解比例教学设计(实用18篇)
通过总结,我们可以找到自己的不足,从而更好地提高自己。做好总结可以帮助我们找到问题并提出改进的措施。通过阅读他人的总结作品,我们可以借鉴其优点和经验,进而提升自己的总结水平。
解比例教学设计篇一
知识与技能:
1.在实践活动中体验生活中需要的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。
过程与方法:
通过学生的自主探究、合作交流,培养学生的探究意识、合作意识、创新意识。
情感与态度:
1、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
2、在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣。
《比例尺》这节课是在学生学习了比和比例的基础上进行学习的,它是比和比例知识的延伸和应用,比例尺不是一把真正意义上的尺子,却是一个日常生活中极其重要的工具。在现实生活中有着广泛的应用,因此,对比例尺的学习具有很现实的意义。比例尺知识比较枯燥,也比较抽象,尽管教材对比例尺这一部分的知识进行了改动,但不易让学生直观的理解,与实际生活较远,所以在教学时可以将这部分知识进行稍许改动。
学生分析:学生对于常见的平面图和地图并不陌生,对化简比、比例的知识也已经掌握了,但对“比例尺”这个概念可能会有些生疏和抽象,课堂上将紧密借助学生已有的知识和经验引导学生,主动建构知识,让学生充分动手操作,动脑思考,经历“比例尺”知识的形成过程。
:
理解比例尺的意义。
多角度理解比例尺的含义。
在教学中,我采用动态的、多元的评价方式,并以多媒体演示为辅助教学手段,达到了生动、直观、 形象的教学效果。
一、 设疑激趣
生:爬的是地图.
师:对了,同学们见过地图吗?
生:见过
师:为什么我们国家有960万平方公里的辽阔土地却可以画在一张小小的地图之上?
生:是按照一定比例缩小的。
师:为什么同样是中国地图,却有大小不一呢?
生:缩小的倍数不一样
【设计意图】猜谜语是儿童喜闻乐见的一种形式,能引发学生的学习兴趣,使枯燥无味的教学内容转化为妙趣横生的学习活动,课伊始让学生猜谜,课堂气氛一下子就活跃起来了,接着在认识中国地图的过程中,唤醒了学生最熟悉的生活经验,调动原有的知识储备。让原有基础知识(缩小的倍数不一样,所以地图有大有小)与现实问题建立联系,也自然的引出数学问题,激发了学生探究的欲望和兴趣。使学生在轻松、愉快的氛围中积极主动思考,提高了学习的积极性。
二、自主探究新知
1、调动原有经验,初步感知新知
生自由画图。
汇报。
生:我把它缩小了比例,画成长是9厘米宽6厘米的图形。
生:实际距离
师:同学们,现在你能用一个比来表示刚才你画的图上距离和实际距离的比吗?
生:1:100
2、揭示比例尺的意义
师:你们能理解下1:100是什么意思吗?在小组内,和你的伙伴说一说。
生:实际距离是图上距离的100倍,或者图上距离是实际距离的100分之一,图上距离是1厘米,实际距离是100厘米。
师:刚才同学们说了,当图上距离是1厘米,实际距离就是100厘米,我们也可以理解为当图上距离为1份的时候,实际距离为100份,我们还可以说图上距离是实际距离的100分之一,我们也可以说实际距离是图上距离的100倍。
生:可以用1:300来表示。
师:像刚才同学们的1:100,1:300都表示的是图上距离比实际距离。在数学上,我们把像这样图上距离和实际距离的比叫做比例尺。如果用文字来表示的话就是比例尺=图上距离:实际距离。
3、强化比例尺的概念
这个比例尺的尺是我们刚才画图的尺子吗?不是。对,尺子是用来量长度的,而咱们这里的比例尺是一个比。全班一起读一读。
【设计意图】层次性是安排教学活动的一个重要原则。这一环节中,首先调动学生原有经验,通过让学生设计教室的平面设计图,使学生意识到将教室实际的长和宽画出来已经不切实际,不能满足问题的解决,从而自主探求,引出新知(设计一定的比例尺);让学生在画图、思考中不知不觉地学习,接着让学生们说出图上距离和实际距离的比的意义,不仅充分体现了交流的价值,而且还在合作交流中进一步加深了比例尺意义的理解。最后教师揭示比例尺不是一把尺子,而是一个比,使学生对比例尺的理解达到了升华。纵观这整个教学环节,层层递进,学生的学习状态从旧有的生活经验转为主动探索新知。预计教学效果好,同时学生思维水平也得到了提高。
4、生活中的比例尺
师:其实我们的生活中还有许多比例尺的例子,我们一起去看看。
请生上来读一读:
房屋设计图1:50
世界地图:1:33002万
地球仪:1:40000000
师:其实生活中除了老师给你们看的模型外,还有很多很多关于比例尺。像刚刚同学们写在黑板上的,表示图上距离和实际距离的比在我们的生活中还有很多很多,现在跟你的同桌说一说,黑板上这三个比例尺的意思。
【设计意图】“数学来源于生活”,因此我们不仅选材密切联系学生生活实际,而且教学也必须从学生熟悉的生活情境和感兴趣的事物出发,因此这一环节展示大量生活中的比例尺的例子,使学生们有更多的机会从周围熟悉的事物中学习比例尺和理解数学,体会到数学应在身边,感受到数学的趣味和作用,体验到数学的魅力。
三、巩固练习
1、我们学校的.校门宽8米,画在图纸上宽2米,你知道学校平面图的比例尺吗?
