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%某人在此商场购物总金额为元,可以获得的折扣金额为元,则关于的解析式为;若元,则此人购物总金额为元。
五.例题精讲。
例2.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出当每辆车的月租金每增加50元时,未租出车将增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,两者都由租赁公司支付。
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,公司的月收益?月收益是多少?
例3.某城市现有人口100万人,如果每年自然增长率为1.2﹪,试解答下面问题。
(1)写出城市人口总数(万人)与年份(年)的函数关系式。
(2)计算10年以后该城市人口总数(精确到0.1万人)。
(3)计算大约多少年以后该城市人口将达到120万人(精确到1年)。
六.巩固练习:.
数学集合教案篇三
1.运用所学的圆、比例等知识解决问题。
2.了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
3.通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力。
4.经历解决问题的基本过程,了解数学与生活的密切关系。
数学集合教案篇四
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.。
肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.。
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计。
学生或独立研究,或合作研究,教师巡视指导.。
经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…。
思路二:…。
……。
教师组织评价,确定最优方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.。
当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.。
当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
综合两种情况,我们得出如下结论:
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式.。
这样上边的结论可以表述如下:
启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?
师生共同讨论,评价不同思路,达成共识:
(1)当时,方程可化为。
这是表示斜率为、在轴上的截距为的直线.。
(2)当时,由于、不同时为0,必有,方程可化为。
这表示一条与轴垂直的直线.。
因此,得到结论:
在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.。
为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.。
动画演示】。
演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.。
(三)练习巩固、总结提高、板书和作业等环节的设计。
略
数学集合教案篇五
2、掌握标准方程中的几何意义。
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
一、预习检查。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、
二、问题探究。
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例3(理)求离心率为,且过点的双曲线标准方程、
三、思维训练。
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
四、知识巩固。
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、
数学集合教案篇六
知识与技能:掌握多位数减法连续退位的算理,能熟练使用此算理正确计算被减数中间有0或末尾两位都是0的多位数减法。
过程与方法:通过小组讨论发现被减数中间位置有0的多位数减法运算的算理的过程,感受由猜想到验证的数学探究方法。
情感态度价值观:收获通过合作与探究自主解决数学问题的成就感,增强数学学习的信心。
二、教学重难点。
重点:被减数中间有0或末尾两位都是0的多位数减法的算理。
难点:被减数中间有0或末尾两位都是0的多位数减法的算理、多位数减法的验证。
三、教学过程。
1、创设情境,复习导入。
同学们昨天晚上都看浙江卫视的《跑男》了么?大家最喜欢哪位明星呢?
提问1:哪位同学能站起来说一下221是如何得出的么?
提问2:哪位同学能说一下225又是怎么算的呢?
2、提出原理。
这一节课,我们继续来学习一下几种特别的多位数减法(板书多位数减法)。
老师还看到,喜欢陈赫的人有403人,大家能用同样的办法告诉老师喜欢陈赫的人比喜欢李晨的人多多少呢?同学们前后四人结为一组一起来讨论一下,3分钟过后老师请小组代表上台发言。
师生互动:引导学生讨论得出十位是0没法退1当10时,再继续向前一位退1当10,此时十位变成了10,拿去1给个位,个位变成了13,13减8余5,十位剩9,减5余4,百位退1后剩3,减1余2,所以403-158=245。
师生互动:引导学生得出,在被减数中间有0时,个位不够减应该连续向前退1进行两次。
追问2:同学们能否用学习过的方法来检验一下我们的结果是否正确呢?
预设一:158+245=403。
3、讲解原理。
提问:同学们思考一下,在什么情况下才需要连续退位呢?
师生互动:引导学生得出在被减数中间有0时需要连续退位。
4、应用原理。
追问:哪位同学能说一下他发现了什么呢?
师生互动:引导学生得出被减数末尾两位都为0时,也是需要连续退位的。
5、小结作业。
提问:同学们通过本节课都学到了哪些有用的知识呢?
