人教正比例的教学设计(热门13篇)
环境污染成为我们社会发展的一大问题,亟待解决。好的总结应该具备简明扼要、条理清晰的特点,方便他人阅读和理解。下面这些总结范文旨在帮助大家更好地掌握总结写作的要领。
人教正比例的教学设计篇一
(1)苹果的单价一定,购买苹果的数量和总价.
(2)轮船行驶的速度一定,行驶的路程和时间.
(3)每小时织布米数一定,织布总米数和时间.
(4)小新跳高的高度和他的身高.
(5)正方形的面积和边长。
(6)正方形的周长和边长。
人教正比例的教学设计篇二
教学要求:
使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。
进一步提高解决简单实际问题的能力。
教学过程:
提出本课复习题。
基本概念的复习。
什么叫两种相关联的量?
下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?
什么样的两种量成正比例关系?什么样的两种量成反比例关系?
成正比例关系的量与成反比例关系的量有什么异同点?
应用练习。
完成教材97页的“做一做”。
第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。
巩固练习。
完成教材99页第6~7题。
全课总结(略)。
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书。
基本概念的复习。
比和比例的意义与性质。
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺。
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)。
练习巩固。
完成教材十九页第1~4题。
全课总结(略)。
人教正比例的教学设计篇三
教科书第12册第94页“整理与反思”和95—96页的“练习与实践”5—10。
【知识要点】。
1、正比例和反比例的区别与联系:
相同点不同点。
特征关系式。
正比例两种相关联的量两种量中相对应的两个数的比的比值(也就是商)一定=k(一定)。
反比例两种量中相对应的两个数的积一定x×y=k(一定)。
与老教材相比,新教材进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。
2、图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺或=比例尺。
【教学目标】。
1、使学生进一步认识成正比例和反比例的量,掌握两种量是否成比例、成什么比例的思考方法。
2、使学生通过掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
3、使学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容之间的密切联系。认识成正比例和反比例的量,使学生感受正、反比例是描述数量关系及其变化规律的又一种有效的数学模型。
二、教学建议。
复习正比例和反比例,重点是它们的意义。教材让学生回忆判断两种量是否成正比例或反比例的方法,重温正比例关系的特征是两种相关联变量的商保持一定,反比例关系的特征是两种相关联变量的积保持一定。再通过第7、8题的判断,进一步巩固正比例和反比例的概念。第9题复习正比例的图像,其中汽车行驶的路程和耗油量是否成正比例,要利用图像找出几组相对应的数,组成比并求出比值,根据正比例的意义进行判断。
复习比例尺的知识仅编排一道题,利用平面图的比例尺和量出的图上距离,计算相应的实际距离。教学第10题要说说这幅平面图的比例尺和具体含义,从线段比例尺得出数值比例尺,回忆比例尺的意义和算法。要通过解题归纳求实际距离的方法及注意点,还要说说怎样求图上距离。
三、知识链结。
1、正比例和反比例(教科书六下p62例1、例2、p63例3)。
2、比例尺(教科书六下p48例6、p49例7)。
四、教学过程。
(一)正比例和反比例的意义。
1、教师提问:根据正比例和反比例的意义,我们怎样判断两种量是否成正比例或反比例关系?(小组讨论后,交流)。
2、小结:第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定。
3、举出一些生活中成正比例或反比例量的例子,在小组里交流。
例如:黄瓜的单价一定,数量和总价成正比例。因为,第一,数量和总价这两种量是相互关联的,其中一种量总价随着另一种量数量的变化而变化。第二,这两种量中每一组对应的数的比值都是单价。单价一定,所以这两种量是成正比例的量。
(二)练一练。
1、下表中两种量成比例吗?为什么?
加数122、51424。
加数1827、5166。
总吨数422610024、4。
余下吨数41259923、4。
因数35320。
因数159101、5。
2、完成教科书95页“练习与实践”
第7题:让学生先独立做,再讲评。讲评时注意帮助学生解决困难。
第8题:引导学生列举几组对应的数值再具体分析每组中两个数的关系后再判断。
第9题:其中第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)第2小题让学生在教材提供的方格图上描点、连线,再引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。体会数形结合在解决问题方面的价值。
(三)复习比例尺。
1、教师提问:什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)。
2、举例说说怎样求图上距离?怎样求实际距离。
3、完成教科书95页“练习与实践”第10题。
(四)评价小结:
学了本课你对所学知识有什么新认识?还有什么问题?
习题精编。
一、对号入座。
1、在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离千米。也就是图上距离是实际距离的1(),实际距离是图上距离的()倍。
2、一幅图的比例尺是,那么图上的1厘米表示实际距离();实际距离50千米在图上要画()厘米。把这个线段比例尺改写成数值比例尺是()。
3、一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。
4、判断下列各题中两种量是否成比例?成什么比例?
(1)路程一定,车轮的周长和车轮滚动的圈数。()。
人教正比例的教学设计篇四
教学内容:
教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。
2、使学生能正确判断正、反比例。
3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。
教学难点:正反比例的联系和区别。
教学重点:能判断正、反比例。
教学过程:
一、复习:
判断:下面每组中的两个量成什么关系?