师:提醒学生,在求比例尺的时候,如果有单位不统一的时候,咱们要先统一单位,最后,写出比以后还要进行化简。
2、笑笑给我们制作了她家的平面图。
师:请仔细观察,在这幅图上,你得到了哪些有用的数学信息?
生:比例尺是1:100
3、在父母卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来.
生独立完成
【设计意图】数学课堂上练习题是非常重要的。我秉承“一题一得”的原则,在这个环节共安排了三题。第一题主要让学生巩固对于比例尺意义的理解,能正确计算比例尺。第二题让学生在思考中,能通过比例尺和图上距离,求出实际距离。最后一题即会求出图上距离。三个习题环环相扣,这样的作业设计让学生多渠道地将新知理解透彻,学生的数学思维能力得到极大发展。
四、全课总结
【设计意图】必要的课堂小结让学生学会自我总结,自我评价,养成自我反思的好习惯。
解比例教学设计篇二
教学目标:
1、结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量。
2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。
教学重难点:
认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的能力。
教学过程:
一、呈现情境图。
思考、讨论。
我家的房屋平面图。
1、比例尺1:100是什么意思?
图上距离。
2、比例尺=--------------。
实际距离。
3、独立完成p30页第2、3题。
4、p30页第4题,怎样求窗户的图上距离?注意比成相成的单位后再计算。
5、指导完成p30页第5题。
注意求比例尺时,图上距离与实际距离的单位要统一。
p31页第1题,说明清楚两地距离一般假设是直线距离,计算时,注意单位换算。
p31页第2题,自己尝试独立完成。
放手让学生自己研究。
教师对困难的学生加以指导。
试一试。
练一练。
解比例教学设计篇三
1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。
2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。
使学生理解比例尺的意义,会求一幅图的比例尺。
本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
教师活动学生活动。
比较引入演示:出示出示一组大小不同的中国地图。
师:通过观察,你发现了什么?什么变了?什么没变?
师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。
学生回答。(可能出现:形状没变、大小变了。)。
认识新知。
1、出示例6。
师:题中要我们写几个比?这两个比分别是哪两个数量的比?
什么是图上距离?
什么是实际距离?
2、认识探索写图上距离与实际距离比的方法。
师:图上距离与实际距离的单位不同,怎样写出它们的比?
(学生独立完成后,展示、交流写出的比,强调要把写出的比化简。)。
3、比例尺的意义及求比例尺的方法。
师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。
题中草坪平面图的比例尺是多少?
师:怎样求一幅图的比例尺?
根据学生的回答,相机板书:
图上距离:实际距离=比例尺。
4、进一步理解比例尺的实际意义。
图上距离/实际距离=比例尺。
指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。
5、认识线段比例尺。
比例尺1:1000还可以用下面这样的形式来表示。
0102030米。
师介绍线段比例尺。
问:图上1厘米表示实际多少米?3厘米呢?