[教材简解]。
1、知识目标:使学生掌握100以内数的顺序;学会比较100以内两个数的大小的方法。
2、能力目标:培养学生比较能力。
3、创新目标:培养学生探索规律的能力。
4、德育目标:使学生感悟到数学知识之间内在联系的逻辑之美。
[重点、难点]。
教学重点:
组织学生讲自己是怎样比、怎样想的,把生活经验上升为数学认识。教学难点:
掌握比较大小的方法。
[设计理念]。
本节课依据《数学课程标准》中倡导的自主探索、合作交流,实践创新教学学习方式,强调从实际情境和学生已有的知识出发,为学生提供充分从事数学活动和交流的机会,促进他们在自主探索的过程中真正理解和掌握基本的知识技能,同时获得了广泛的数学活动经验。
[设计思路]。
在教学设计上以为学生提供现实而有趣的数学学习内容和学生自主学习的学习方式为理念,在教学中注重学生观察比较和抽象概括能力的培养,抓住“位数”和“数位”的排列顺序进行比较数的大小。教学中,我主要采用谈话导入法和和引导发现法,组织学生进行讨论学习、小组合作学习和自主探究。在整个教学过程中有目的、有意识地安排了看一看、说一说、比一比等活动,观察、思考、讨论、练习相结合,发挥多媒体教学的优势,辅助验证,帮助学生获取有关数比较的方法,真正做到让学生参与获取知识的全过程。
[教学过程]。
一、谈话导入,揭示课题。
1、谈话:昨天,老师让大家回去了解家人的年龄,谁来汇报一下?(指名说)。
2、刚才__×小朋友说他爸爸是36岁,爷爷是63岁,那么你们知道谁的年龄1大吗?
3、要比较年龄的大小也就是比较数的大小,今天我们就来学习数的大小。(板书课题:比较数的大小)。
二、合作学习,探索新知。
层次一:比较数的大小,先比位数,位数多的数大,位数少的数小。
(1)将数按数位分类。
多媒体展示:学生口答,教师课件展示。
(2)比大小。
多媒体显示:
一位数和两位数比大小,学生口答,教师多媒体展示。
多媒体显示:
(3)练习并小结:
课件出示题目,指明学生口答,
你发现了什么?
小结:比较数的大小,先比位数,位数多的数大,位数少的数小。
层次二:例题,两位数和两位数比较,先看十位上的数,十位上大的那个数就大。
(1)、出示多媒体主题图。
教师讲述故事:
2、小松鼠、大白兔到底谁捡得多呢?为什么?请你把想法告诉你同桌的小朋友。
3、全班交流,鼓励学生说出自己的想法,有表扬说得对的小朋友。
5、指名板书后读一读。
6、小结:两位数和两位数比较,先看十位上的数,十位上大的那个数就大。层次三:两位数和两位数比较大小,当十位相同时,就比个位,个位大的那个数就大。
1、多媒体显示63○68:
小结:两位数和两位数比较大小,当十位相同时,就比个位,个位大的那个数就3大。
2、试一试(出示计数器)。
(1)看着计数器把数写出来。(53、56;100、98)。
(2)这两组数我们能比较它们的大小吗?(学生在书上完成)。
(3)说说你是怎样想的?小结学生比较两个数大小的方法。
三、组织练习,深化提高。
1、“想想做做”第2、3题。
2、“想想做做”第4题。
(2)小组中每人写出1个十位上是6的两位数,比比哪个,哪个最小?
3、“想想做做”第5题。
(1)看图,兔妈妈给小兔照了3张照片:
猜猜各是什么季节?各个季节的温度也不同,看了计温的温度计,老师写出了3个表示气温的数:2度、20度、35度。
(2)你能用符号表示3个数的大小关系吗?
4、“想想做做”第6题:独立完成,同桌检查。
5、写数游戏:学生随意写一个数。
(1)以小组为单位从小到大排一排。
(2)比30大比60小的数站起来排队。
(3)个位是7的数站起来排队。
(4)大于60的数站起来排队。
四、全课总结。
今天的数学课你学得开心吗?你有什么收获?