1、单价一定,数量和总价。
2、路程一定,速度和时间。
3、正方形的边长和它的面积。
4、时间一定,工效和工作总量。
二、新知:
1、出示课题:
2、教学补充例题。
出示表1。
路程(千米)5102550100。
时间(时)1251020。
表2。
速度(千米/时)1005020105。
时间(时)1251020。
分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。
总结路程、速度、时间三个量中每两个量之间的比例关系。
速度×时间=路程=速度=时间。
判断:
(1)速度一定,路程和时间成什么比例?
(2)路程一定,速度和时间成什么比例?
(3)时间一定,路程和速度成什么比例?
3、比较正比例、反比例的关系。
正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。
不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。
三、巩固练习。
1、做一做。
判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么?
单价一定,数量和总价-。
总价一定,数量和单价-。
数量一定,总价和单价-。
2.判断下面一些相关联的量成什么比例?为什么?
(1)除数一定,和成比例。
被除数-定,和成比例。
(2)前项一定,和成比例。
(3)后项一定,和成比例。
(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。
人教正比例的教学设计篇五
在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。
(二)过程与方法。
通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。
(三)情感态度和价值观。
主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。
人教正比例的教学设计篇六
知识与技能:使学生理解正比例的意义,会正确判断成正比例的量。
过程与方法:使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
情感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学习习惯。
教学重点:正比例的意义。
教学难点:正确判断两个量是否成正比例的关系。
教学过程:
一、揭示课题。
在教师的此导下,学生会举出一些简单的例子,如:
1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
二、探索新知。
1、教学例1。
(1)、出示小黑板。问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)、出示表格。
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25立方厘米。
板书:50100150200?......?252468。
教师:体积与高度的比值一定。
(3)、说明正比例的意义。
在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一、两种相关联的量。
第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三、两个量的比值一定。
(1)、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用正的式子表示:
y?k(一定)x。
(2)、想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
人教正比例的教学设计篇七
本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
认识正、反比例的意义。
根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
教学内容。
教材第62—63页的例1和试一试,练一练和练习十三的第1—3题。
课型。
新授。
本单元教时数:4本教时为第1教时备课日期月日
教学目标。
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。
3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。
教学重点。
使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点。
根据正比例的意义正确判断两种相关联的量是不是成正比例。
教学准备。
光盘课件。
教学内容。
教师活动。
学生活动。
二次备课。
1、谈话引出例1的表格。
2、这两种量的数据是怎样变化的?
时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。
小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。
3、但是,你能发现什么呢?
如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。
这个比值是什么呢?
谁能用一句话来概括例1中的变化与不变。
4、介绍成正比例的量。
指名说说,表中有哪两种量。
引导学生观察,
指名说一说。
启发学生从“变化”中寻找“不变”。
学生试着回答,教师帮助完成。
学生完整的说说路程和时间成正比例的量。
1、出示教材试一试。
教师指导学生完成。
学试着完成,并交流回答四个问题。
三、概括意义。
1、引导学生观察例1和试一试,它们有什么共同点。
2、概括正比例的意义,揭示课题(板书)。
3、用字母怎样表示成正比例关系的两种量呢?
y:x=k(一定)。
观察,说说自己的发现。
学生完整的说一说例1和试一试成正比例关系。
四、巩固练习。
1、完成练一练。
2、练习十三第1题。
重点让学生说出判断的理由。
3、做练习十三第2题。
4、做练习十三第3题。
引导学生根据计算的结果来判断。完成书上的问题。
重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。
独立判断,交流时说出判断的理由。
学生先各自算一算,交流,说出思考过程。
指名判断,交流时说出思考过程,其它同学进行补充或纠正。
学生理解题意,然后在书上画一画,算一算,填在书上。
五、全课总结。
学习了什么?你有什么收获?
说一说。
板书。
两种相关联的量=k(一定)y和x就成正比例的量。
课后感受。
教学内容。
教材第63页例2,随后的练一练和练习十三的第4、5题。
课型。
新授。
本单元教时数:4本教时为第2教时备课日期月日
教学目标。
1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学重点。
使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
教学难点。
使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学准备。
光盘课件。
教学内容。
教师活动。
学生活动。
二次备课。
1、先出示例1的表格。
谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。
引导学生观察这些点的排布规律,并用直线连起来。
提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)。
(2)图中所描的点在一条直线上吗?
学生描点。
学生按要求操作完成。
指名回答。
如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。
二、巩固练习。
1、练一练。
学生做好后展示学生画的图象,共同评议。
问:你们画出的表示打字时间和打字个数关系的图象有什么特点?
指名回答第(3)个问题。
2、练习十三第4题。
既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。
第二题要求估计,答案出入是允许的。
3、第5题。
先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。
学生独立完成。
指名回答第(2)个问题。
学生相互间说一说。
学生回答,要说明理由。
讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。
三、全课总结。
说说,议论议论。
板书。
例2(图像)。
课后感受。
人教正比例的教学设计篇八
1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。
2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。
教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。
一、复习准备。
1、什么是比例?