指出像这样的比例尺通常叫做线段比例尺。学生读题,理解题意,尝试写出两个数量的比。
把图上距离与实际距离的单位统一成相同单位,写出比后再化简。
学生总结:图上距离:实际距离=比例尺。
学生在小组里说说,再全班交流。
学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。
学生:图上1厘米的距离表示实际距离10米。
巩固提高1、做“练一练”第1题。
2、做“练一练”第2题。
独立相互说,指名说。先说说每幅图中比例尺的实际意义。
学生各自测量、计算,再交流思考过程。
解比例教学设计篇四
1、大家好,我是西街小学的刘老师。今天我们学习的内容是判断两种量是否成反比例关系。首先我们必须明确成反比例关系的两种量满足的条件:两种量成相关联的量,意思就是说这两种量有关系2它们乘积一定,这决定了两种量的变化趋势是相反的,一种量随着另外一种量增大而减小。这两个条件,我们可以用一个数学表达式代替:xy=k(一定),满足这个式子就可以证明出他们是反比例关系。接下来我们观察这个等式的特征。等号右边是一个定值,等号左边是两种相关联的量相乘。抓住反比例关系的数学表达式的特征,对于判断两种量是否成反比例关系十分重要。下面我们结合练习题进行讲解。
二练习。
1、判断下面每题中的两种量是不是成反比例,并说明理由。(1)全班人数一定,按各组人数相等的要求分组,组数与每组人数根据常识我们知道,组数和每组人数是两种相关联的量。组数乘以每组人数等于全班人数,根据条件可知全班人数一定。所以组数和每组人数成反比例关系。
(2)生产手机的总量一定,工作时间和效率。
同样工作时间和效率是两种相关联的量,工作时间乘以效率等于工作总量,有条件可知,手机的总量是一定的,所以生产时间和效率成反比例关系。(3)在一块菜地上种的黄瓜与生菜的面积。
黄瓜和生菜的面积是相关联的量,但是黄瓜的面积+生菜的面积=菜地的面积,不符合乘积一定的条件,所以不是反比例关系。通过上面的题目我们不难发现判断两种量是否相关比较容易,重点在于判断乘积是否一定。
二、填一填。
(1)平行四边形的()一定,()和()成反比例关系。平行四边形中哪两种量成反比例关系,我们首先能够想到它的面积公式,底乘以高等于面积,我们让面积一定,就刚好符合反比例关系的表达式,这道题就迎刃而解了。
(2)三角形的()一定,()和()成反比例关系。同样我们会想到三角形的面积公式:底乘以高除以二等于三角形的面积。这个等式与我们的反比例的数学表达式有所不同,等号的左边多个2怎们办?我们可以通过等式的性质对这个式子变形,两边同时乘以二就可以得到底乘以高等于三角形的面积乘以2。我们让三角的面积一定,两个三角形的面积也是一定的。这样就符合我们的关系式。所以三角形的面积一定,底和高也成反比例关系。对于第二题,我们主要是对相关的公式进行变形然后判断。
三、有x,y,z三个相关联的量,并有xy=z.(1)当z一定时,x和y成()比例关系;(2)当x一定时,z和y成()比例关系;(3)y一定时,z和x成()比例关系。
我们看第一题,x和y直接满足了题目中的条件xy=z,所以很容易判定是反比例的关系;第二题,当x一定时,我们就把x放在等式的右边,x等于z除以y,满足了正比例的数学表达式,所以x和y成正比例关系;我们就可以用同样的方法判定第三题,y一定时,我们就把y放在等式的右边,y等于z除以x,满足了正比例的数学表达式,x和z成正比例关系。这种题型就是考察对代数式的转化能力。一般可以通过对代数式进行变形,把两种相关量写在等号的左边,不变的数写在右边。在看他们是乘还是除,继而判断是什么比例。以上就是我们学习的全部内容,谢谢。
解比例教学设计篇五
本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
认识正、反比例的意义。
根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
教学内容。
教材第62—63页的例1和试一试,练一练和练习十三的第1—3题。
课型。
新授。
本单元教时数:4本教时为第1教时备课日期月日
教学目标。
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。
3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。
教学重点。
使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点。
根据正比例的意义正确判断两种相关联的量是不是成正比例。
教学准备。
光盘课件。
教学内容。
教师活动。
学生活动。
二次备课。
1、谈话引出例1的表格。
2、这两种量的数据是怎样变化的?
时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。
小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。
3、但是,你能发现什么呢?
如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。
这个比值是什么呢?
谁能用一句话来概括例1中的变化与不变。
4、介绍成正比例的量。
指名说说,表中有哪两种量。
引导学生观察,
指名说一说。
启发学生从“变化”中寻找“不变”。
学生试着回答,教师帮助完成。
学生完整的说说路程和时间成正比例的量。
1、出示教材试一试。
教师指导学生完成。
学试着完成,并交流回答四个问题。
三、概括意义。
1、引导学生观察例1和试一试,它们有什么共同点。
2、概括正比例的意义,揭示课题(板书)。
3、用字母怎样表示成正比例关系的两种量呢?
y:x=k(一定)。
观察,说说自己的发现。
学生完整的说一说例1和试一试成正比例关系。
四、巩固练习。
1、完成练一练。
2、练习十三第1题。
重点让学生说出判断的理由。
3、做练习十三第2题。
4、做练习十三第3题。
引导学生根据计算的结果来判断。完成书上的问题。
重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。
独立判断,交流时说出判断的理由。
学生先各自算一算,交流,说出思考过程。
指名判断,交流时说出思考过程,其它同学进行补充或纠正。
学生理解题意,然后在书上画一画,算一算,填在书上。
五、全课总结。
学习了什么?你有什么收获?