数学集合教案篇七
知识与技能:通过综合练习,使学生进一步掌握万以内数的认识的各个知识点,对读、写、组成、比较等各知识点有个系统的回忆和练习。
过程与方法:在教学过程中,培养学生的数感、估计能力和分析判断能力。
情感与态度:让学生感受到数学知识与实际生活的紧密联系,从而激发学习数学的兴趣。
对万以内数的读、写、比较等知识进行回忆与综合练习。
课件、7张洗衣机价格×3套、幸运52四张题目卡片
学具准备:每生准备7张小卡片
一、预习:
二、系统复习
1、万以内数的写法:
2、互学“万以内数的组成:
3、万以内数的读法
4、万以内数的大小比较:
5、近似数:
三、展示
1、填一填
2、按规律数数
四、全课总结,拓展提高
数学集合教案篇八
1、进一步巩固千以内的数的读、写,提高对千以内的数的理解能力。
2、在实际情境中,能熟练的利用千以内数解决相关的实际问题。
3、体会身边的数学与实际的联系,提高学生学习数学的兴趣。
进一步理解千以内的数的组成
提高对千以内数的理解能力
多媒体
一、板书课题
二、学习目标
三、自学指导
四、练习
数学集合教案篇九
在本次活动中,学生将综合应用图形、乘除法、方程等知识解决实际问题,使学生在探索实践中体会数学的价值与应用,是培养学生初步数学意识的好教材。能培养学生多动脑、勤思考的习惯,增强学生学数学、爱数学、爱数学的意识。
教学目标:
1.通过具体情境和实际操作,培养学生综合应用图形面积、乘除法、方程等知识解决实际问题,进一步了解数学在生活中的应用。
2.培养学生观察、思考以及与同伴交流的良好习惯。
3.在实践活动中对学生进行美育教育,培养学生的审美意识。
教学重点:
学生能够综合应用图形面积、乘除法、方程等知识解决实际问题。
教学难点:
学生解决实际问题能力的培养。
教具准备:
课件。
教学过程:
数学集合教案篇十
这学期,航航活泼开朗的性格赢得了许多老师、小朋友的喜欢,特别在画画、舞蹈方面表现出来的才能更是让大家忍不住驻足欣赏,如果航航在上课时能更投入,进步一定会越来越大。
爱模仿、好奇心强的你总喜欢围在老师的身边滔滔不绝地讲述你知道的故事,你能积极参与体育活动,喜欢为集体做好事,还有良好的用餐习惯。升大班了,希望你午睡时能自觉入睡,这样才会更聪明更能干。
开学初的宝宝不爱参与集体游戏、不愿举手发言,让老师很着急。现在的宝宝不仅能积极参与集体活动,还能大胆地在集体面前讲故事,进步可真不小。继续努力吧!相信在新学期中,你的进步会更大。
佳忆年龄虽小,但很好强,各方面能严格要求自己,你看到别人的不良行为能加以制止,还常常主动为大家服务,你上课时专注的神情、跳舞时优美的舞姿常常得到老师的称赞,升班了,希望佳忆继续努力,取得更大进步。
活泼开朗的阳阳,有很强的记忆力和口语表达能力,对科学探索、音乐、舞蹈等活动很感兴趣,你还有一颗善良的心,能同情、关心身边的小朋友,升入大班后,老师希望你在活动中能严格要求自己,争取有更突出的表现。
文静可爱的丁丁,上课能专心听讲,看到你神气的坐姿,做事时认真的模样,回答问题时自信的眼神,老师越来越喜欢你了,升入大班后,如果能改掉用餐慢的不良习惯,你会更出色的。
数学集合教案篇十一
1、闹闹寻宝。
(1)课件演示。
(2)学生交流多种寻宝路径。
2、导入新课。
(二)探究新知。
1、学习例3.
(1)出示指南针。
(2)全体到操场。
(3)提问:谁能说出校园的东、南、西、北四个方向。
(4)教师指着校园厕所,问:厕所在什么方向?