2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。
时间(时)27。
路程(千米)180630。
二、导入新课。
教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。
三、进行新课。
用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。
时间(时)。
路程(千米)。
教师:先独立思考后再讨论、交流、回答以下问题。
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还能够从表中发现哪些规律?
教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。
板书:相关联。
教师:你们还发现哪些规律呢?
引导学生归纳出:
(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;
(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;
(3)路程和时间的比值都是90;时间和路程的比值都是1/90。
路程和时间的比值是什么?(速度)。
在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)。
数量(米)1234567…。
总价(元)8.216.424.632.841.049.257.4…。
先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。
学生分析后引导学生归纳:
(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;
(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;
(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。
教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系能够用式子表示为x/y=k(必须)。
教师:请同学们相互说一说生活中还有哪些是成正比例的量?
指导学生完成第56页“做一做”。
四、巩固练习。
指导学生完成练习十六第1~3题。
五、课堂小结。
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师对全课所学的知识进行归纳。
创意作业。
小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。
人教正比例的教学设计篇九
教学目:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
:掌握成正比例量的变化规律及其特征。
:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。
一、复习铺垫激情促思。
1、说出下列每组数量之间的关系。
(1)速度时间路程。
(2)单价数量总价。
(3)工作效率工作时间工作总量。
2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充。
二、初步感知探究规律1、出示例1的表格(略)。
说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)。
(2)引导学生观察表中数据,寻找两种量的变化规律。
根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。
根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?
根据学生的回答,板书关系式:路程/时间=速度(一定)。
(板书:路程和时间成正比例)。
2、教学“试一试”
学生填表后观察表中数据,依次讨论表下的4个问题。
根据学生的讨论发言,作适当的板书。
3、抽象表达正比例的意义。
根据学生的回答,板书:=k(一定)。
揭示板书课题。
先观察思考,再同桌说说。
大组讨论、交流。
学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。
学生根据板书完整地说一说表中路程和时间成什么关系。
学生独立填表。
完整说说铅笔的总价和数量成什么关系。
学生概括。
三、巩固应用深化规律。
1、练一练。
生产零件的数量和时间成正比例吗?为什么?
2、练习十三第1题。
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第2题。
先独立判断,再有条理地说明判断的理由。
4、练习十三第3题。
先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。
讨论、交流。
独立完成,集体评讲。
说明判断的理由。
说一说,画一画。
填一填,议一议。
讨论。
四、总结回顾评价反思。
这节课你学会了什么?你有哪些收获?还有哪些疑问?
人教正比例的教学设计篇十
教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
理解相关联的两个量及正比例的意义,并能正确判断两种量是否成正比例。
1.学生在学习本单元之前已经学习了比和比例的有关知识,会解决按比例分配的简单数学问题。
2.有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。
1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。
2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。
小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。
3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
根据学生的回答,教师板书关系式:路程时间=速度(一定)。
5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
(板书:路程和时间成正比例)。
二、教学“试一试”
1、要求学生根据表中的已知条件先把表格填写完整。
2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。
3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
三、抽象表达正比例的意义。
1、引导学生观察上面的两个例子,说说它们有什么共同点。
根据学生的回答,板书关系式。
四、巩固练习。
1、完成第63页的“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。
2、做练习十三第1~3题。
第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。
第2题先让学生独立进行判断,再指名说判断的理由。
第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。
五、全课小结。
这节课你学会了什么?通过这节课的学习,你还有哪些收获?
人教正比例的教学设计篇十一
课的个人看法:
老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。
这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。
“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。
人教正比例的教学设计篇十二
使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。
进一步提高解决简单实际问题的能力。
提出本课复习题。
基本概念的复习。
什么叫两种相关联的量?
下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?
什么样的两种量成正比例关系?什么样的两种量成反比例关系?
成正比例关系的量与成反比例关系的量有什么异同点?
应用练习。
完成教材97页的“做一做”。
第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。
巩固练习。
完成教材99页第6~7题。
全课总结(略)。
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书。
基本概念的复习。
比和比例的意义与性质。
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺。
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)。
练习巩固。
完成教材十九页第1~4题。
全课总结(略)。
人教正比例的教学设计篇十三
让个别学生说出运算顺序并计算题目的得数。
教师巡回指点,搜集存在问题。
教师黑板出示问题,学生上台改正,并说明理由。
(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。
三、当堂测评。
练习九第1、2、3题:
注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6。
楼楼板到地面的高度实际上只有5层楼的高度。
学生独立完成教师点评,解决疑难。
学生相互得分,评选优胜小组。
四、课堂小结。
这节课有什么收获?说一说。
还有什么不懂的?提出来小组内解决。
设计意图。
1、在课初始,我便从复习整数及小数的'运算顺序入手,
重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发。
现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练。
习加强计算的训练。
2、当堂测评题将学生置于提高之处,联系实际生活解决问。
题,让学生体会到数学知识的广泛性和严谨性。