说一说。
板书。
两种相关联的量=k(一定)y和x就成正比例的量。
课后感受。
教学内容。
教材第63页例2,随后的练一练和练习十三的第4、5题。
课型。
新授。
本单元教时数:4本教时为第2教时备课日期月日
教学目标。
1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学重点。
使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
教学难点。
使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学准备。
光盘课件。
教学内容。
教师活动。
学生活动。
二次备课。
1、先出示例1的表格。
谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。
引导学生观察这些点的排布规律,并用直线连起来。
提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)。
(2)图中所描的点在一条直线上吗?
学生描点。
学生按要求操作完成。
指名回答。
如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。
二、巩固练习。
1、练一练。
学生做好后展示学生画的图象,共同评议。
问:你们画出的表示打字时间和打字个数关系的图象有什么特点?
指名回答第(3)个问题。
2、练习十三第4题。
既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。
第二题要求估计,答案出入是允许的。
3、第5题。
先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。
学生独立完成。
指名回答第(2)个问题。
学生相互间说一说。
学生回答,要说明理由。
讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。
三、全课总结。
说说,议论议论。
板书。
例2(图像)。
课后感受。
解比例教学设计篇六
教学目的:
1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。
2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。
教具、学具准备:
教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。
教学过程:
一、复习准备。
1、什么是比例?
2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。
时间(时)27。
路程(千米)180630。
二、导入新课。
教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。
三、进行新课。
用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。
时间(时)12345678…。
路程(千米)90180270360450540630720…。
教师:先独立思考后再讨论、交流、回答以下问题。
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还能够从表中发现哪些规律?
教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。
板书:相关联。
教师:你们还发现哪些规律呢?
引导学生归纳出:
(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;
(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;
(3)路程和时间的比值都是90;时间和路程的比值都是1/90。
路程和时间的比值是什么?(速度)。
在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)。
数量(米)1234567…。
总价(元)8.216.424.632.841.049.257.4…。
先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。
学生分析后引导学生归纳:
(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;
(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;
(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。
教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系能够用式子表示为x/y=k(必须)。
教师:请同学们相互说一说生活中还有哪些是成正比例的量?
指导学生完成第56页“做一做”。
四、巩固练习。
指导学生完成练习十六第1~3题。
五、课堂小结。
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师对全课所学的知识进行归纳。
创意作业。
小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。
解比例教学设计篇七
使学生理解正比例的意义,会正确判断成正比例的量。
使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
情感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学习习惯。
正确判断两个量是否成正比例的关系。
一、揭示课题。
在教师的此导下,学生会举出一些简单的例子,如:
1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
二、探索新知。
1、教学例1。
(1)、出示小黑板。问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)、出示表格。
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25立方厘米。
板书:50100150200?......?252468。
教师:体积与高度的比值一定。
(3)、说明正比例的意义。
在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一、两种相关联的量。
第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三、两个量的比值一定。
(1)、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用正的式子表示:
y?k(一定)x。
(2)、想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
解比例教学设计篇八
教学目的:
进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。
教学过程:
一、复习。
判断下面两种理成不成比例,成什么比例,为什么?
(1)单价一定,数量和总价。
(2)路程一定,速度和时间。
(3)正方形的边长和它的面积。
(4)工作时间一定,工作效率和工作总量。
二、新授。
1、揭示课题。
2、学习例7。
(1)认识:“千米/时”的读法意义。
(2)出示书中的问题要求学生逐一回答。
(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?
(4)填空:用下面的形式分别表示两个表的内容。
当()一定时,()和()成()比例关系。
还有什么样的依存关系?
(5)教师作评讲并小结。
(6)用图表示例7中的两种量的关系。
指导学生描点、连线。
在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?
用同样的方法观察右表。
3、总结正、反比例的特点(异同点)。
由学生比、说。
三、巩固练习。
1、练一练第1、2题。
2、p49第1题。
四、课堂小结:
正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?