(5)用指南针验证。
(6)师生返回教室,回顾刚才学习过程。
师根据回顾的内容板书:
(7)观察东北、西南这两个方向在什么位置。
(8)由此推出西北角、东南角的位置。
师板书:西北北东北。
西东。
西南南东南。
(9)说一说校园西北和东南方向分别有什么建筑物。
2、巩固新知。
(1)集体拿出小动物卡片。
(2)游戏:给小动物找家。
(3)按要求把熊猫馆、爬行馆、水族馆、飞禽馆分别安置在东北、东南、西北、西南四个方向。
(4)同桌互查。
(三)课堂作业新设计。
1、请学生指出教室的东北、东南、西北、西南四个方向。
2、看一看自己座位的东北、东南、西北、西南四个方向的同学分别是谁。
3、教材第7页的“做一做”。
(1)说明题目要求。
(2)集体参与,分组学习。
把自己家的位置在黑板上标出来。
4、教材第9页练习二的第1题。
观察情境图,说一说,十字路口四周的店铺分别在什么位置上。
(四)思维训练。
教材第9页练习二的第3题。
(1)教师读题,学生理解题意。
(2)按要求独立完成。
(3)订正。
1.简单的数据分析。
一、教学内容。
例1:横向条形统计图。
简单的数据分析。
例2:起始格与其他格代表的单位量不一致的条形统计图。
例1:平均数的含义和求法。
求平均数。
例2:用平均数来比较两组数据的总体情况。
13——14简单的数据分析。
教学目标:
2、使学生初步学会简单的数据分析,进一步体会统计在现实生活中的作用理解数学与生活的紧密联系。
3、生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。
教学重点:会看两种统计图。
教学难点:起始格与其他格表示不同单位量的条形统计图。
教学时间:2课时。
第1课时第38页例1。
教学目标:
1、向学生介绍横向条形统计图,使学生会看这种统计图,根据统计表中的数据完成统计图。
2、使学生初步学会简单的数据分析,进一步体会统计在现实生活中的作用理解数学与生活的紧密联系。
教学过程:
一、创设情境。
(出示挂图、引导学生观察并理解图意)。
如果超市的王经理,现在很想知道超市上周四种品牌矿泉水的销售情况,还想知道下周该进些什么品牌的矿泉水。你有什么好办法?(统计)。
二、引导学生自主探索、合作交流。
1、出示空白的纵向条形统计图,让学生观察。
说说这个统计图与以前见过的统计图有什么不同?
2、它的横轴表示什么?纵轴表示什么?
3、根据统计表,你能完成下面这份统计图吗?
3、学生讨论并说明如何完成统计图。
4、提问:如果用横轴代表销售量,用纵轴代表不同的品牌,该怎样设计这样的统计图?
5、小组合作学习。
6、小组汇报。
7、出示规范的横向条形统计图让学生完成。
你能跟同学说说完成这样的条形统计图时要注意什么?
三、引导学生进行小结。
在前几个学期,我们已经学会了收集数据和整理数据的方法,会用统计表和条形统计图来表示统计的结果。我们的生活离不开统计、、、、、、让学生理解、体验统计的1、展示数据2、科学预测、决策作用。
四、巩固练。
课本40页第一、第四题。
五、全课小结。
今天我们一起学习了什么?你有什么收获?
第2课时例2。
教学目标:
2、使学生初步学会简单的数据分析,进一步体会统计在现实生活中的作用理解数学与生活的紧密联系。
教学过程:
一、创设情境1、我们学校的校医非常关心我们同学的身体健康,经常要了解我们同学的体重,身高等,(出示班级座位图)。
2、提问:你打算怎样完成这份统计图?
3、出示几个空白的条形统计图,让学生根据统计表尝试完成条形统计图。
4、如果用条形统计图表示这个小组学生的身高,每格表示多少个单位比较合适?
5、出示教材上的统计图,让学生观察,讨论。
你能说说破这个统计图跟我们以前学过的统计图有什么不同吗?
用折线表示的起始格代表多少个单位?
其他格代表多少个单位?
这样画有什么好处?
6、小组合作学习,学生汇报。
在统计图的纵轴上,起始格和其他格表示的单位量是不同的(第一个图中起始格表示137厘米,其他每格表示1厘米。)。
7、让学生按照例子把其他两个同学的条形补充完整。
8、学生讨论:什么情形下应该使用这样的统计图?这种统计图的优点是什么?
9、观察体重统计图,看看这个图中的起始格表示多少个单位?其他每格表示多少个单位?
9、这个统计图跟我们刚才学习的学生身高统计图有什么不同?
10、独立完成书上的统计图。
小组进行学习小结。
这种统计图一般在以下情形中加以使用:各样本的统计数据的绝对值都比较大(如本例中学生的身高都在138厘米以上,体重都在32千克以上),但不同样本统计数据之间的差异值又相对比较小(如本例中身高和体重的最小差异分别是1厘米和1千克)。当出现这种情形时,会出现一种矛盾:如果每格代表的单位量较小(如第一个统计图中每格表示1厘米或2厘米),统计图中的条形就会很长,如果每格代表的单位量较大(如第二个统计图中每格表示10千克),又很难在统计图中看出不同样本之间的差异。所以,为了比较直观地反映这种差异性,采取用起始格表示较大单位量,而其他格表示较小单位量的方式,就避免了上述矛盾。在这种统计图中的纵轴上,起始格是用折线表示的,以和其他的格有所区别。
10、通过完成这一份统计图。你得到了哪些信息?进一步体会统计的作用。
11、你想对这些同学说些什么?