五、作业。
p49第2题(1)(4)(5)(6)(9)。
六、课后作业。
1、p49第2题(2)(3)(7)(8)(10)。
2、收集生活中正、反比例关系的量并分析。
解比例教学设计篇九
1、教学内容:人教版小学数学第十二册第三单元第三课时的教学(课本35页,例题2、例题3、及做一做。)。
2、教材分析。
《解比例》教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。
3、教学目标:
根据大纲要求和教材的特点,结合六年级学生的实际水平,确定以下教学目标:课时教学目标分三个围度:
(1)、认知:使学生认识解比例的意义,学会应用比例的基本性质解比例。
(2)、能力:使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
(3)、情感:培养学生良好的学习习惯。
4、教学重难点:根据教材的安排特点,和本节课的教学内容确定以下教学重难点1、认识解比例的意义。2、应用比例的基本性质解比例。
5、说教法:
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。
6、说学情、学法:学生是在学习了比、比例和比例的基本性质后学习解比例的',对比例的内项和外项已经认识,为了更好的体现学生是学习的主人,学生主要采用了以练习法、讲解法和自学辅导法等。
课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。
(一)导入新课。
师:同学们想不想去旅游?(想)现在跟老师一起去北京世界公园去看一看,好不好!(课件出示相关图片,并让学生说图片的认识,适当教育)(这样设计主要是引起学生对这节课的注意。)。
(1)同学们请用这四个数写一个比例,(请学生展示作品)。
(2)比例同学们已经写出来了,那么谁来说说什么叫比例?(表扬学生)。
(3)比例的基本性质是什么?(学生齐说)。
2.根据比例的基本性质把上面的比例改写成积相等的式子。(板书)。
(二)教学新课。
1、出示例2。
(1)、提问:这道例题和刚才的复习题有什么不同?你能用比例的基本性质来求出未知项x吗?(自己先想一想,再动笔写一写。)。
(2)、学生汇报解答过程。
(3)、揭示课题例题2就是求比例中的未知项。(板书:求比例里的未知项)从例题2可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例中的未知项,就叫做解比例。(板书课题)。
同学们你会应用比例的基本性质来解比例了吗?(能)。
出示练习题8︰12=x︰45。
学生独立完成,集体订正。
出示例3:(略)。
请同学们用比例的基本性质来解这个比例,求出未知项x,自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。
然后教师指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。
3.出示练习题(略)。
学生独立完成,集体订正。
4.小结方法。提问:你认为根据比例的基本性质要怎样解比例?
练习要求:学生独立完成,指名板演,集体订正。
这堂课学习了什么内容?你是怎样应用比例的基本性质解比例?
说板书设计:根据学生的学习特点,更容易掌握本节课所学知识。我设计以下板书。(略)。
解比例教学设计篇十
教学目标:
1使学生理解什么是相关联的量。
3学会判断两个量是否成正比例关系。
教学过程:
一、导入。
师(板书:关联):知道关联是什么意思吗?
生:指事物之间有联系。
生:也可以指事物之间相互影响。
师:对,关联就是指事物之间发生牵连和影响。
师:能举一些生活中相互关联的例子吗?
生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。
生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)。
生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。
这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”
生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。
二、新授。
师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?
师:从这个表格中。你还知道什么?
生:答对一题得10分,答对两题得20分,答对三题得30分……。
师:表中有哪两个量?它们的关系怎样?
生:答对的题目与最后的成绩,它们是两个相关联的量。
师:你们能够从中发现什么规律?
生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。
师:还能发现什么呢?
生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。
师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。
(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)。
师:刚才这位同学在算出比值的时候,你们发现了什么?
生:不管怎样,它们的比值不变。
师:这个比值实际上就是什么呀?(板书:每题的分数)。
师:你能用一个关系式表示吗?
板书关系式:成绩/答对的题目=每题的分数(一定)。
师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)。
1表中有()和()两种量。
2路程是怎样随着时间的变化而变化的?
3任意写出三个相对应的路程和时间的比,并算出它们的比值。
4比值实际上表示(),请用式子表示它们的关系。
(学生交流汇报,师板书关系式)。
(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)。
反思:
从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。
以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。
解比例教学设计篇十一
1、结合丰富的事例,认识正比例。
2、掌握成正比例变化的量的变化规律及其特征。
3、能根据正比例的好处,决定两个相关联的量是不是成正比例。
认识正比例的好处和怎样决定两个变化的量是不是成正比例。
决定两个变化的量是不是成正比例。
课件。
一、导入新课:
出示:路程、单价、正方形的边长……。
根据上面的某个量,你能想到些量?为什么?
在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。
二、新课探究:
(一)、活动一:初步感受正比例关系。
1、课件出示正方形周长与边长、面积与边长的变化状况:
(1)请把表格填写完整。
(2)观察表格,你能发现什么规律?
(群众填表后,独立观察,发现规律,
2、组织学生交流发现的规律,引导学生比较两个规律的异同点。
3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的,都是4,而正方形的面积与边长的比值是一向在变化的。
所以两个相互依靠的变量之间的关系是不一样的。
(二)、活动二:结合实例体会正比例的好处:
1、课件出示:
(1)将表格填完整。
(2)从表格中你能发现什么规律?
(以小组为单位,选取一个情境进行研究。)。
2、交流汇报:
(三)、活动三:揭示正比例的好处。
1、这2规律有什么共同点?
教师随着学生的回答板书:
都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。
2、教师揭示正比例的含义。
像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)。
3、结合实例说明:
表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。
学生说一说表二的两个量。
4、用字母表示出正比例关系。
(四)、活动四:决定两个量是不是成正比例的量。
1、出示活动一中的表格:
学生自主决定后交流。
2、看来决定两个量是否成正比例务必具备几个条件?
强调:只有具备两个条件,我们才能说这两个量成正比例。
三、课堂练习:
1、根据下表中的数据,决定表中的两个量是不是成正比例:
平行四边形的面积/cm2。
6
12。
18。
24。
30。
平行四边形的高/cm。
1
2
3
4
5
买邮票的枚数/枚。
1
2
3
4
5
所付的钱数/元。
0.8。
1.6。
2.4。
3.2。
4.0。
2、小明和爸爸的年龄变化状况如下:
小明的年龄/岁。
6
7
8
9
10。
11。
爸爸的年龄/岁。
32。
33。
(1)把表格填写完整。
(2)父子的年龄成正比例吗?为什么?
3、决定下面各题中的两个量是否成正比例,并说明理由。
(1)每袋大米的质量必须,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长和长。
(4)圆的周长和直径。
(5)圆的面积和半径。
四、课堂总结:
透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。
正比例。
一个量随着另一个量的变化而变化。
两个量的比值是不变。
x=ky(k必须)。
教学反思:
1.课堂流程的设计,延展了探究空间。
本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。
2.数学材料的呈现,丰富了体验途径。
为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体独立解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。
3.学习方式的选取,促进了深度感悟。
教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。
解比例教学设计篇十二
教学目:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
:掌握成正比例量的变化规律及其特征。
:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。
一、复习铺垫激情促思。
1、说出下列每组数量之间的关系。
(1)速度时间路程。
(2)单价数量总价。
(3)工作效率工作时间工作总量。
2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充。
二、初步感知探究规律1、出示例1的表格(略)。
说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)。
(2)引导学生观察表中数据,寻找两种量的变化规律。
根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。
根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?
根据学生的回答,板书关系式:路程/时间=速度(一定)。
(板书:路程和时间成正比例)。
2、教学“试一试”
学生填表后观察表中数据,依次讨论表下的4个问题。
根据学生的讨论发言,作适当的板书。
3、抽象表达正比例的意义。
根据学生的回答,板书:=k(一定)。
揭示板书课题。
先观察思考,再同桌说说。
大组讨论、交流。
学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。
学生根据板书完整地说一说表中路程和时间成什么关系。
学生独立填表。
完整说说铅笔的总价和数量成什么关系。
学生概括。
三、巩固应用深化规律。
1、练一练。
生产零件的数量和时间成正比例吗?为什么?
2、练习十三第1题。
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第2题。
先独立判断,再有条理地说明判断的理由。
4、练习十三第3题。
先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。
讨论、交流。
独立完成,集体评讲。
说明判断的理由。
说一说,画一画。
填一填,议一议。
讨论。
四、总结回顾评价反思。
这节课你学会了什么?你有哪些收获?还有哪些疑问?
解比例教学设计篇十三
1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。
2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。
教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。
一、复习准备。
1、什么是比例?
2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。
时间(时)27。
路程(千米)180630。
二、导入新课。
教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。
三、进行新课。
用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。
时间(时)。
路程(千米)。
教师:先独立思考后再讨论、交流、回答以下问题。
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还能够从表中发现哪些规律?
教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。
板书:相关联。
教师:你们还发现哪些规律呢?
引导学生归纳出:
(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;
(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;
(3)路程和时间的比值都是90;时间和路程的比值都是1/90。
路程和时间的比值是什么?(速度)。
在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)。
数量(米)1234567…。
总价(元)8.216.424.632.841.049.257.4…。
先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。
学生分析后引导学生归纳:
(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;
(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;
(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。
教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系能够用式子表示为x/y=k(必须)。
教师:请同学们相互说一说生活中还有哪些是成正比例的量?
指导学生完成第56页“做一做”。
四、巩固练习。
指导学生完成练习十六第1~3题。
五、课堂小结。
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师对全课所学的知识进行归纳。
创意作业。
小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。
解比例教学设计篇十四
教学内容:
“解比例”是人教版小学六年级的数学课程,位于第十二册课本第二单元第二课时第35—37页的内容,是一节基础知识与技能的新授课。在新课程改革中规定授课时间为45分钟(一个课时)。
一、教材分析和学情分析。
教材分析:
《解比例》教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。
学情分析:
学生先前在五年级上册时学习过简易方程以及本节课第一课时比例的意义和基本性质为本节课的学习奠定基础,同时学习本节课也是为后面比例的应用创造条件。五年级学生要注重引导他们从直观到抽象的思维方式,激发他们求知的欲望,调动学生学习的积极性和主动性。
1、认知:使学生认识解比例的意义,学会应用比例的基本性质解比例。
2、能力:使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
3、情感:培养学生良好的学习习惯。
三、教学重难点。
重点:认识解比例的意义。
难点:应用比例的基本性质解比例。
四、教学方法。
课标指出:有效的'数学学习活动不是单纯的解题训练,不能单纯的依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课我采用启发式教学引导学生发现问题,组织学生小组合作,尝试自己解决问题,并在学生交流时进行自学辅导。
课前准备:多媒体课件。
(一)趣味游戏、复习导入顺口溜:
比例组成有条件,两相等不能变内外乘()要相等,性质应用最广泛。
用比例的基本性质可以用来干什么呢?(出示课题:解比例)生齐读。
【设计意图】:不拘泥于教材,创设学生感兴趣的引入新课,引起学生的共鸣;同时又渗透了比例的基本性质,对知识进行了复习起到了一举两得的作用。
(二)出示学习目标。
2、能利用比例的基本性质解比例。
【设计意图】:有了目标,就有了前进的动力和方向。
下面跟着老师的自学提示开始今天的探索之旅吧。
(三)出示自学导航。
1、什么叫解比例?