出示“中国10岁儿童身高、体重的正常值”,引导学生把学生的身高、体重与正常值进行对比,找出哪些学生的身高在正常值以下,哪些学生的体重超出了正常值,并提出合理化建议。
(实践作业)让学生从报纸、书籍上找到更多形式的统计图表,并找出相应的信息,可以培养学生从各种渠道收集信息的能力。
一、教学目标:
1、让学生体验计算方法的多样化。
2、会运用两位数乘两位数的笔算。
二、教学过程:
1、创设学习情境,提出相应的问题。
2、让学生独立思考,尝试自己解决问题。
3、组织学生对所提问题小组讨论。
4、交流结果,小组一:12+12+......+12=288(24个12相加)。
小组二:12x4x6=288。
小组三:12x3x8=288。
小组四:12x20+12x4=288。
小组五:用竖式计算。
6、总结出方法。
7、研究笔算方法。
8、巩固法则。
9、总结所学内容,看看学生是否掌握了本节课知识点。
三、教学结束:
布置学生课后编5道两位数乘两位数的计算题。
数学集合教案篇十二
重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。
【学情分析】。
学生从一开始学习数学,其实就已经在运用集合的思想方法了。如学习数数时,把2个三角形用一条封闭的曲线圈起来。而以后学习的平面图形之间的关系都要用到集合的思想。集合是比较系统、抽象的数学思想方法,针对三年级学生的认识水平,应让学生通过生活中容易理解的题材去初步体会集合思想,为后续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
【教学目标】。
1.通过观察、猜测、操作、交流等活动,让学生在自主探究活动中感知集合图形的过程,体会集合图的优点,能用集合图分析生活中简单的有重复部分的问题。
2.结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重复部分的问题。
【教学重难点】。
重点:理解集合图的各部分意义,能用集合图分析生活中简单的有重复部分的问题。
难点:借助直观图解决集合问题。
【教学准备】。
课件。
【教学流程】。
【情境导入】。
师:在生活中这种现象很多,我们经常会遇到,今天我们就一起走进数学广角,来研究一下这有趣的重复现象。(板书课题)。
【探究新知】。
1.巧妙设疑,直观感悟,初步感知重复现象。
(1)调查本班学生参加数学小组、作文小组的情况。
(2)游戏:参加数学小组、作文小组的学生分别站在两个呼啦圈里。
问题:当有同学既参加数学小组,又参加作文小组时怎么站?
引出问题,学生想办法解决。
(3)说说呼啦圈里各部分学生所表示的意思。
2.自主绘图,加深理解。
课件出示:
三(1)班参加数学、作文课外小组的学生情况表。
数学。
小明丁旭小小小强小兵小东张伟赵军。
数学集合教案篇十三
《认识时、分》是苏教版二年级上册第九单元的教学内容。一年级的学生在上学期已经初步认识了钟面,能认读整时,对时间也有了一定的感性认识。在此基础上,要求学生进一步认识钟面,认识时间单位时、分等。这节课是认识时、分的第一课时,这节课是认识时、分的第一课时,要掌握的知识很多,而时间单位具有抽象性,时间进率具有复杂性,低年级学生掌握这些知识还是有一定的难度。因此,教材注意通过直观,帮助学生获得感性认识,并注意联系学生的生活实际,便于学生接受。
数学集合教案篇十四
教学目标:
1、通过观察和操作等活动,感受并能用自己的语言描述长方形、正方形的特征,能判断一个图形或物体的某一个面是不是长方形或正方形。
2、通过观察、测量等活动,在获得直观经验的同时发展空间观念。
教学重难点:
重点:使学生掌握正方形和长方形的特征。
难点:正方形和长方形特征的归纳总结。
教学准备:
长方形纸片,正方形纸片,直尺1把,三角尺1块,钉子板,橡皮筋。
教学流程。
流程一、联系生活,引入课题:
2、(课件逐个点击这些物体的面)师小结:教室里视力表、国旗、黑板的面、粉笔盒的侧面、讲台的侧面、课桌面、电灯开关的面都是长方形的。广播喇叭的面是正方形的。其实,何止是教室里有长方形和正方形,生活中长方形和正方形无处不在。那么它们都有些什么特点呢?今天这节课我们就进一步来认识长方形和正方形,(ppt板书课题))研究它们的特征。
(ppt出示课题:认识长方形和正方形)。
第二段:在游戏中初步感知长方形正方形的特征。
流程二、在游戏中初步感知长方形、正方形特征。
1、师:(由现场老师准备一个不透明纸盒,里面装有一些硬纸板做的长方形、正方形以及其他平面图形)老师为每一组同学都准备了一个纸盒子,里面放有一些长方形、正方形以及其他平面图形。你不用眼睛看,能从中摸出一个长方形吗?每小组的同学轮流试一试。(暂停)。
2、师(出示一个三角形):你们为什么不摸出这个图形?(暂停)。
3、师(出示一个平行四边形):你们为什么不摸出这个图形?(暂停)。
4、师(出示一个梯形):你们为什么不摸出这个图形?(暂停)。
5、师(出示一个正方形):这个图形有四条边,四个叫都是直角,你们为什么不摸出呢?(暂停)。
6、师:(出示一个长方形)那你们摸出的一定是这个图形了,对吗?
6、师:通过刚才的游戏活动,你们觉得长方形和正方形各有哪些特征呢?全班交流交流吧。(暂停)。
第三段:在操作中建构长方形正方形的特征。
流程三、在操作中建构长方形和正方形的特征:
1.师布置操作要求:同学们已经初步发现了长方形和正方形特征,但这些只能算作初步猜想,还需进一步验证。请同学们拿几张长方形和正方形的纸,折一折,量一量,比一比,看看长方形和正方形的边和角有什么特点。(ppt出示:下图)。
2、师提问:现在我们来交流一下,你发现长方形的边有什么特点?你是通过怎样的操作发现的?(暂停)。
3、师归纳长方形边的特征:(课件演示:长方形对折)我们可以将长方形对折,使它的两组对边分别重合,通过比较,发现长方形两组对边分别相等;也可以用量一量的方法,也能发现长方形两组对边的长短是相等的,但是相邻的两条边长度不相等。
4、师提问:再来看看长方形的4个角?这几个角都是什么样的角呢?(暂停)。
5、师归纳长方形角的特点:通过同学们的观察,我们发现长方形有四个角,用三角板上的直角分别去比一比,发现这四个角都是直角。(ppt图片演示)。
7、师归纳正方形的特征:正方形也有四条边,每条边都相等;也有四个角,都是直角。
第四段:长方形和正方形的联系。
流程四、长方形和正方形的联系。
1、通过学习,我们发现了长方体、正方体边的特征和角的特征,你们能再用自己的话来说一说这些特征吗?与你的同桌相互交流交流。(暂停)。
2、师归纳:我们一起来看课件的演示:
3、你们说的和屏幕上显示的一样吗?想一想,长方形和正方形有什么相同的地方?
4、师小结:长方形和正方形都有四条边和四个角,每个角都是直角,而且对边都相等。长方形具有的特征,正方形也都具备,所以,我们说正方形是特殊的长方形。
5、师:为了今后进一步研究长方形和正方形,我们通常把………。
第五段:教学想想做做1、2、3、5、6。
流程五、教学“想想做做”1。
(注:钉子板改为点子图,由现场老师上课之前给每位同学准备好)。
师:你会在点子图上画一个长方形和一个正方形吗?(暂停)。
2、师:你画的图形有什么特点?能向大家介绍一下吗?(暂停)。
流程六:教学“想想做做”2。
1、师:大家刚才已经能利用点子图来画长方形和正方形了,下面我们再来进行一个有趣的活动。请你和你的同桌合作,一起用两幅同样的三角板分别拼一个正方形和长方形。在拼之前,请同学们先想想长方形和正方形各有什么特征,然后再拼。(暂停)。
2、师:同学们已经拼出来的吧,老师也来拼一次,看看和你们拼的是不是一样。(互动工具软件演示拼的过程)(右上图)。
3、师提问:在拼的过程中,你们有没有发现我们都是把三角尺中的哪一条边拼在了中间?为什么?自己静静地想一想。(暂停)。
流程七:教学“想想做做”3:
1、师:接下来我们做一个折纸活动。你会把手中的长方形纸变成正方形吗?(暂停)。
(课件出示:想想做做3)你是不是也和老师一样折的?