2、自学例。
2、你明白为什么列式是x:320=1:10吗?指出这个比例中的内项和外项。
3、10x=320×1是依据什么得来的?这个方程你会解吗?
4、你能总结出解比例的方法吗?
(四)学生自学,师巡视。
1、学生自己先看书,找出自己看不懂的地方,在小组讨论时解决。
2、师巡视碰到小组解决不了的给予指导。
(五)交流汇报。
1、求比例中的未知项叫做解比例。
2、根据比的对应性列出比例。
3、根据比例的基本性质把比例变成方程,然后在解方程。
【设计意图】让学生自己通过自己的自学以及交流,说出自己的发现,全班同学交流可以让他们体会到数学发现的乐趣。
(六)随机检测。
1、来试试吧!解比例。
8︰12=x︰15。
0.8:4=x:8。
2、我变身了,还认识我吗?挑战一下﹗。
解比例。
(七)课堂检测。
1、求比例中的()叫做解比例;解比例的依据是()。
2、在一个比例中,两个内项互为倒数,其中一个外项是4,另一个外项是()。
3、4x=7y,那么y:x=():()火眼金睛判对错。
1、含有未知项的比例也是方程()。
2、在比例里,两个外项的积与两个内项的积的差是0()求未知数。
20:3=50:x。
8x=2.4×6。
侦探柯南之神秘脚印。
一个月黑风高的夜晚,一家珠宝店失窃了。第二天早上,小侦探柯南经过仔细勘察,在现场发现了一枚犯罪嫌疑人留下的脚印,柯南很快判断出了嫌疑人的身高,你们知道他是怎么判断的吗?科学研究表明:人的身高与脚长的比大约是7:1,柯南在案发现场测得嫌疑人脚印长25厘米,你能算出这个嫌疑人的身高吗?(用比例的方法写)。
题型培优岛。
一种药水是把药和水按1:40的比配制成的,现有药240克,能配制药水多少克?(用比例的方法写)。
【设计意图】课堂练习是为了让学生及时掌握知识,形成能力。根据学生的认知特点与认知水平的差异,我设计了具有梯度的层次性练习,通过不同类型、不同层次的练习使不同程度的学生都能得到发展。
(八)作业布置。
1、出示书35页例2.自己解决,小组交换检查。
【设计意图】通过提问来加深对学习内容的表象。数学课程的内容不仅要包括数学的一些现成结果,还要使学生真正的理解和掌握基本的数学知识与技能。为此给同学们布置作业,不仅是检验学生的学习能力还可以检验教师的教学能力。
(九)谈谈你的收获!(进行课堂小结)。
解比例。
例2模型的高度:原塔的高度=1:10。
模型的高度:320=1:10未知项。
解:设这座模型的高度是x米。
x:320=1:1010x=320×1x=320×1/10x=32。
答:这座模型高32米。
七、说课后反思。
本堂课本着“化教为学,以练研讲”的教学模式讲课,走先学后教“导学案”的教学模式。
虽然本课教学中紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。但是由于自身的语言没有激情因而课堂气氛还有不够活跃,以后我会在这个方面努力。
解比例教学设计篇十五
使学生进一步理解和掌握用比例知识解答应用题的方法。
抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。
通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。
师:谁能够说说用比例知识解应用题的关键是什么?
判断下题中各量成什么比例?并说明理由?
指导学习题例。
让学生独立解答例7。
在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。
相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。
不同点:第一种解法是直接设所求问题为x。
第二种解法是间接设,即解出x后,还要用x减3才是所求问题。
师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。
学习例6。
师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。
比较例5例6有什么不同?分别是根据什么关系来解答的?