2、想一想,为什么我们这样子折了以后得到的就肯定是正方形了呢?(暂停)。
3、师小结:将长方形的宽边与长边重合,剪去长比宽多出的长度,那么长边就和宽边一样长了,这就变成了一个正方形。
流程八、教学想想做做5:
1、师:刚才我们折出的是怎样的长方形和正方形?你怎样向别人介绍这个长方形或正方形的大小呢?(暂停)对了,只要告诉别人长方形的长和宽分别是多少,正方形的边长是多少别人就明白了。现在我们一起动手来量一量。做书上想想做做5.(课件出示)(暂停)。
2、看看你填的结果是否正确,和电脑老师对一对。(暂停)。
流程九:教学“想想做做”6:
师:我们的数学书是什么形状?(暂停)你知道它的长和宽是多少?我们先来估计一下大约是多少,再来量一量,看看你估计得准不准。(暂停)。
第六段:全课总结及拓展。
流程十、课堂总结。
1、师:今天这节课我们进一步认识、研究了长方形和正方形,长方形和正方形各有哪些特征?你们是用什么方法发现这些特征的?(暂停)同学们,只要你乐于探索,还可以发现长方形和正方形里面更多的奥秘。瞧,老师这里就有许多长方形和正方形拼成的图案,非常的有趣。(ppt展示:)。
2、如果你们有兴趣,回家自己也可以用长方形和正方形创作更有趣的图画。
流程十一、拓展延伸:想想做做4(选做)。
1、师:我们来讨论想想做做第4题,你们先自己独立解决,然后大家来交流。
数学集合教案篇十五
(1)两个质数的和是39,这两个质数的积是()。
分析本题考查的是质数的意义及数的奇偶性等知识。
两个数的和是39,说明这两个数一个数是奇数,一个数是偶数,因为它们都是质数,所以其中的偶数只能是2,则奇数是39-2=37,37×2=74。
解答74。
(2)120的因数有()个。
分析求一个较小数的因数的个数一般用列举法,但求较大数的因数的个数时,一般用分解质因数法,即先把120分解质因数:120=2×2×2×3×5,然后借助每个因数的个数来计算。因数2的个数是3个,因数3的个数是1个,因数5的个数也是1个,120的因数的个数为(3+1)×(1+1)×(1+1)=16(个)。
解答16。
数学集合教案篇十六
概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。因此,要想学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。
二、注意弄清集合元素的性质,学会运用元素分析法审视集合的有关问题。
众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。集合中的元素具有“三性”:
(1)、确定性:集合中的元素应该是确定的,不能模棱两可。
(2)、互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。
(3)、无序性:集合中的元素是无次序关系的。
集合的关系、集合的运算等等都是从元素的角度予以定义的。因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。
三、体会集合问题中蕴含的数学思想方法,掌握解决集合问题的基本规律。
布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的“光明之路”。集合单元中,含有丰富的数学思想内容,例如数形结合的思想、分类讨论的思想、等价转化的思想、正难则反的思想等等,显得十分活跃。在学习过程中,注意对这些数学思想进行挖掘、提炼和渗透,不仅可以有效地掌握集合的知识,驾驭集合问题的求解,而且对于开发智力、培养能力、优化思维品质,都具有十分重要的意义。
四、重视空集的特殊性,防止由于忽视空集这一特殊情况导致的解题失误。
空集是一个十分重要的特殊集合,它具备“空集虽空,但空有所为”的功能。在解题的过程中,要时刻注意有无可能存在空集的情况,否则极易导致解题失误。这一点,必须引起我们的高度重视。
一、转变观念,化被动学习为主动学习。
初中阶段,特别是初中三年级,老师会通过大量的练习,学生自己也会查找很多资料,这样就会把自己的数学成绩得到明显的提高,这样的学习方式是一种被动式的学习也叫题海战术,学生只是简单的接受数学知识,并且初中数学的知识相对比较浅显,学生很快就能掌握知识。可是到了高中以后通过题海战术是能提高一些对数学知识的掌握,可是对于这个知识中的为什么就不能说出其所以然,就不能对相关的知识进行创新。所以高中数学的学习不只是单纯的做题就可以掌握其知识,而是要弄得其所以然才行,这样就需要学生自己去主动发掘知识的内涵,在老师的指导下把数学知识进行扩展,达到触类旁通。要做到这样就需要学生本身更加主动的学习,这样才能更加的发现数学中的乐趣。
二、学会听课,尽可能掌握更多的知识。
数学的学习是需要老师的引导,在引导下,学生根据自己的情况做一些相应的练习来掌握知识,巩固知识,要想提高学习效率,就需要学生做到以下一些:
1、做好预习,提出问题,进行多次阅读课本,查阅相关资料,回答自己提出的问题,力争在老师讲新课前尽可能的掌握更多的知识,如果不能回答的问题可以在老师讲课中去解决。
2、学会听课,在初中的教学中老师经常会把一个知识点进行多次的讲解和通过大量的练习让学生去掌握,可是到高中以后,老师对于一个知识点就不会再通过大量的练习来让学生去掌握,而是通过一些相关知识的讲解去引导学生明白这个知识是怎么来的,又如何用这个知识解答一些相关的疑惑,如果学生能明白的话就能在自己的知识下通过课后的练习去巩固这些知识,同时学生也可以根据老师的引导去扩展知识。
当然,对于自己在听课过程中一下子不能明白的知识,可以通过举手让老师再进行一次分析讲解,也同时做好相关的记录,以备在课后去进一步弄明白;对于自己在预习中提出的问题,如果老师没有解决的话,可以利用课余时间请教老师解答,这样学习就可能学习到更多的知识。
3、敢于发表自己的想法,在高中数学学习中,学生会遇到很多解题技巧,可能这种方法你知道,另外的人不是很熟悉。那么就需要学生敢于发表自己的想法,这样就能让大家掌握更多的技巧。也同样能激发同学学习的兴趣,如果一节课都是老师讲的话,课堂气氛也是很闷的,学生学习的效率也是很低的。
4、听好每一分钟,尤其是老师讲课的开头和结束。
老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
三、课后巩固。
很多学生在学习过程中没有重视课后的巩固,只是觉得在课堂上掌握一些知识就够了,其实这是错误的。高中数学的知识很多,并且不像初中数学那么浅显,而是有很多的内涵,如果不能进一步挖掘其内涵,那么只是掌握这个知识的表面,于是在自己做练习时就不知道如何去解了,也不能运用这个知识的。
做练习是需要的,可是有些学生只是为了练习去做练习,而不是为了巩固这个知识,扩展这个知识去做练习,经常是做完这个练习后算做完了,这样跟初中的做题是没有区别的。其实,我们还应该把这个练习中使用到的知识串起来,这样我们就能明白那些知识在运用,也能掌握更多的知识。也同样能发现那个知识点是重点,也能发现难题是如何把相关知识串起来的。
四、学会看题、学会选做题。
高中的相关资料比初中更多,高考是全社会都关注的问题,所以高中的练习也特别多,有些学生买的资料也多,于是如何利用题目来掌握我们学习的知识,扩展我们学习的知识就成为学习的关键。我觉得题目要多看,多想,看资料中的解题方法,想方法中的为什么,这样就可以借鉴更多的方法。方法多了,可以也要消化。于是我们要会有选择的做题,达到事半功倍。我建议每天一小练,每周做一套完整的考题,看2~3套考题,从中去发现那些是这段时间数学学习的重点知识,那些是我们常用的解题方法以及使用什么方法能优化解题。
五、重视每一次测试,认真分析考试中丢分的原因,并对丢分的地方做出相关的措施。
数学的学习技巧有很多,每一个人都有自己的不同技巧,我自己根据自己读书时期的一些体会和现在教学过程中的体会,归纳出几点技巧与大家共勉。
一记内容提纲。
老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。
二记疑难问题。
将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。
三记思路方法。
对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。
四记归纳总结。
注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。
五记体会感受。
数学学习是智、情、意、行的综合。数学学习过程伴随着积极的情感体验、意志体验过程,记下自己学习过程的感受,可以用来更好地调控自己的学习行为。譬如,一道运算很繁杂的习题,依靠坚强的意志获得解题成功后,可在旁边写上“功夫不负有心人”等自勉的语句,用来激励自己。
六记错误反思。
学习过程中不可避免地会犯这样或那样的错误,“聪明人不犯或少犯相同的错误”,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。
将本文的word文档下载到电脑,方便收藏和打印。