(强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用x代替,列出方程解答)。
算术解法和比例解法的比较和联系。
观察算式(例5)。
笔答题:教材117页1~3题。
解比例教学设计篇十六
尊敬的各位评委:
你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。
1、教学内容:人教版六年级下册p39正比例的意义。
2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。
3、教学重点,难点、关键:
教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。
4、教学目标:
根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。
知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。
过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。
情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。
遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。
引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。
本节课我安排了六个教学环节。
第一个环节:游戏导入,激发兴趣。
用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。
第二环节:引导观察,启发思考。
教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。
第三环节:创设情景,观察实验。
用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。
第四环节:探究成正比例的量。
学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
第五环节:巩固练习,拓展提高。
第六环节:全课小结。
在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。
本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。
解比例教学设计篇十七
教材第42页例2、例3。
2、会根据比例的性质或比例的意义正确地解比例。
3、培养学生认真书写和计算的习惯。
1、经历解比例的过程,体验知识之间的内容在联系和广泛应用,情感与价值观。
2、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
教学重点:
解比例。
教学难点:
突破方法:
引导学生小组合作探究、交流,掌握解比例的根据。
教法与学法:
教法:创设问题情境,引导发现。
学法:独立思考,自主探究。
ppt课件。
一、复习准备。
1、师:同学们,我们已经学习了比例的一些知识,谁来说一说上节课我们学习了哪些比例的知识?(比例的意义,比例的基本性质)。
3、利用比例的一些知识,还可以帮助我们解决一些实际问题。
出示比例:3:9=():15。
师:这个比例中的两个外项和两个内项分别是多少?
(外项是3和15,一个内项是9,另一个内项未知的。)。
师:你能利用比例的知识求出这个未知的内项吗?
可以根据比例的意义:比值相等的两个比可以组成比例。因为3:9=1/3,想():15=1/3(5比15等于1/3);还可以根据比例的基本性质“两个内项之积等于两个外项之积”,求未知项。
师:像这样,求比例中未知的项,叫做解比例。(课件出示)。
今天这节课就利用比例的有关知识解比例。(板书课题)。
二、探索新知。
1、出示埃菲尔铁塔情境图。这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道、你们能帮帮他们吗?那我们先来看看这道题。
2、出示例题,教学例2。学生读题。
师:1:10是谁与谁的比?
教师随学生的回答板书:埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:
10。
师:题中还告诉了我们一个什么条件?(埃菲尔铁塔的高度是320米。)师:这样在这组比例的四个项中,我们知道其中的几个项?还有几个项不知道?(知道其中的三个项,还有一个项不知道。)。
师:不知道这个项,我们把它叫做未知项。(在板书下面加上“未知项”三个字)。
板书:解:设这座埃菲尔铁塔模型的高度是x米。
x:320=1:10。
师:用比例的基本性质可以把这个比例改写成一个什么样的等式呢?
为什么可以写成这样的等式呢?引导学生讨论后回答:这是应用了比例的基本性质,把上面的比例写成两个外项的积等于两个内项的积的等式。
师:对了,把上面的比例改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,不但把比例改写成了等式,这个等式还是一个什么样的等式呀?(含有未知数的等式。)。
师:我们知道这样含有未知数的等式,叫做——方程。同学们会解方程吗?把这个方程解出来。(在全班学生独立解答的同时,抽一个学生在黑板上解答。)。
师:这样我们就知道这个未知项是多少呀?(32)对了,这座埃菲尔铁塔模型的高度是32米。
那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们。
知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)。
出示比例的意义。我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是不是能成比例、)或比例的基本性质来检验。
解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设x——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)。
3、巩固例2练习。
(1)出示练习题p44第8题。
(2)学生独立完成,二名学生板演讲解分析。
(3)小结:说一说你是怎样解比例。(解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数x)。
4、这个比例你能解答吗?出示例3:1、5/2、5=6/x。
(1)谈话引导学生理解例3,这个比例形式上与例2有什么不同?(这个比例是分数形式)。
(3)学生独立练习,求出未知项。
(4)同学间互相交流,发现问题及时解决。
5、指导学生梳理教材的知识点,完成p42“做一做”。
三、巩固练习。
课件出示基本练习和提高练习,学生独立完成,指名板演。
四、本课小结。
这节课主要学习了什么内容?
五、布置作业。
p44第8题、第9题、第10题。
解比例。
例2模型高度:原塔高度=1:10。
未知项(x)320米。
解:设这座模型高x米。
x:320=1:10。
10x=320x1。
x=320÷10。
x=32。
答:这座模型高32米。
解比例教学设计篇十八
2.能根据正比例的意义判断两种量是不是成正比例.。
3.培养学生的抽象概括能力和分析判断能力.。
使学生理解正比例的意义.。
口答(课件演示:成正比例的量)。
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
(一)导入新课。
(二)教学例1.(课件演示:成正比例的量)。
2.出示下表,并根据上述内容填表.。